Advertisement

Neurofibrillary Degeneration: The Role of Aluminum

  • Michael L. Shelanski
Chapter

Abstract

Studies on the effects of drugs and toxic agents on the cytoskeleton have their origin in experimental neuropathology. Pathologists of the nervous system have long recognized the effects of a variety of agents on the argentophilic neurofibrils and classified them under the rubric of “neurofibrillary proliferation.”

Keywords

Amyotrophic Lateral Sclerosis Initial Axonal Segment Paired Helical Filament Neurofibrillary Degeneration Cultured Dorsal Root Ganglion Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfrey, A.C., Hess, A. and Craswell, P., 1980, Metabolism and toxicity of aluminum in renal failure, Am. J. CI in. Nutr., 33: 1509–1516.Google Scholar
  2. Arieff, A.I., Cooper, J.C., Armstrong, D. and Lazarowitz, Y.C., 1979, Dementia, renal failure and brain aluminum, Ann. Intern. Med., 90: 741–747.Google Scholar
  3. Berlyne, G.M., 1980, Aluminum toxicity in renal failure, Int. J. Artif. Organs., 3: 60–61.Google Scholar
  4. Bizzi, A., Crane, R.C., Autilio-Gambetti, L. and Gambetti, P., 1984, Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport, J. Neurosci., 4: 722–731.Google Scholar
  5. Blose, S.H., Shelanski, M.L. and Chacko, S., 1977, Localization to intermediate filaments in guinea pig vascular endothelial cells and chick cardiac muscle cells of antibody prepared against bovine brain filaments, Proc. Natl. Acad. Sci., 74: 662–665.CrossRefGoogle Scholar
  6. Crapper, D.R., Krishan, S.S. and Quittkat, S., 1976, Aluminum, neuro-fibrillary degeneration and Alzheimer’s disease, Brain, 99: 67–80.CrossRefGoogle Scholar
  7. Dahl, D., Bignami, A., Bich, N.T. and Chi, N.H., 1980, Immunohistochemical characterization of neurofibrillary tangles induced by mitotic spindle inhibitors, Acta, Neuropathol. (Berl)., 51: 165–168.CrossRefGoogle Scholar
  8. Dahl, D., Nsuyen, B.T. and Bignami, A., 1982, Ultrastructural localization of neurofilament proteins in aluminum-induced neurofibrillary tangles and rat cerebellum by immunoperoxidase labeling, Dev. Neurosci., 5: 54–63.CrossRefGoogle Scholar
  9. Davis, J. and Bennett, V., 1982, Microtubule-associated protein 2, a microtubule-associated protein from brain, is immunologically related to the a-subunit of erythrocyte spectrin, J. Biol. Chem., 257: 5816–5820.Google Scholar
  10. Embre, L.J. and Hess, H.H., 1970, Microchemistry of ATPase in normal and Alzheimer’s disease cortex, J. Neuropath. Exp. Neurol., 29: 136–137.CrossRefGoogle Scholar
  11. Farnell, B.J., De-Boni, U. and Crapper-McLachlan, D.R., 1982, Aluminum neurotoxicity in the absence of neurofibrillary degeneration in CA1 hippocampal pyramidal neurons in vitro, Exp. Neurol., 78: 241–258.CrossRefGoogle Scholar
  12. Fifkova, E. and Delay, R.J., 1982, Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity, J. Cell Biol., 95: 345–350.CrossRefGoogle Scholar
  13. Garruto, R.M., Fukatsu, R., Yanasinara, R., Gajdusek, D.C., Hook, G. and Fiore, C.E., 1984, Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism-dementia of Guam, Proc. Natl. Acad. Sci., 81: 1875–1879.Google Scholar
  14. Gaskin, F., Kramer, S.B., Cantor, C.R., Adelstein, R. and Shelanski, M.L., 1974, A dynein-like protein associated with neurotubules, FEBS Lett., 49: 281.CrossRefGoogle Scholar
  15. Gray, E.G., 1975, Presynaptic microtubules and their association with synaptic vesicles, Proc. Royal Soc. London, Ser. B., 190: 360–372.Google Scholar
  16. Griffith, L.M. and Pollard, T.D., 1978, Evidence for actin filament- microtubule interaction mediated by microtubule-associated proteins, J. Cell. Biol., 78: 958–965.CrossRefGoogle Scholar
  17. Heimann, R., Shelanski, M.L. and Liem, R.K.H., 1983, Specific binding of MAPs to the 68,000 dalton neurofilament protein, J. Cell Biol 97: 1079.Google Scholar
  18. Hinkley, R.E., Jr., 1973, Axonal microtubules and associatecFfilaments stained by alcian blue, J. Cell Sci., 13: 753–761.Google Scholar
  19. Hirokawa, N., 1982, Crosslinker system between neurofilaments, microtubules and membranous organelles in frog axons by the quick-freeze, deep-etching method, J. Cell Biol., 94: 129–142.CrossRefGoogle Scholar
  20. Kidd, M., 1963, Paired helical filaments in electromicroscopy of Alzheimer’s disease, Nature, 197: 192–193.CrossRefGoogle Scholar
  21. Kim, H., Binder, L.I. and Rosenbaum, J.L., 1979, The periodic association of MAP-2 with brain microtubules “in vitro”, J. Cell Biol., 80: 266–276.CrossRefGoogle Scholar
  22. Klatzo, I., Wisniewski, H. and StreiclTer, E., 1965, Experimental production of neurofibrillary degeneration, I. Light microscopic observations, J. Neuropath. Exp. Neurol., 24: 187.Google Scholar
  23. Kohno, K., 1964, Neurotubules contained within the dendrite and axon of Purkinje cell of frog, Bull. Tokyo Med. Dent. Univ., 11: 411–442.Google Scholar
  24. Leterrier, J.-F., Liem, R.K.H. and Shelanski, M.L., 1981, Preferential phosphorylation of the 150,000 molecular weight component of neurofilament by a cyclic AMP dependent microtubule associated protein kinase, J Cell Biol 90: 755–760.CrossRefGoogle Scholar
  25. Leterrier, J.-F., Liem, R.K.H. and Shelanski, M.L., 1982, Interactions between neurofilaments and microtubule associated proteins. A possible mechanism for intraorganellar bridging, J. Cell Biol., 95: 982–986.CrossRefGoogle Scholar
  26. Markesbery, W.R., Ehmann, W.D., Hossain, T.I., Aluddin, M. and Goodin, D.T., 1981, Instrumental neutron activation analysis of brain aluminum in Alzheimer’s disease and aging, Ann. Neurol., 10: 511–516.CrossRefGoogle Scholar
  27. McLechlan, D.R., Dam, T.V., Farnell, B.J. and Lewis, P.N., 1983, Aluminum inhibition of ADP-ribosylation in vivo and in vitro, Neurobehav. Toxicol. Teratol., 5: 645–647.Google Scholar
  28. Murphy, D.B., Yallee, R.B. and Borisy, G.G., 1977, Identity and polymerization stimulatory activity of nontubulin proteins associated with microtubules, Biochem., 16: 2598–2605.CrossRefGoogle Scholar
  29. Pelay, S.L., Sotelo, C., Peters, A. and Orkand, P.M., 1968, The axon hillock and the initial segment, J. Cell Biol., 38: 193–201.CrossRefGoogle Scholar
  30. Perl, D.P. and Brady, A.R., 1980, Alzheimer’s disease: X-Ray spectrometry evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons, Science, 208: 297–299.Google Scholar
  31. Perl, D.P., Gajdusek, D.C., Garruto, R.M., Yanigahara, R.T. and Gibbs, C.J., Jr., 1982, Intranuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam, Science, 217: 1053–1055.CrossRefGoogle Scholar
  32. Raine, C.S., Ghetti, G. and Shelanski, M.L., 1971, On the association between tubules and mitochondria in axons, Brain Res., 34: 389–393.CrossRefGoogle Scholar
  33. Robbins, E. and Gonatas, N.K., 1964, Histochemical and ultrastructural studies on HeLa cell cultures exposed to spindle inhibitors and special reference to the interphase cell, J. Histochem. Cytochem., 12: 704.CrossRefGoogle Scholar
  34. Runge, M.S., Lane, T.M., Yphantis, D.A., Lifsics, M.R., Saito, A., Altin, M., Reinke, K. and Williams, R.C., Jr., 1981, ATP-induced formation of associated complex between microtubules and neurofilaments, Proc. Natl. Acad. Sci., 78: 1431–1435.Google Scholar
  35. Samson, F.E., 1976, Pharmacology of drugs that affect intracellular movement, Ann. Rev. Pharmacol. Toxicol., 16: 143–159.CrossRefGoogle Scholar
  36. Satillaro, R.F., Dentler, W.L. and LeCluyse, E.L., 1981, Microtubule associated proteins ( MAPs) and the organization of actin filaments in vitro, J. Cell Biol., 90: 467–473.CrossRefGoogle Scholar
  37. Selkoe, D.J., Leim, R.K.H., Yen, S.-H. and Shelanski, M.L., 1979, Biochemical and immunological characterization of neurofilaments in experimental neurofibrillary degeneration induced by aluminum, Brain. Res., 163: 235–252.Google Scholar
  38. Sharp, G.A., Shaw, G. and Weber, K., 1982, Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurons, Exp. Cell Res., 137: 403–413.CrossRefGoogle Scholar
  39. ShelansFi, M.L., Gaskin, F. and Cantor, C.R., 1973, Microtubule assembly in the absence of added nucleotides, Proc. Natl. Acad. Sci., 70: 765–768.Google Scholar
  40. Sloboda, R.D. and Rosenbaum, J.L., 1979, Decoration and stabilization of intact, smooth-walled microtubules with microtubule associated proteins, Biochem., 18: 48–55.CrossRefGoogle Scholar
  41. Smith, D.S., 1971, On the significance of cross-bridges between microtubules and synaptic vesicles, Philos. Trans. R. Soc. London. Ser. B., 261: 395–405.CrossRefGoogle Scholar
  42. Smith, D.S., Jarlfors, U. and Cayer, M.L., 1977, Structural cross-bridges between microtubules and mitochondria in central axons of an insect ( Periplaneta americana), J. Cell Sci., 27: 235–272.Google Scholar
  43. Summers, K.E. and Gibbons, I.R., 1971, ATP-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm, Proc. Natl. Acad. Sci., 68: 3092–3096.CrossRefGoogle Scholar
  44. Terry, R.D., 1963, The fine structure of neurofibrillary tangles In Alzheimer’s disease, J. Neuropathol. Exp. Neurol., 22: 629–642.CrossRefGoogle Scholar
  45. Terry, R.D. and Pena, C., T965, Experimental production of neurofibrillary degeneration 2: Electron microscopy, phosphatase histochemistry, and electron probe analysis, J. Neuropath. Exp. Neurol., 24: 200–210.CrossRefGoogle Scholar
  46. Troncoso, J.C., Price, D.L., Griffin, J.W. and Parhad I.M., 1982, Neurofibrillary axonal pathology in aluminum intoxication, Ann. Neurol., 12: 278–283.CrossRefGoogle Scholar
  47. Tsukita, S. and Ishikawa, H., 1980a, The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles, J. Cell Biol., 84: 513–530.CrossRefGoogle Scholar
  48. Weisenberg, R.C., 1972, Microtubule formation in vitro in solutions containing low calcium concentrations, Science, 177: 1104–1105.CrossRefGoogle Scholar
  49. Westrum, L.E. and Gray, E.G., 1977, Microtubules associated with postsynaptic “thickenings”, J. Neurocytol., 6: 505–518.CrossRefGoogle Scholar
  50. Willard, M. and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol., 89: 198–205.CrossRefGoogle Scholar
  51. Wisniewski, H., Shelanski, M.L. and Terry, R.D., 1968, Effects of mitotic spindle inhibitor on neurotubules and neurofilaments in anterior horn cells, J. Cell Biol., 38: 224–229.CrossRefGoogle Scholar
  52. Wisniewski, H., Terry, R.D. and Hirano, A., 1971, Neurofibrillary pathology, J. Neuropath. Exp. Neurol., 29: 173–181.Google Scholar
  53. Wolosewick, J.J. and Porter, K.R., 1979, Microtrabecular lattice of the cytoplasmic ground substance: Artifact or reality, J. Cell Biol., 82: 114–139.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Michael L. Shelanski
    • 1
  1. 1.Department of PharmacologyNew York University School of MedicineNew YorkUSA

Personalised recommendations