Advertisement

Structure and Function of the Cytoskeleton

  • Polly R. Sager
  • Tore L. M. Syversen
  • Thomas W. Clarkson
  • John B. Cavanagh
  • Arnljot Elgsaeter
  • Hans Cato Guldberg
  • Si Duk Lee
  • Marshall A. Lichtman
  • N. Karle Mottet
  • Joanna B. Olmsted

Abstract

Organization within the cytoplasm has been apparent from the earliest observations of living cells. As techniques improved, so has our appreciation of the complexity involved in the ordered arrangement of cytoplasmic components. The view of cytoskeleton has evolved from one of a static or rigid structure to a more dynamic scaffolding capable of rapid and dramatic restructuring. Several components and functions of the cytoskeleton have been defined in cells. Indeed, the number and diversity of cellular processes subserved by the cytoskeleton are impressive, and it is not surprising that numerous toxic agents have been found to act upon it. For some of these agents, their selective interaction with specific components of the cytoskeleton has led to their use as probes for normal structure and function. For other compounds, the interaction may be less well defined or less specific, but of relevance from an environmental or human health perspective.

Keywords

Actin Filament Intermediate Filament Axonal Transport Actin Monomer Membrane Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

The Cytoskeleton

  1. Porter, K. (1984) The cytomatrix: a short history of its study, J. Cell Biol. 99: 3s–12s.CrossRefGoogle Scholar
  2. Weber, K. and Osborn, M. (1982) The cytoskeleton, Natl. Cancer Inst. Monogr. 60: 31–46.Google Scholar

Microfilaments

  1. Ishikawa, H., Bischoff, R. and Holtzer, H. (1969) Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43: 312–328.CrossRefGoogle Scholar
  2. Stossel, T. P. (1984) Contribution of actin to the structure of the cytoplasmic matrix, J. Cell Biol. 99: 15s–21s.CrossRefGoogle Scholar
  3. Vanderkerckhoeve, J. and Weber, K. (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino terminal peptide, J. Molec. Biol. 126: 783–802.Google Scholar

Microtubules

  1. Dustin, P. (1979) Microtubules, Springer-Verlag, New York.Google Scholar
  2. Roberts, K. and Hyams, J. (1980) Microtubules, Academic Press, New York.Google Scholar
  3. Weisenberg, R. C. (1972) Microtubule formation in vitro in solutions containing low calcium concentrations, Science 177: 1104–1105.Google Scholar

Intermediate Filaments

  1. Stossel, T. P. (1984) Contribution of actin to the structure of the cytoplasmic matrix, J. Cell Biol. 99:15s-2ls.Google Scholar

Erythrocytes

  1. Branton, D., Cohen, C. M. and Tyler, J. (1981) Interaction of cytoskeleton proteins on the human erythrocyte membrane, Cell 24: 24 - 32.Google Scholar

Association Between Components of the Cytoskeleton

  1. Hoffman, P. N., Griffin, J. W. and Price, D. L. (1984) Control of axonal caliber by neurofilament transport, J. Cell Biol. 99: 705 - 712.CrossRefGoogle Scholar
  2. Vallee, R. B., Bloom, G. S. and Theurkauf, W. E. (1984) Microtubule-associated proteins: subunits of the cytomatrix, J. Cell Biol. 99: 38s - 44s.CrossRefGoogle Scholar
  3. Yamada, K. M., Spooner, B. S. and Wessells, N. K. (1970) Axon growth: roles of microfilaments and microtubules, Proc. Natl. Acad. Sci. 66: 1206–1212.CrossRefGoogle Scholar

Organization of the Cytoskeleton Cultured Cells

  1. Stossel, T. P. (1984) Contribution of actin to the structure of the cytoplasmic matrix, J. Cell Biol. 99:15s–2ls.Google Scholar

Erythrocytes

  1. Branton, D., Cohen, C. M. and Tyler, J. (1981) Interaction of cytoskeleton proteins on the human erythrocyte membrane, Cell 24: 24 - 32.Google Scholar

Neurons

  1. Hoffman, P. N., Griffin, J. W. and Price, D. L. (1984) Control of axonal caliber by neurofilament transport, J. Cell Biol. 99: 705 - 712.CrossRefGoogle Scholar
  2. Vallee, R. B., Bloom, G. S. and Theurkauf, W. E. (1984) Microtubule-associated proteins: subunits of the cytomatrix, J. Cell Biol. 99: 38s - 44s.CrossRefGoogle Scholar
  3. Yamada, K. M., Spooner, B. S. and Wessells, N. K. (1970) Axon growth: roles of microfilaments and microtubules, Proc. Natl. Acad. Sci. 66: 1206–1212.CrossRefGoogle Scholar

Platelets

  1. Lasek, R. J. and Hoffman, P. N. (1976) The neuronal cytoskeleton, axonal transport and axonal growth, in: “Cell Motility,” Cold Spring Harbor Symposium, pp. 1021–1049.Google Scholar

Leukocytes

  1. Pollard, T. D. (1984) Molecular architecture of the cytoplasmic matrix, in: “White Cell Mechanics. Basic Science and Clinical Aspects,” H. J. Meiselman, M. A. Lichtman and P. L. La Celle, eds., pp. 75–86, Alan R. Liss, Inc., New York.Google Scholar

Function of the Cytoskeleton Structural Support and Cell Shape

  1. Mooseker, M. S., Bonder, E. M., Conzelman, K. A., Fishkind, J. D. J., Howe, C. L. and Keller III, T. C. S. (1984) Brush border cytoskeleton and integration of cellular functions, J. Cell Biol. 99: 104s–112s.Google Scholar
  2. Tomasek, J. J. and, Hay, E. D. (1984) Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels, J. Cell Biol. 99: 536–549.Google Scholar

Intercellular Transport

  1. Lasek, R. J. and Hoffman, P. N. (1976) The neuronal cytoskeleton, axonal transport and axonal growth, in: “Cell Motility,” Cold Spring Harbor Symposium, pp. 1021–1049.Google Scholar

Membrane Properties and Functions

  1. Gratzer, W. B. (1981) The red cell membrane and its cytoskeleton, Biochem. J. 198:1–8.Google Scholar
  2. Mangeat, P. and Burridge, K. (1984) Actin-membrane interaction in fibroblasts: what proteins are invovled in this association,J. Cell Biol. 99:95s–103s.Google Scholar

Phagocytosis and Motility

  1. Keller, H. U., Hess,M. W. and Cottier, H. (1975) Physiology of chemotaxis and random motility,Sem. Hematol. 12:47–48.Google Scholar
  2. Stossel, T.P. (1975) Phagocytosis: recognition and ingestion, Sem Hematol. 12: 83–116.Google Scholar
  3. Silverstein, S. C. (1982) Membrane receptors and the regulation of mononuclear phagocyte effector functions,Adv. Exp. Med. Biol. 155:21–31.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Polly R. Sager
    • 1
  • Tore L. M. Syversen
    • 2
  • Thomas W. Clarkson
    • 3
  • John B. Cavanagh
    • 4
  • Arnljot Elgsaeter
    • 2
  • Hans Cato Guldberg
    • 2
  • Si Duk Lee
    • 5
  • Marshall A. Lichtman
    • 3
  • N. Karle Mottet
    • 6
  • Joanna B. Olmsted
    • 3
  1. 1.University of ConnecticutFarmingtonUSA
  2. 2.University of TrondheimNorway
  3. 3.University of RochesterRochesterUSA
  4. 4.Institute of NeurologyQueen Square, LondonUK
  5. 5.EPA, Research Triangle ParkUSA
  6. 6.University of WashingtonSeattleUSA

Personalised recommendations