Skip to main content

The Cytoskeleton as a Target For Toxic Agents

  • Chapter
The Cytoskeleton

Abstract

In the previous chapter several examples of toxic compounds that have been used as tools to elucidate the structure and function of the cytoskeleton have been described. These examples were presented in the context of cytoskeletal composition and function. In this chapter, we discuss toxic agents that have been used as tools and present a summary of such compounds. Finally, we review a number of compounds for which evidence strongly suggests that the primary effects involve the cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Toxic Agents for Studying the Cytoskeleton

  • Ben-Ze’ev, A., Farmer S. R. and Penman S. (1979) Mechanisms regulating tubulin synthesis in cultured mammalian cells, Cell 17: 319–325.

    Article  Google Scholar 

  • Bernard, C. (1875) la Science Experimentale, p. 237, Bailliere, Paris.

    Google Scholar 

  • Cleveland, D. W., Lopata, M. A., Sherline, P. and Kirschner, M. W. (1981) Unpolymerized tubulin modulates the level of tubulin mRNAs, Cell 25: 537–546.

    Article  CAS  Google Scholar 

  • Yamanda, K. M. Spooner, B. S. and Wessells, N. K. (1970) Axon Growth: roles of microtubulin and microfilaments, Proc. Natl. Acad. Sci. 66: 1206–1212.

    Google Scholar 

Toxic Chemicals Acting on the Cytoskeleton

  • Aldridge, W. N., (1981), Mechanisims of toxicity. New concepts are required in toxicology, Trends Pharmacol. Sci. 2: 228–231.

    Google Scholar 

The Neuronal Cytoskeleton Agents Affecting Neuronal Microtubules

  • Roderiguez Echandia, E. L., Ramirez, B. U. and Fernandez, H. L. (1973) Studies on the mechanism of inhibition of axoplasmic transport of neuronal organelles, J. Neurocytol. 2: 149–156.

    Article  Google Scholar 

  • Schlaepfer, W. W. (1971) Vincristine induced axonal alterations in rat peripheral nerve, J. Neuropathol. Exper. Neurol. 30: 488–505.

    Google Scholar 

  • Shelanski, M. L. and Wisniewski, H. (1969) Neurofibrillary degeneration induced by vincrestine neuropathy, Arch. Neurol. 20: 199–206.

    Google Scholar 

  • Watkins, S. M. and Griffin, J. P. (1978) High incidence of vincristine induced neuropathy in lymphomas, Brit. Med. J. 1: 610–612.

    Google Scholar 

Agents Producing Neurofibrillary Pathology

  • Gajdusek, D. C. (1985) Hypothesis: interference with axonal transport of neurofilament as a common pathogenic mechanism in certain diseases of the central nervous system, N. Eng. J. Med. 312: 714–719.

    Google Scholar 

Aluminum

  • Wisniewski, H. M., Sturman, J. A. and Shek, J. W. (1980) Aluminium chloride induced neurofibrillary changes induced in the developing rabbit: a chronic animal model, Ann. Neurol. 8: 479–490.

    Google Scholar 

IDPN

  • Clark, A. W., Griffin, J. W. and Price D. L. (1980) The axonal poathology in chronic IDPN intoxication, J. Neuropathol. Exper. Neurol. 39: 42–55.

    Google Scholar 

  • Hoffman, P. N., Clark, L. C., Carroll, P. T. and Price D. L. (1978) Slow axonal transport of neurofilament proteins: impairment by β, β’-iminodipropionitrile administration, Science 202: 633–635.

    Article  Google Scholar 

  • Pestronk, A., Keoyh, J. P. and Griffin, J. W. (1980) Dimethylaminopropronitrile, in:”Experimental and Clinical Neurotoxicology,” P. S. Spencer and H. H. Schvamburg, eds., pp 422–429, Williams and Wilkins, Baltimore.

    Google Scholar 

β-Diketone (Hexacarbon) Compounds

  • Cavanagh, J. B. (1982) The pattern of recovery of axons following 2,5 hexanediol intoxication: a question of rheology, Neuropathol. Neuropiol. 8: 19–34.

    Google Scholar 

  • Spencer, P. S., Schaumburg, H. H., Sabri, N. I. and Veronesia, B. (1980) The changing view of hexacarbon neuropathy, CRC Crit. Toxicol. 7: 279–356.

    Google Scholar 

Carbon Disulfide

  • Szendzikowski, S., Stetkiewicz, J. Wronska-Nofer, T. and Zdrajkowska, I. (1973) Structural aspects of experimental carbon disulphide neuropathy. I. Development of neurohistological changes in chronically intoxicated rats, Internat. Arch. Arbeitsmed. 31: 135–149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Syversen, T.L.M. et al. (1986). The Cytoskeleton as a Target For Toxic Agents. In: Clarkson, T.W., Sager, P.R., Syversen, T.L.M. (eds) The Cytoskeleton. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2161-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2161-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9274-6

  • Online ISBN: 978-1-4613-2161-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics