Advertisement

Taxol: A Probe for Studying the Structure and Function of Microtubules

  • Susan B. Horwitz
  • Peter B. Schiff
  • Jerome Parness
  • James J. Manfredi
  • Wilfredo Mellado
  • Samar N. Roy

Abstract

Plant alkaloids, particularly colchicine and the vinca alkaloids, have played a major role in furthering our understanding of the complex mechanisms involved in the polymerization and depolymerization of microtubules. This has been true in observing cells throughout the cell cycle and in studies done in cell-free systems with purified components. In addition, the vinca alkaloids are important cancer chemotherapeutic drugs used in the treatment of human malignancies.

Keywords

Dorsal Root Ganglion Neuron Chinese Hamster Ovary Cell Vinca Alkaloid Microtubule Assembly Chinese Hamster Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, W. T., Cirtain, M. C. and Lefko, J. L., 1984, Energy-dependent reduced drug binding as a mechanism of Vinca alkaloid resistance in human leukemic lymphoblasts, Mol.Pharmacol. 24: 485–492.Google Scholar
  2. Biedler, J. L. and Peterson, R. H. F., 1981, Altered plasma membrane glycoconjugates of Chinese hamster cells with acquired resistance to actinomycin D, daunorubicin, and vincristine, in: “Molecular Actions and Targets for Cancer Chemotherapeutic Agents,” A. C. Sartorelli, J. S. Lazo and J. R. Bertino, eds., Bristol-Myers Cancer Symposium, Vol. 2, pp. 453–482, Academic Press, New York.Google Scholar
  3. Biedler, J. L. and Spengler, B. A., 1976, Metaphase chromosome anomaly: Association with drug resistance and cell specific products, Science 191: 185–187.Google Scholar
  4. Carlier, M.-F. and Pantaloni, D., 1983, Taxol effect on tubulin polymerization and associated guanosine 5’-triphosphate hydrolysis, Biochemistry, 22: 4814–4822.CrossRefGoogle Scholar
  5. Crossin, K. L. and Carney, D. H., 1981, Microtubule stabilization by taxol inhibits initiation of DNA synthesis by thrombin and by epidermal growth factor, Cell, 27: 341–350.Google Scholar
  6. Kuo, T., Pathak, S., Ramagli, L., Rodriquez, L. and Hsu, T. C., 1982, Vincristine-resistant Chinese hamster ovary cells, in “Gene Amplification,” R.T. Schimke, ed., pp. 53–57, Cold Spring Harbor Laboratory, New York.Google Scholar
  7. Masurovsky, E. B., Peterson, E. R., Crain, S. M. and Horwitz, S. B., 1981, Microtubule arrays in taxol-treated mouse dorsal root ganglion-spinal cord cultures, Brain Res., 217: 392–398.CrossRefGoogle Scholar
  8. Masurovsky, E. B., Peterson, E. R., Crain, S. M. and Horwitz, S. B., 1983, Morphologic alterations in dorsal root ganglion neurons and supporting cells of organotypic mouse spinal cord-ganglion cultures exposed to taxol, Neuroscience, 10: 491–509.Google Scholar
  9. Parness, J. and Horwitz, S. B., 1981, Taxol binds to polymerized tubulin in vitro, J Cell Biol., 91: 479–487.CrossRefGoogle Scholar
  10. Parness, J., Asnes, C. F. and Horwitz, S. B., 1983, Taxol binds differentially to flagellar outer doublets and their reassembled microtubules, Cell. Motility, 3: 123–130.CrossRefGoogle Scholar
  11. Parness, J., Kingston, D. G. I., Powell, R. G., Harracksingh, C. and Horwitz, S. B., 1982, Structure-activity study of cytotoxicity and microtubule assembly in vitro by taxol and related taxanes, Biochem. Biophys. Res. Commun., TIJ57IW-1089.Google Scholar
  12. Roninson, I. B., Albelson, H. T., Housman, D. E., Howell, N. and Yarshavsky, A., 1984, Amplification of specific DNA sequences correlates with multi-drug resistance in Chinese hamster cells, Nature, 309: 626–628.Google Scholar
  13. Roy, S. N. and Horwitz, S. B., 1985, A phosphoglycoprotein associated with taxol-resistance in J774.2 cells, (submitted for publication).Google Scholar
  14. Schiff, P. B. and Horwitz, S. B., 1981a, Taxol assembles tubulin in the absence of exogenous guanosine 51-triphosphate or microtubule-associated proteins, Biochemistry, 20: 3247–3252.Google Scholar
  15. Schiff, P. B. and Horwitz, S. B., 1981b, Tubulin: a target for chemo- therapeutic agents, in: “Molecular Actions and Targets for Cancer Chemotherapeutic Agents,” A. C. Sartorelli, J. S. Lazo and J. R. Bertino, eds., Bristol-Myers Cancer Symposium, Vol. 2, pp. 483 - 507, Academic Press, New York.Google Scholar
  16. Schiff, P. B., Fant, J. and Horwitz, 1979, Promotion of microtubule assembly in vitro by taxol, Nature, 277: 665–667.Google Scholar
  17. Thompson, W. C., Wilson, L. and Purich, D. L., 1981, Taxol induces microtubule assembly at low temperature, Cell Motility, 1: 445–454.Google Scholar
  18. Tokunaka, S., Friedman, T. M., Toyama, Y., Pacifici, M. and Holtzer, H., 1983, Taxol induces microtubule-rough endoplasmic reticulum complexes and microtubule-bundles in cultured chondroblasts, Differentiation, 24: 39–47.CrossRefGoogle Scholar
  19. Zieve, G. and Solomon, F., 1982, Proteins specifically associated with the microtubules of the mammalian mitotic spindle, Cell, 28: 233–242.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Susan B. Horwitz
    • 1
  • Peter B. Schiff
    • 1
  • Jerome Parness
    • 1
  • James J. Manfredi
    • 1
  • Wilfredo Mellado
    • 1
  • Samar N. Roy
    • 1
  1. 1.Department of Molecular Pharmacology and Cell BiologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations