Skip to main content

The Structure and Evolution of Intermediate Filament Genes

  • Chapter
Cell and Molecular Biology of the Cytoskeleton

Abstract

Intermediate filaments (IF) are major cytoskeletal components of most eukaryotic cells (Lazarides, 1980; Steinert et al., 1984a). They have been classified into at least five distinct subclasses, each of which contains from 1 to 30 subunits encoded by separate genes (Lazarides, 1980; Fuchs and Hanakoglu, 1983). These genes are differentially expressed in different tissues and during different stages of differentiation (Lazarides, 1980; Steinert et al., 1984a; Fuchs and Hanukoglu, 1983; Moll et al., 1982; Eichner et al., 1984; Roop et al., 1984b). We have isolated and characterized cDNA clones corresponding to the major keratins synthesized in mouse epidermis (Roop et al., 1983, 1985b). Several lines of evidence are presented which suggest that the expression of subsets of keratin genes is coordinately regulated and dependent on the state of differentiation. Analysis of amino acid sequence data deduced for these keratin subunits (Steinert et al., 1983, 1984b, 1985a) has revealed fundamental differences in the primary sequences of keratin subunits that are expressed at different states of differentiation that may alter the properties and function of filaments containing these subunits (Steinert et al., 1985a). In addition, a comparison of these amino acid sequences with those of other IF subunits (Hanakoglu and Fuchs, 1982, 1983; Quax et al., 1983; Geisler and Weber, 1982; Lewis et al., 1984) has shown that all IF subunits possess a common secondary structure, consisting of a conserved central α-helical rod domain and non-α-helical end domains of variable size and sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, F., Young, P. R., and Tilghman, S. M., 1984, Evolution of the albumin:a-fetoprotein ancestral gene from the amplification of a 27 nucleotide sequence, J. Mol. Biol. 173: 159–176.

    Article  PubMed  CAS  Google Scholar 

  • Craik, C. S., Rutter, W. J., and Fletterick, R., 1983, Splice junctions: Association with variation in protein structure, Science 220: 1125–1129.

    Article  PubMed  CAS  Google Scholar 

  • Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, The structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.

    Article  CAS  Google Scholar 

  • Eichner, R., Bonitz, P., and Sun, T.-T., 1984, Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression, J. Cell Biol. 98: 1388 — 1396.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E., and Hanakoglu, I., 1983, Unraveling the structure of the intermediate filaments, Cell 34: 332–334.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J. 1: 1649–1656.

    PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978, Why genes in pieces? Nature 271: 501.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J. M., 1983, The structural proteins of hair: Isolation, characterization and regulation of biosynthesis, in: Biochemistry and Physiology of the Skin ( L. A. Goldsmith, ed.), pp. 475–510, Oxford University Press, New York.

    Google Scholar 

  • Hanukoglu, I., and Fuchs, E., 1982, The cDNA sequence of a human epidermal keratin: diver¬gence of sequence but conservation of structure among intermediate filament proteins, Cell 31: 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Hanukoglu, I., and Fuchs, E., 1983, The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins, Cell 33: 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L. D., Idler, W. W., Zhou, X-M., Roop, D. R., and Steinert, P. M., 1985, The structure of the gene for the human epidermal keratin of 67,000 molecular weight, Proc. Natl. Acad. Sci. USA 82: 1896–1900.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, T. M., Schafer, M. P., Cheng, C. K., Filpula, D., Flaherty, P., Steinert, P. M., and Roop, D. R., 1985, Organization of a type I keratin gene: Evidence for evolution of intermediate filaments from a common ancestral gene, J. Biol. Chem. 260: 5867–5870.

    PubMed  CAS  Google Scholar 

  • Lau, S. Y. M., Taneja, A. K., and Hodges, R. S., 1984, Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and forma¬tion of two-stranded a-helical coiled-coils, J. Biol. Chem. 259: 13253–13261.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 282: 249–256.

    Article  Google Scholar 

  • Lehnert, M. E., Jorcano, J. L., Hanswalter, Z., Blessing, M., Franz, J. K., and Franke, W. W., 1984, Characterization of bovine epidermal keratin genes: Similarities of exon patterns in genes coding for different keratins, EMBO J. 3: 3279–3287.

    PubMed  CAS  Google Scholar 

  • Lewis, S. A., Balcarek, J. M., Krek, V., Shelanski, M. L., and Cowan, N. J., 1984, Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: Structural conservation of inter¬mediate filaments, Proc. Natl. Acad. Sci. U.S.A. 81: 2743–2746.

    Article  PubMed  CAS  Google Scholar 

  • Lomedico, P., Rosenthal, N., Efstratiadis, Gilbert, W., Kolodner, R., and Tizard, R., 1979, The structure and evolution of the two nonallelic rat preproinsulin genes, Cell 18: 545–558.

    CAS  Google Scholar 

  • Lonberg, N., and Gilbert, W., 1985, Intron/exon structure of the chicken pyruvate kinase gene, Cell 40: 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Marchuk, D., McCrohon, S., and Fuchs, E., 1984, Remarkable conservation of structure among intermediate filament genes, Cell 39: 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepler, R., 1982, The catalog of human cy to keratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Mount, S. M., 1982, A catalogue of splice junction sequence, Nucl. Acid Res. 10: 459–472.

    Article  CAS  Google Scholar 

  • Ohno, S., Matsunaga, T., and Wallace, R. B., 1982, Identification of the 48-base-long primordial building block sequence of mouse immunoglobulin variable region genes, Proc. Natl. Acad. Sci. U.S.A. 77: 1999–2002.

    Article  Google Scholar 

  • Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and MacRae, T. P., 1977, Structure of alpha- keratin: structural implications of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113: 448–454.

    Article  Google Scholar 

  • Quax, W., Egberts, W. V., Hendricks, W., Quax-Jeuken, Y., and Bloemendal, H., 1983, The structure of the vimentin gene, Cell, 35: 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Roop, D. R., Hawley-Nelson, P., Cheng, C. K., and Yuspa, S. H., 1983, Keratin gene expression in mouse epidermis and cultured epidermal cells, Proc. Natl. Acad. Sci. U.S.A. 80: 716–720.

    Article  PubMed  CAS  Google Scholar 

  • Roop, D. R., Cheng, C. K., Titterington, L., Meyers, C. A., Stanley, J. R., Steinert, P. M., and Yuspa, S. H., 1984a, Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies, J. Biol. Chem. 259: 8037–8040.

    PubMed  CAS  Google Scholar 

  • Roop, D. R., Toftgard, R., Yuspa, S. H., Kronenberg, M. S., and Clark, J. H., 1984b, Changes in mouse keratin gene expression during differentiation, in: The Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), pp. 409–414, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Roop, D. R., Cheng, C. K., Toftgard, R., Stanley, J. R., Steinert, P. M., and Yuspa, S. H., 1985a, The use of cDNA-cones and monospecific antibodies as probes to monitor keratin gene expression, Ann. NY Acad. Sci. 455: 426–435.

    Article  PubMed  CAS  Google Scholar 

  • Roop, D. R., Cheng, C. K., Toftgard, R., and Yuspa, S. H., 1985b, The isolation of cDNA clones corresponding to keratin expressed in basal epidermal cells, (submitted for publication).

    Google Scholar 

  • Seidman, J. G., Leder, A., Nau, M., Norman, B., and Leder, P., 1978, Antibody diversity: The structure of cloned immunoglobulin genes suggests a mechanism for generating new sequences, Science 202: 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino acid sequence of a mouse epidermal keratin subunit: Implications for the structure of intermediate filaments, Nature 302: 79–800.

    Article  Google Scholar 

  • Steinert, P. M., Jones, J. C. R., and Goldman, R. D., 1984a, Intermediate filaments, J. Cell Biol. 99: 22s–27s.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984b, The complete cDNA and deduced amino acid sequence of a Type II mouse epidermal keratin of 60,000 molecular weight: Analysis of sequence differences between Type I and Type II keratins, Proc. Natl. Acad. Sci. U.S.A. 81: 5709–5713.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. J., Stevens, A. C., and Roop, D. R., 1985a, Amino acid sequences of mouse and human epidermal type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7142–7149.

    CAS  Google Scholar 

  • Steinert, P. M., Steven, A. C., and Roop, D. R., 1985b, The molecular biology of intermediate filaments, Cell 42: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Sun, T.-T., Eichner, R., Schermer, A., Cooper, D., Nelson, W. G., and Weiss, R. A., 1984, Classification, expression and possible mechanisms of evolution of mammalian epithelial keratins: a unifying model, in: Cancer Cells 1, The Transformed Phenotype, pp. 169–176, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Yamada, K., Avvedimento, V. E., Mudryji, M., Ohkubo, H., Vogeli, G., Irani, M., Pastan, I., and de Crombrugghe, B., 1980, The collagen gene: Evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp, Cell 22: 887–892.

    Article  PubMed  CAS  Google Scholar 

  • Yuspa, S. H., Hawley-Nelson, P., Stanley, J. R., and Hennings, H., 1980, Epidermal cell culture, Transpl. Proc. 12 (suppl 1): 114–122.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Roop, D.R., Steinert, P.M. (1986). The Structure and Evolution of Intermediate Filament Genes. In: Shay, J.W. (eds) Cell and Molecular Biology of the Cytoskeleton. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2151-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2151-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9269-2

  • Online ISBN: 978-1-4613-2151-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics