Pathogenetic Studies of the Neurofilamentous Neuropathies

  • Doyle G. Graham
  • Gyöngyi Szakàl-Quin
  • Leslie Milam
  • Marcia R. Gottfried
  • D. Carter Anthony


Exposure to both n-hexane and methyl n-butylketone (2-hexanone) have resulted in distal sensorimotor neuropathies in industrial settings (Yamamura, 1969; Allen et al., 1975), and n-hexane induced neuropathies have been seen in glue sniffers (Korokobin et al., 1975). The resulting neuropathy was characterized by paranodal axonal swellings filled with neurofilaments and was readily reproduced in experimental animals (Schaumburg and Spencer, 1976; Krasavage et al., 1980). Degeneration of the axon distal to the swellings has been observed in large myelinated axons in the peripheral nervous system (PNS), but less often in small myelinated or unmyelinated PNS axons (Spencer and Schaumburg, 1977) or in central nervous system (CNS) axons, in which the masses of neurofilaments travel to the end of the axon where they undergo eventual digestion by a calcium-activated protease (Cavanagh and Bennetts, 1981; Cavanagh, 1982).


Protein Crosslinking Covalent Crosslinking Axonal Swelling Distal Axon Lysyl Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, N., Mendell, J.R., Billmaier, D.J., Fontaine, R.E. and O’Neill, J., 1975, Toxic polyneuropathy produced by the industrial solvent, methyl n-butyl ketone, Arch. Neurol., 32: 209–218.Google Scholar
  2. Anthony, D.C., Boekelheide, K., Giangaspero, F., Allen, J.C., Jr., Parks, H., Priest, J.W., Webster, D. and Graham, D.G., 1982, The neurofilament neuropathies: A unifying hypothesis, J. Neuropathol. Exp. Neurol., 41: 371.CrossRefGoogle Scholar
  3. Anthony, D.C., Boekelheide, K., Anderson, C.W. and Graham, D.G., 1983a, The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. II. Dimethyl substitution accelerated pyrrole formation and protein crosslinking, Toxicol. Appl. Pharmacol., 71: 372–382.CrossRefGoogle Scholar
  4. Anthony, D.C., Boekelheide, K. and Graham, D.G., 1983b, The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. I. Accelerated clinical neuropathy is accompanied by more proximal axonal swellings, Toxicol. Appl. Pharmacol., 71: 362–371.CrossRefGoogle Scholar
  5. Anthony, D.C., Giangaspero, F. and Graham, D.G., 1983c, The spatio-temporal pattern of the axonopathy associated with the neurotoxicity of 3,4-dimethyl-2,5-hexanedione in the rat, J. Neuropathol. Exp. Neurol., 42: 548–560.CrossRefGoogle Scholar
  6. Cavanagh, J.B., 1982, The pattern of recovery of axons in the nervous system of rats following 2,5-hexanediol intoxication: A question of rheology, Neuropathol. Appl. Neurobiol., 8: 19–34.Google Scholar
  7. Cavanagh, J.B. and Bennetts, R.J., 1981, On the pattern of changes in the rat nervous system produced by 2,5-hexanediol. A topographical study by light microscopy, Brain, 104: 297–318.CrossRefGoogle Scholar
  8. Clark, A.W., Griffin, J.W. and Price, D.L., 1980, The axonal pathology in chronic IDPN intoxication, J. Neuropathol.Exp. Neurol., 39: 42–55.CrossRefGoogle Scholar
  9. DeCaprio, A.P., Olajos, E.S. and Weber, P., 1982, Covalent binding of a neurotoxic n-hexane metabolite: Conversion of primary amines to substituted pyrrole adducts by 2,5-hexanedione, Toxicol. Appl. Pharmacol., 65: 440–450.Google Scholar
  10. DeCaprio, A.P., Strominger, N.L. and Weber, P., 1983, Neurotoxicity and protein binding of 2,5-hexanedione in the hen, Toxicol. Appl. Pharmacol., 68: 297–307.CrossRefGoogle Scholar
  11. Eliel, E.L., 1962, Stereochemistry of ring systems, in: “Stereochemistry of Carbon Compounds,” E.L. Eliel (ed.), pp. 196 - 2037 McGraw-Hill, New York.Google Scholar
  12. Friede, R.L., Benda, M., Dewitz, A. and Stoll, P., 1984, Relations between axon length and axon caliber. Is maximum conduction velocity the factor controlling the evolution of nerve structure, J. Neurol. Sci., 63: 369–380.CrossRefGoogle Scholar
  13. Graham, D.G., Anthony, D.C. and Boekelheide, K., 1982a, In vitro and in vivo studies of the molecular pathogenesis in n-hexane neuropathy, Neurobehav. Toxicol. Teratol., 4: 629–634.Google Scholar
  14. Graham, D.G., Anthony, D.C., Boekelheide, K., Maschmann, N.A. Richards, R.G., Wolfram, J.W. and Shaw, B.R., 1982b, Studies of the molecular pathogenesis of hexane neuropathy. II. Evidence that pyrrole derivatization of lysyl residues leads to protein crosslinking, Toxicol. Appl. Pharmacol., 64: 415–422.CrossRefGoogle Scholar
  15. Graham, D.G., Szakal-Quin, Gy, Priest, J.W. and Anthony, D.C., 1984, In vitro evidence that covalent crosslinking of neurofilaments occurs in β-diketone neuropathy, Proc. Natl. Acad. Sci., 81: 4979–4982.Google Scholar
  16. Griffin, J.W., Anthony, D.G., Fahnestock, K.E., Hoffman, P.N., and Graham, D.C., 1984, 3,4-dimethyl-2,5-hexanedione impairs the axonal transport of neurofilament proteins, J. Neurosci., 4: 1516–1526.Google Scholar
  17. Hartree, E.F., 1972, Determination of protein: A modification of the Lowry method that gives a linear photometric response, Anal. Biochem., 48:422–427. Hess, A. and Young, J.Z., 1952, The nodes of Ranvier, Proc. R. Soc. Lond., 140: 301–320.Google Scholar
  18. Hoffman, P.H. and Lasek, R.J., 1975, The slow component of axonal transport, J. Cell. Biol., 66: 351–366.CrossRefGoogle Scholar
  19. Jones, H.B. and Cavanagh, J.B., 1983, Distortions of the nodes of Ranvier from axonal distention by filamentous masses in hexacarbon intoxication, J. Neuroeytol., 12: 439–458.CrossRefGoogle Scholar
  20. Jones, R.A. and Bean, G.P., 1977, The chemistry of pyrroles, in: “Organic Chemistry,” A.T. Blomquist and H.H. Wasserman (eds.), pp. 209–247, Academic Press, New York.Google Scholar
  21. Korokobin, R., Asbury, A.K., Summer, A.J. and Nielsen, S.L., 1975, Glue-sniffing neuropathy, Arch. Neurol., 32: 158–162.Google Scholar
  22. Krasavage, W.J., O’Donoghue, J.L., DiVencenzo, G.D. and Terhaar, C.J., 1980, The relative neurotoxicity of MnBK, n-hexane, and their metabolites, Toxicol. Appl. Pharmacol., 52: 433–441.Google Scholar
  23. Schaumburg, H.H. and Spencer, P.S., 1976, Degeneration in the central and peripheral nervous systems produced by pure n-hexane: An experimental study, Brain, 99: 183–192.CrossRefGoogle Scholar
  24. Spencer, P.S. and Schaumburg, H.H., 1977, U1trastructural studies of the dying-back process. IV. Differential vulnerability of PNS and CNS fibers in experimental central-peripheral distal axonopathies, J. Neuropathol., 36: 300–320.CrossRefGoogle Scholar
  25. Spencer, P.S., Sabri, M.I. and Moore, C.L., 1979, Does a defect in energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies, Ann. Neurol., 5: 501–507.CrossRefGoogle Scholar
  26. Waxman, S.G., Brill, M.H., Geschwind, N., Sabin, T.D. and Lettvin, J.Y., 1976, Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathies, J. Neurol. Sci., 29: 39–53.CrossRefGoogle Scholar
  27. Yamamura, Y., 1969, n-Hexane polyneuropathy, Folia Psychiat. Neurol. Jpn., 23: 45–57.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Doyle G. Graham
    • 1
  • Gyöngyi Szakàl-Quin
    • 1
  • Leslie Milam
    • 2
  • Marcia R. Gottfried
    • 1
  • D. Carter Anthony
    • 1
  1. 1.Department of PathologyDuke University Medical CenterDurhamUSA
  2. 2.Department of AnatomyUniversity of North CarolinaChapel HillUSA

Personalised recommendations