Skip to main content

General Organization of Callosal Connections in the Cerebral Cortex

  • Chapter

Part of the book series: Cerebral Cortex ((CECO,volume 5))

Abstract

The necessity of interhemispheric connections, and the nature of this necessity, are demonstrated by the following hypothetical event. An intelligent being from outer space lands on earth and is asked to design the brain of a cat. The being is intrigued to find that the body of a cat is bilaterally symmetric (he looks himself rather like a multieyed and multiwhiskered octopus).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, R. M., and Killackey, H. P., 1978, Organization of cortico-cortical connections in the parietal cortex of the rat, J. Comp. Neurol. 181:513–538.

    PubMed  CAS  Google Scholar 

  • Angevine, J. B., and Sidman, R. L., 1961, Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse, Nature 192:766–768.

    PubMed  Google Scholar 

  • Antonini, A., Berlucchi, G., Marzi, C. A., and Sprague, J. M., 1979, Importance of corpus callosum for visual receptive fields of single neurons in cat superior coiliculus, J. Neurophysiol. 42:137–152.

    PubMed  CAS  Google Scholar 

  • Antonini, A., Berlucchi, G., and Lepore, F., 1983, Physiological organization of callosal connections of a visual lateral suprasylvian cortical area in the cat, J. Neurophysiol. 49:902–921.

    PubMed  CAS  Google Scholar 

  • Asanuma, H., and Okamoto, K., 1959, Unitary study on evoked activity of callosal neurons and its effect on pyramidal tract cell activity on cats, Jpn. J. Physiol. 9:473–483.

    PubMed  CAS  Google Scholar 

  • Auroux, M., 1964, Étude des commissures télencéphaliques du foetus de rat normal, Arch. Anat. Histol. Embryol. Norm. Exp. 47:503–522.

    Google Scholar 

  • Bailey, P., Garol, H. W., and McCulloch, W. S., 1941, Cortical origin and distribution of corpus callosum and anterior commissure in chimpanzee (Pan satyrus), J. Neurophysiol. 4:564–571.

    Google Scholar 

  • Beckstead, R. M., 1979, An autoradiographic examination of cortico-cortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat, J. Comp. Neurol. 184:43–62.

    PubMed  CAS  Google Scholar 

  • Berlucchi, G., 1972, Anatomical and physiological aspects of visual functions of corpus callosum, Brain Res. 37:371–392.

    PubMed  CAS  Google Scholar 

  • Berlucchi, G., 1981, Recent advances in the analysis of the neural substrates of interhemispheric communication, in: Brain Mechanisms and Perceptual Awareness (O. Pompeiano and C. Ajmone Marsan, eds.), Raven Press, New York, pp. 133–152.

    Google Scholar 

  • Berlucchi, G., and Antonini, A., 1986, the role of the corpus callosum in the representation of the visual field in cortical areas, in: Brain Circuits and Functions of the Mind: Essays in honour of R. W. Sperry (C. Trevarthen, ed), Cambridge University Press, London (in press).

    Google Scholar 

  • Berlucchi, G., and Rizzolatti, G., 1968, Binocularly driven neurons in visual cortex of split-chiasm cats, Science 159:308–310.

    PubMed  CAS  Google Scholar 

  • Berlucchi, G., Gazzaniga, M. S., and Rizzolatti, G., 1967, Microelectrode analysis of transfer of visual information by the corpus callosum, Arch. Ital. Biol. 105:583–596.

    PubMed  CAS  Google Scholar 

  • Berman, N., and Payne, B. R., 1982, Contralateral corticofugal projections from the lateral, suprasylvian and ectosylvian gyri in the cat, Exp. Brain Res. 47:234–238.

    PubMed  CAS  Google Scholar 

  • Berman, N. E., and Payne, B. R., 1983, Alterations in connections of the corpus callosum following convergent and divergent strabismus, Brain Res. 274:201–212.

    PubMed  CAS  Google Scholar 

  • Bishop, G. H., and Smith, J. M., 1964, The sizes of nerve fibers supplying cerebral cortex, Exp. Neurol. 9:483–501.

    PubMed  CAS  Google Scholar 

  • Blakemore, C., 1969, Binocular depth perception and the optic chiasm, Vision Res. 10:43–47.

    Google Scholar 

  • Blakemore, C., Diao, Y., Pu, M., Wang, Y., and Xiao, Y., 1983, Possible functions of the interhemispheric connexions between visual cortical areas in the cat, J. Physiol (London) 337:331–349.

    CAS  Google Scholar 

  • Blue, M. E., and Parnavelas, J. G., 1983, The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis, J. Neurocytol. 12:697–712.

    PubMed  CAS  Google Scholar 

  • Bremer, F., Brihaye, J., and André-Balisaux, G., 1956, Physiologie et pathologie du corps calleux, Schweiz. Arch. Neurol Psychiatr. 78:31–87.

    Google Scholar 

  • Brugge, J. F., Feng, J. Z., Reale, R. A., and Chan, J. C. K., 1983, Topographic distribution of primary auditory cortical field (AI) callosal neurons in cats reared with unilateral or bilateral cochlear destruction, Soc. Neurosci. Abstr. 9:377.

    Google Scholar 

  • Burton, H., Mitchell, G., and Brent, D., 1982, Second somatic sensory area in the cerebral cortex of cats: Somatotopic organization and cytoarchitecture, J. Comp. Neurol 210:109–135.

    PubMed  CAS  Google Scholar 

  • Caminiti, R., and Innocenti, G. M., 1981, The postnatal development of somatosensory callosal connections after partial lesions of somatosensory areas, Exp. Brain Res. 42:53–62.

    PubMed  CAS  Google Scholar 

  • Caminiti, R., and Sbriccoli, A., 1983, Callosal connections of the superior parietal lobule in the monkey, Soc. Neurosci. Abstr. 9:493.

    Google Scholar 

  • Caminiti, R., and Sbriccoli, A., 1985, The callosal system of the superior parietal lobule in the monkey, J. Comp. Neurol 237:85–99.

    PubMed  CAS  Google Scholar 

  • Caminiti, R., Innocenti, G. M., and Manzoni, T., 1979, The anatomical substrate of callosal messages from SI and SII in the cat, Exp. Brain Res. 35:295–314.

    PubMed  CAS  Google Scholar 

  • Carman, J. B., Cowan, W. M., Powell, T. P. S., and Webster, K. E., 1965, A bilateral cortico-striate projection, J. Neurol. Neurosurg. Psychiatry 28:71–77.

    PubMed  CAS  Google Scholar 

  • Catsman-Berrevoets, C. E., Lemon, R. N., Verburgh, C. A., Bentivoglio, M., and Kuypers, H. G. J. M., 1980, Absence of callosal collaterals derived from rat corticospinal neurons: A study using fluorescent retrograde tracing and electrophysiological techniques, Exp. Brain Res. 39:433–440.

    PubMed  CAS  Google Scholar 

  • Cavada, C., and Reinoso-Suárez, F., 1981, Interhemispheric cortico-cortical connections to the prefrontal cortex in the cat, Neurosci. Lett. 24:211–214.

    PubMed  CAS  Google Scholar 

  • Cavada, C., and Reinoso-Suárez, F., 1983, Afferent connections of area 20 in the cat studied by means of the retrograde axonal transport of horseradish peroxidase, Brain Res. 270:319–324.

    PubMed  CAS  Google Scholar 

  • Caviness, V. S., 1982, Neocortical histogenesis in normal and reeler mice: A developmental study based upon [3H]thymidine autoradiography, Dev. Brain Res. 4:293–302.

    Google Scholar 

  • Caviness, V. S., and Yorke, C. H., 1976, Interhemispheric neocortical connections of the corpus callosum in the reeler mutant mouse: A study based on anterograde and retrograde methods, J. Comp. Neurol. 170:449–60.

    PubMed  Google Scholar 

  • Choudhury, B. P., Whitteridge, D., and Wilson, M. E., 1965, The function of the callosal connections of the visual cortex, Q. J. Exp. Physiol. 50:214–219.

    CAS  Google Scholar 

  • Chow, K. L., Baumbach, H. D., and Lawson, R., 1981, Callosal projections of the striate cortex in the neonatal rabbit, Exp. Brain Res. 42:122–126.

    PubMed  CAS  Google Scholar 

  • Cipolloni, P. B., and Peters, A., 1979, The bilaminar and banded distribution of the callosal terminals in the posterior neocortex of the rat, Brain Res. 176:33–47.

    PubMed  CAS  Google Scholar 

  • Cipolloni, P. B., and Peters, A., 1983, The termination of callosal fibres in the auditory cortex of the rat: A combined Golgi-electron microscope and degeneration study, J. Neurocytol. 12:713–726.

    PubMed  CAS  Google Scholar 

  • Clare, M. H., Landau, W. M., and Bishop, G. H., 1961, The cortical response to direct stimulation of the corpus callosum in the cat, Electroencephalogr. Clin. Neurophysiol. 13:21–33.

    PubMed  CAS  Google Scholar 

  • Clarke, P. G. H., Martin, K. A. C., Ramachandran, V. W., Rao, V. M., and Whitteridge, D., 1979, Development and plasticity of neuronal connections in the lamb visual system, in: Developmental Neurobiology of Vision (R. D. Freeman, ed.), Plenum Press, New York, pp. 403–410.

    Google Scholar 

  • Clemo, H. R., and Stein, B. E., 1983, Organization of a fourth somatosensory area of cortex in cat, J. Neurophysiol. 50:910–925.

    PubMed  CAS  Google Scholar 

  • Code, R. A., and Winer, J. A., 1983, Heterogeneous origin of commissural neurons in cat primary auditory cortex (Al), Soc. Neurosci. Abstr. 9:953.

    Google Scholar 

  • Cragg, B. G., 1975, The development of synapses in the visual system of the cat, J. Comp. Neurol. 160:147–166.

    PubMed  CAS  Google Scholar 

  • Cumming, W. J. K., 1969, The fibre-content of the corpus callosum of the albino rat, J. Anat. 104:187.

    PubMed  CAS  Google Scholar 

  • Curtis, H. J., 1940, Intercortical connections of corpus callosum as indicated by evoked potentials, J. Neurophysiol. 3:407–413.

    Google Scholar 

  • Curtis, H. J., and Bard, P., 1939, Intercortical connections of the corpus callosum as indicated by evoked potentials, Am. J. Physiol. 126:473.

    Google Scholar 

  • Cusick, C. G., and Lund, R. D., 1981, The distribution of the callosal projection to the occipital visual cortex in rats and mice, Brain Res. 214:239–259.

    PubMed  CAS  Google Scholar 

  • Cusick, C. G., and Lund, R. D., 1982, Modification of visual callosal projections in rats, J. Comp. Neurol. 212:385–398.

    PubMed  CAS  Google Scholar 

  • Cusick, C. G., Gould, H. J., and Kaas, J. H., 1983, Callosal connections of visual cortex in owl monkeys, marmosets, and galagos, Soc. Neurosci. Abstr. 9:1220.

    Google Scholar 

  • Cynader, M., Lepore, F., and Guillemot, J. -P., 1981, Inter-hemispheric competition during postnatal development, Nature 290:139–140.

    PubMed  CAS  Google Scholar 

  • De Lacoste, M. C., and Woodward, D. J., 1983, Neocortical commissural size and sex differences in primate brain, Soc. Neurosci. Abstr. 9:493.

    Google Scholar 

  • De Lacoste-Utamsing, C., and Holloway, R. L., 1982, Sexual dimorphism in the human corpus callosum, Science 216:1431–1432.

    Google Scholar 

  • Diadori, P., Landry, P., and Dykes, R. W., 1983, Responses of corticothalamic cells to callosal and thalamic stimulation in cat somatosensory cortex, Soc. Neurosci. Abstr. 9:250.

    Google Scholar 

  • Diamond, I. T., Jones, E. G., and Powell, T. P. S., 1968, Interhemispheric fiber connections of the auditory cortex of the cat, Brain Res. 11:177–193.

    PubMed  CAS  Google Scholar 

  • Diao, Y. -C., Wang, Y. -K., and Pu, M. -L., 1983, Binocular responses of cortical cells and the callosal projection in the albino rat, Exp. Brain Res. 49:410–418.

    PubMed  CAS  Google Scholar 

  • Doty, R. W., and Negrao, N., 1973, Forebrain commissures and vision, in: Handbook of Sensory Physiology, Volume VII/3 (R. Jung, ed.) Springer-Verlag, Berlin, pp. 543–582.

    Google Scholar 

  • Dreher, B., and Cottee, L. J., 1975, Visual receptive-field properties of cells in area 18 of cat’s cerebral cortex before and after acute lesions in area 17, J. Neurophysiol 38:735–750.

    PubMed  CAS  Google Scholar 

  • Dürsteler, M. R., Blakemore, C., and Garey, L. J., 1979, Projections to the visual cortex in the golden hamster, J. Comp. Neurol 183:185–204.

    PubMed  Google Scholar 

  • Ebner, F. F., and Myers, R. E., 1962, Commissural connections in the neocortex of monkey, Excerpta Med. 48:1096.

    Google Scholar 

  • Ebner, F. F., and Myers, R. E., 1965, Distribution of corpus callosum and anterior commissure in cat and racoon, J. Comp. Neurol 124:353–366.

    PubMed  CAS  Google Scholar 

  • Elberger, A. J., 1979, The role of the corpus callosum in the development of interocular alignment and t he organization of the visual field in the cat, Exp. Brain Res. 36:71–85.

    PubMed  CAS  Google Scholar 

  • Elberger, A. J., 1982, The functional role of the corpus callosum in the developing visual system: A review, Prog. Neurobiol. 18:15–79.

    PubMed  CAS  Google Scholar 

  • Elberger, A. J., and Hirsch, H. V. B., 1982, Divergent strabismus following neonatal callosal section is due to a failure of convergence, Brain Res. 239:275–278.

    PubMed  CAS  Google Scholar 

  • Elberger, A. J., and Smith, E. L., 1983, Corpus callosum and development of striate binocularity: Complete critical period within three postnatal weeks, Soc. Neurosci. Abstr. 9:912.

    Google Scholar 

  • Fadiga, E., Innocenti, G. M., Manzoni, T., and Spidalieri, G., 1972, Peripheral and transcallosal reactivity of neurones sampled from the face subdivision of the SI cortical area, Arch. Hal Biol 110:444–475.

    Google Scholar 

  • Feeney, D. M., and Orem, J. M., 1971, Influence of antidromic callosal volleys on single units in visual cortex, Exp. Neurol 33:310–321.

    PubMed  CAS  Google Scholar 

  • Feng, J. Z., and Brugge, J. F., 1983, Postnatal development of auditory callosal connections in the kitten, J. Comp. Neurol 214:416–426.

    Google Scholar 

  • Fisken, R. A., Garey, L. J., and Powell, T. P. S., 1975, The intrinsic, association and commissural connections of area 17 of the visual cortex, Philos. Trans. R. Soc. London Ser. B 272:487–536.

    CAS  Google Scholar 

  • Fitzpatrick, K. A., and Imig, T. J., 1980, Auditory cortico-cortical connections in the owl monkey, J. Comp. Neurol 192:589–610.

    PubMed  CAS  Google Scholar 

  • Fleischhauer, K., and Wartenberg, H., 1967, Elektronenmikroskopische Untersuchungen über das Wachstum der Nervenfasern and über das Auftreten von Markscheiden im Corpus callosum der Katze, Z. Zellforsch. Mikrosk. Anat. 83:568–581.

    PubMed  CAS  Google Scholar 

  • Garcia-Rill, E., Nieto, A., Adinolfi, A., Hull, C. D., and Buchwald, N. A., 1979, Projections to the neostriatum from the cat precruciate cortex: Anatomy and physiology, Brain Res. 170:393–407.

    PubMed  CAS  Google Scholar 

  • Garey, L. J., Jones, E. G., and Powell, T. P. S., 1968, Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway, J. Neurol Neurosurg. Psychiatry 31:135–157.

    PubMed  CAS  Google Scholar 

  • Garol, H. W., 1942, Cortical origin and distribution of corpus callosum and anterior commissure in the cat, III, J. Neuropathol 1:422–429.

    Google Scholar 

  • Gazzaniga, M. S., and Ledoux, J. E., 1978, The Integrated Mind, Plenum Press, New York.

    Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex, Nature 280:120–125.

    PubMed  CAS  Google Scholar 

  • Glickstein, M., and Whitteridge, D., 1976, Degeneration of layer III pyramidal cells in area 18 following destruction of callosal input, Brain Res. 104:148–151.

    PubMed  CAS  Google Scholar 

  • Goldman, P. S., and Nauta, W. J. H., 1977, Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey, Brain Res. 122:393–413.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S., 1981, Development and plasticity of primate frontal association cortex, in: The Organization of the Cerebral Cortex (F. O. Schmitt, ed.), MIT Press, Cambridge, Mass., pp. 69–97.

    Google Scholar 

  • Goldman-Rakic, P. S., and Schwartz, M. L., 1982, Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates, Science 216:755–757.

    PubMed  CAS  Google Scholar 

  • Gould, H. J., and Ebner, F. F., 1978, Connections of the visual cortex in the hedgehog (Paraechinus hypomelas). II. Corticocortical projections, J. Comp. Neurol 177:473–502.

    PubMed  Google Scholar 

  • Gould, H. J., and Kaas, J. H., 1981, The distribution of commissural terminations in somatosensory areas 1 and II of the grey squirrel, J. Comp. Neurol 196:489–504.

    PubMed  Google Scholar 

  • Gould, H. J., Cusick, C. G., Pons, T. P., and Kaas, J. H., 1983, The relation of callosal connections to microstimulation maps of precentral motor cortex in owl monkeys, Soc. Neurosci. Abstr. 9:309.

    Google Scholar 

  • Grafstein, B., 1963, Postnatal development of the transcallosal evoked response in the cerebral cortex of the cat, J. Neurophysiol 26:79–99.

    PubMed  CAS  Google Scholar 

  • Grafstein, B., 1964, Postnatal development of the corpus callosum in the cat: Myelination of a fibre tract in the central nervous system, in: Neurological and Electroencephalographs Correlative Studies in Infancy (P. Kellaway and I. Petersen, eds.), Grune & Stratton, New York, pp. 52–67.

    Google Scholar 

  • Graziosi, M. E., Tucci, E., Barbaresi, P., Ugolini, G., and Manzoni, T., 1982, Cortico-cortical neurones of somesthetic area SI as studied in the cat with fluorescent retrograde double-labelling, Neurosci. Lett. 31:105–110.

    PubMed  CAS  Google Scholar 

  • Gross, C. G., and Mishkin, M., 1977, The neural basis of stimulus equivalence across retinal translation, in: Lateralization in the Nervous System (S. Harnard, R. W. Doty, L. Goldstein, J. Jaynes, and G. Krauthamer, eds.), Academic Press, New York, pp. 109–122.

    Google Scholar 

  • Gross, C. G., Bender, D. B., and Mishkin, M., 1977, Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons, Brain Res. 131:227–239.

    PubMed  CAS  Google Scholar 

  • Hartenstein, V., and Innocenti, G. M., 1981, The arborization of single callosal axons in the mouse cerebral cortex, Neurosci. Lett. 23:19–24.

    PubMed  CAS  Google Scholar 

  • Hartenstein, V., Innocenti, G. M., and Caminiti, R., 1980, An anatomical basis for the representation of the ipsilateral periphery in the second somatosensory area (S2) of the cat, Neurosci. Lett. Suppl. 5:484.

    Google Scholar 

  • Harvey, A. R., 1980, A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat, J. Physiol (London) 302:507–534.

    CAS  Google Scholar 

  • Heath, C. J., and Jones, E. G., 1970, Connexions of area 19 and the lateral suprasylvian area of the visual cortex of the cat, Brain Res. 19:302–305.

    PubMed  CAS  Google Scholar 

  • Hedreen, J. C., and Yin, T. C. T., 1981, Homotopic and heterotopic callosal afferents of caudal inferior parietal lobule in Macaca mulatta, J. Comp. Neurol 197:605–621.

    CAS  Google Scholar 

  • Heimer, L., Ebner, F. F., and Nauta, W. J. H., 1967, A note on the termination of commissural fibers in the neocortex, Brain Res. 5:171–177.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., and Jones, E. G., 1980, Electron microscopic demonstration of thalamic axon terminations on identified commissural neurons in monkey somatic sensory cortex, Brain Res. 196:253–257.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., and Jones, E. G., 1983, Thalamic inputs to identified commissural neurons in the monkey somatic sensory cortex, J. Neurocytol 12:299–316.

    PubMed  CAS  Google Scholar 

  • Herron, P., and Miller, J., 1983, The interrelation of callosal and corticospinal neurons in the sensorimotor region of the rat, Soc. Neurosci. Abstr. 9:493.

    Google Scholar 

  • Hewitt, W., 1962, The development of the human corpus callosum, J. Anat. 96:355–358.

    PubMed  CAS  Google Scholar 

  • Hornung, J. P., and Garey, L. J., 1980, A direct pathway from thalamus to visual callosal neurons in cat, Exp. Bravn Rex. 38:121–123.

    CAS  Google Scholar 

  • Hornung, J. P., and Garey, L. J., 1981, Ultrastructure of visual callosal neurons in cat identified by retrograde axonal transport of horseradish peroxidase, J. Neurocytol 10:297–314.

    PubMed  CAS  Google Scholar 

  • Hossmann, K. A., 1969, Untersuchungen iiber transcallosal Potentiale an der akuten Corpus Callosum-Katze, Dtsch. Z. Nervenheilkd. 195:79–102.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol (London) 160:106–154.

    CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N., 1965, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, J. Neurophysiol 28:229–289.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1967, Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat, J. Neurophysiol 30:1561–1573.

    CAS  Google Scholar 

  • Hughes, A., and Wilson, M. E., 1969, Callosal terminations along the boundary between visual areas I and II in the rabbit, Brain Res. 12:19–25.

    PubMed  CAS  Google Scholar 

  • Huttenlocher, P. R., de Courten, C., Garey, L. J., and Van der Loos, H., 1982, Synaptogenesis in human visual cortex—Evidence for synapse elimination during normal development, Neurosci. Lett. 33:247–252.

    PubMed  CAS  Google Scholar 

  • Imig, T. J., and Brugge, J. F., 1978, Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat, J. Comp. Neurol 182:637–660.

    PubMed  CAS  Google Scholar 

  • Imig, T. J., and Reale, R. A., 1980, Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex, J. Comp. Neurol 192:293–332.

    PubMed  CAS  Google Scholar 

  • Imig, T. J., Morel, A., and Kauer, C. D., 1982, Covariation of distributions of callosal cell bodies and callosal axon terminals in layer III of cat primary auditory cortex, Brain Res. 251:157–159.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M.r 1979, Adult and neonatal characteristics of the callosal zone at the boundary between areas 17 and 18 in the cat, in: Structure and Function of the Cerebral Commissures (I. S. Russel, M. W. Van Hof, and G. Berlucchi, eds.), Macmillan, London, pp. 244–258.

    Google Scholar 

  • Innocenti, G. M., 1980, The primary visual pathway through the corpus callosum: Morphological and functional aspects in the cat, Arch. Ital. Biol. 118:124–188.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., 1981a, Growth and reshaping of axons in the establishment of visual callosal connections, Science 212:824–827.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., 1981b, The development of interhemispheric connections, Trends Neurosci. 4:142–144.

    Google Scholar 

  • Innocenti, G. M., and Caminiti, R., 1980, Postnatal shaping of callosal connections from sensory areas, Exp. Brain Res. 38:381–394.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., and Clarke, S., 1983, Multiple sets of visual cortical neurons projecting transitorily through the corpus callosum, Neurosci. Lett. 41:27–32.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., and Clarke, S., 1984a, Bilateral transitory projection to visual areas from auditory cortex in kittens, Dev. Brain Res. 14:143–148.

    Google Scholar 

  • Innocenti, G. M., and Clarke, S., 1984b, The organization of immature callosal connections, J. Comp. Neurol. 230:287–309.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., and Fiore, L., 1976, Morphological correlates of visual field transformation in the corpus callosum, Neurosci. Lett. 2:245–252.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., and Frost, D. O., 1978, Visual experience and the development of the efferent system to the corpus callosum, Soc. Neurosci. Abstr. 4:475.

    Google Scholar 

  • Innocenti, G. M., and Frost, D. O., 1979, Effects of visual experience on the maturation of the efferent system to the corpus callosum, Nature 280:231–234.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., and Frost, D. O., 1980, The postnatal development of visual callosal connections in the absence of visual experience or of the eyes, Exp. Brain Res. 39:365–375.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., Manzoni, T., and Spidalieri, G., 1972, Peripheral and transcallosal reactivity of neurones within SI and SII cortical areas: Segmental divisions, Arch. Ital. Biol. 110:415–443.

    Google Scholar 

  • Innocenti, G. M., Manzoni, T., and Spidalieri, G., 1973, Relevance of the callosal transfer in defining the peripheral reactivity of somesthetic cortical neurones, Arch. Ital. Biol. 111:187–221.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., Manzoni, T., and Spidalieri, G., 1974, Patterns of the somesthetic messages transferred through the corpus callosum, Exp. Brain Res. 19:447–66.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., Fiore, L., and Caminiti, R., 1977, Exuberant projection into the corpus callosum from the visual cortex of newborn cats, Neurosci. Lett. 4:237–242.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., Koppel, H., and Clarke, S., 1983a, Transitory macrophages in the white matter of the developing visual cortex. I. Light and electron microscopic characteristics and distribution, Dev. Brain Res. 11:39–53.

    Google Scholar 

  • Innocenti, G. M., Clarke, S., and Koppel, H., 1983b, Transitory macrophages in the white matter of the developing visual cortex. II. Development and relations with axonal pathways, Dev. Brain Res. 11:55–66.

    Google Scholar 

  • Innocenti, G. M., Frost, D. O., and Illes, J., 1985, Maturation of visual callosal connections in visually deprived kittens: A challenging critical period, J. Neurosci. 5:255–267.

    PubMed  CAS  Google Scholar 

  • Ivy, G. O., and Killackey, H. P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol. 195:367–389.

    PubMed  CAS  Google Scholar 

  • Ivy, G. O., and Killackey, H. P., 1982, Ontogenetic changes in the projections of neocortical neurons, J. Neurosci. 2:735–743.

    PubMed  CAS  Google Scholar 

  • Ivy, G. O., Akers, R. M., and Killackey, H. P., 1979, Differential distribution of callosal projection neurons in the neonatal and adult rat, Brain Res. 173:532–537.

    PubMed  CAS  Google Scholar 

  • Jacobson, S., and Marcus, E. M., 1970, The laminar distribution of fibers of the corpus callosum: A comparative study in the rat, cat, rhesus monkey and chimpanzee, Brain Res. 517–520.

    Google Scholar 

  • Jacobson, S., and Trojanowski, J. Q., 1974, The cells of origin of the corpus callosum in rat, cat and rhesus monkey, Brain Res. 74:149–155.

    PubMed  CAS  Google Scholar 

  • Jacobson, S., and Trojanowski, J. Q., 1975, The appearance of dendrites of callosal and corticothalamic neurons in somatosensory cortex of immature rats demonstrated by horseradish peroxidase, Adv. Neurol. 12:319–333.

    PubMed  CAS  Google Scholar 

  • Jacobson, S., and Trojanowski, J. Q., 1977, Prefrontal granular cortex of the rhesus monkey. II. Interhemispheric cortical afferents, Brain Res. 132:235–246.

    PubMed  CAS  Google Scholar 

  • Jenny, A. B., 1979, Commissural projections of the cortical hand motor area in monkeys, J. Comp. Neurol. 188:137–146.

    PubMed  CAS  Google Scholar 

  • Jensen, K. F., and Altman, J., 1982, The contribution of late-generated neurons to the callosal projection in the rat: A study with prenatal x-irradiation, J. Comp. Neurol. 209:113–122.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., and Hendry, S. H. C., 1980, Distribution of callosal fibers around the hand representations in monkey somatic sensory cortex, Neurosci. Lett. 19:167–172.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1968, The commissural connexions of the somatic sensory cortex in the cat, J. Anat. 103:433–455.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1969, Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral cortical connexions, Brain 92:717–730.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1970, An electron microscopic study of the laminar pattern and mode of termination of afferent fibre pathways in the somatic sensory cortex of the cat, Philos. Trans. R. Soc. London Ser. B 257:45–62.

    CAS  Google Scholar 

  • Jones, E. G., and Wise, S. P., 1977, Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys, J. Comp. Neurol. 175:391–438.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., Burton, H., and Porter, R., 1975, Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates, Science 190:572–574.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., Coulter, J. D., and Wise, S. P., 1979, Commissural columns in the sensory-motor cortex of monkeys, J. Comp. Neurol. 188:113–136.

    PubMed  CAS  Google Scholar 

  • Jouandet, M. L., Lachat, J. -J., and Garey, L. J., 1985, Distribution of the neurons of origin of the great cerebral commissures in the cat, Anat. Embryol. 171:105–120.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., Lin, C. S., and Wagor, E., 1977, Cortical projections of posterior parietal cortex in owl monkeys, J. Comp. Neurol. 171:387–408.

    Google Scholar 

  • Karol, E. A., and Pandya, D. N., 1971, The distribution of the corpus callosum in the rhesus monkey, Brain 94:471–486.

    PubMed  CAS  Google Scholar 

  • Kawamura, K., 1973, Corticocortical fiber connections of the cat cerebrum. III. The occipital region, Brain Res. 51:41–60.

    PubMed  CAS  Google Scholar 

  • Keating, M. J., 1977, Evidence for plasticity of intertectal neuronal connections in adult Xenopus, Philos. Trans. B. Soc. London Ser. B 278:277–294.

    CAS  Google Scholar 

  • Keller, G., and Innocenti, G. M., 1981, Callosal connections of suprasylvian visual areas in the cat, Neuroscience 6:703–712.

    PubMed  CAS  Google Scholar 

  • Kelly, J. P., and Van Essen, D. C., 1974, Cell structure and function in the visual cortex of the cat, J. Physiol. (London) 238:515–547.

    CAS  Google Scholar 

  • Kelly, J. P., and Wong, D., 1981, Laminar connections of the cat’s auditory cortex, Brain Res. 212:1–15.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., Gould, H. J., Cusick, C. G., Pons, T. P., and Kaas, J. H., 1983a, The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of New and Old World monkeys, J. Comp. Neurol. 219:384–419.

    PubMed  CAS  Google Scholar 

  • Killackey, J., Olavarria, J., and Van Sluyters, R. C., 1983b, A vibrissae related pattern of callosal connections in the primary somatosensory cortex of the rat, Soc. Neurosci. Abstr. 9:251.

    Google Scholar 

  • Koppel, H., and Innocenti, G. M., 1983, Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscopic study in the cat, Neurosci. Lett. 41:33–40.

    PubMed  CAS  Google Scholar 

  • Künzle, H., 1975, Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia: An autoradiographic study in Macaca fascicularis, Brain Res. 88:195–209.

    Google Scholar 

  • Künzle, H., 1976, Alternating afferent zones of high and low axon terminal density within the macaque motor cortex, Brain Res. 106:365–370.

    PubMed  Google Scholar 

  • Künzle, H., 1978, Cortico-cortical efferents of primary motor and somatosensory regions of the cerebral cortex in Macaca fascicularis, Neuroscience 3:25–39.

    Google Scholar 

  • Künzle, H., and Akert, K., 1977, Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis: A reinvestigation using the autoradiographic technique, J. Comp. Neurol. 173:147–163.

    PubMed  Google Scholar 

  • La Mantia, A.-S., and Rakic, P., 1984, The number, size, myelination, and regional variation of axons in the corpus callosum and anterior commissure of the developing rhesus monkey, Neurosci. Abstr. 10:1081.

    Google Scholar 

  • Laurberg, S., and Sørensen, K. E., 1981, Associational and commissural collaterals of neurons in the hippocampal formation (hilus fasciae dentate and subfield CA3), Brain Res. 212:287–300.

    PubMed  CAS  Google Scholar 

  • Lent, R., 1983, Cortico-cortical connections reorganize in hamsters after neonatal transection of the callosal bridge, Dev. Brain Res. 11:137–142.

    Google Scholar 

  • Lepore, F., and Guillemot, J.-P., 1982, Visual receptive field properties of cells innervated through the corpus callosum in the cat, Exp. Brain Res. 46:413–424.

    PubMed  CAS  Google Scholar 

  • Lepore, F., Samson, A., and Molotchnikoff, S., 1983a, Effects on binocular activation of cells in visual cortex of the cat following the transection of the optic tract, Exp. Brain Res. 50:392–396.

    PubMed  CAS  Google Scholar 

  • Lepore, F., Prévost, L., Richer, L., and Guillemot, J. P., 1983b, Interhemispheric transfer of somesthetic information in the corpus callosum, Soc. Neurosci. Abstr. 9:250.

    Google Scholar 

  • Looney, G. A., and Elberger, A. J., 1983, Myelination of the visual fibers of the corpus callosum in cats. Soc. Neurosci. Abstr. 9:1220.

    Google Scholar 

  • Looney, G. A., and Elberger, A. J., 1983, Myelination of the visual fibers of the corpus callosum in cats. Soc. Neurosci. Abstr. 9:1220.

    Google Scholar 

  • Lund, J. S., and Boothe, R. G., 1975, Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the macaque monkey, J. Comp. Neurol 159:305–334.

    Google Scholar 

  • Lund, J. S., and Lund, R. D., 1970, The termination of callosal fibers in the paravisual cortex of the rat, Brain Res. 17:25–45.

    PubMed  CAS  Google Scholar 

  • Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase, J. Comp. Neurol 164:287–304.

    PubMed  CAS  Google Scholar 

  • Lund, J. S., Hendrickson, A. E., Ogren, M. P., and Tobin, E. A., 1981, Anatomical organization of primate visual cortex area VII, J. Comp. Neurol 202:19–45.

    PubMed  CAS  Google Scholar 

  • Lund, R. D., and Mitchell, D. E., 1979a, The effects of dark-rearing on visual callosal connections of cats, Brain Res. 167:172–175.

    PubMed  CAS  Google Scholar 

  • Lund, R. D., and Mitchell, D. E., 1979b, Asymmetry in the visual callosal connections of strabismic cats, Brain Res. 167:176–179.

    PubMed  CAS  Google Scholar 

  • Lund, R. D., Mitchell, D. E., and Henry, G. H., 1978, Squint-induced modification of callosal connections in cats, Brain Res. 144:169–172.

    PubMed  CAS  Google Scholar 

  • Luttenberg, J., 1974, Heterotopic contralateral projection of neocortical spheres of the cat brain, Acta Univ. Carol Med. 20:225–249.

    CAS  Google Scholar 

  • Luttenberg, J., and Marsala, J., 1963, The topography of the commissural fibers in the corpus callosum of the cat’s brain, Cesk. Morfologie 11:166–176.

    CAS  Google Scholar 

  • McCulloch, W. S., and Garol, H. W., 1941, Cortical origin and distribution of corpus callosum and anterior commissure in the monkey (Macaca mulatta). Neurophysiol 4:555–563.

    Google Scholar 

  • Maciewicz, R. J., 1974, Afferents to the lateral suprasylvian gyrus of the cat traced with horseradish peroxidase, Brain Res. 78:139–143.

    PubMed  CAS  Google Scholar 

  • McKenna, T. M., Whitsel, B. L., Dreyer, D. A., and Metz, C. B., 1981, Organization of cat anterior parietal cortex: Relations among cytoarchitecture, single neuron functional properties, and interhemispheric connectivity, J. Neurophysiol. 45:667–697.

    PubMed  CAS  Google Scholar 

  • Manzoni, T., Caminiti, R., Spidalieri, G., and Morelli, E., 1979, Anatomical and functional aspects of the associative projections from somatic area SI to SII, Exp. Brain Res. 34:453–170.

    PubMed  CAS  Google Scholar 

  • Manzoni, T., Barbaresi, P., Bellardinelli, E., and Caminiti, R., 1980, Callosal projections from the two body midlines, Exp. Brain Res. 39:1–9.

    PubMed  CAS  Google Scholar 

  • Markowitsch, H. J., and Guldin, W. O., 1983, Heterotopic interhemispheric cortical connections in the rat, Brain Res. Bull. 10:805–810.

    PubMed  CAS  Google Scholar 

  • Marzi, C. A., Antonini, A., Di Stefano, M., and Legg, C. R., 1980, Cailosum-dependent binocular interactions in the lateral suprasylvian area of Siamese cats which lack binocular neurons in areas 17 and 18, Brain Res. 197:230–235.

    PubMed  CAS  Google Scholar 

  • Marzi, C. A., Antonini, A., Di Stefano, M., and Legg, C. R., 1982, The contribution of the corpus callosum to receptive fields in the lateral suprasylvian visual areas of the cat, Behav. Brain Res. 4:155–176.

    PubMed  CAS  Google Scholar 

  • Matsumura, M., and Kubota, K., 1979, Cortical projection to hand-arm motor area from postarcuate area in macaque monkeys: A histological study of retrograde transport of horseradish peroxidase, Neurosci. Lett. 11:241–246.

    PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Knight, P. L., and Roth, G. L., 1975, Representation of cochlea within primary auditory cortex in the cat, J. Neurophysiol 38:231–249.

    PubMed  CAS  Google Scholar 

  • Meyer, G., and Albus, K., 1981, Spiny stellates as cells of origin of association fibres from area 17 to area 18 in the cat’s neocortex, Brain Res. 210:335–341.

    PubMed  CAS  Google Scholar 

  • Meyerson, B. A., 1968, Ontogeny of interhemispheric functions: An electrophysiological study in pre- and postnatal sheep, Acta Physiol Scand. Suppl. 312:1–111.

    PubMed  CAS  Google Scholar 

  • Miller, R., 1975, Distribution and properties of commissural and other neurons in cat sensorimotor cortex, J. Comp. Neurol 164:361–374.

    PubMed  CAS  Google Scholar 

  • Minciacchi, D., Molinari, M., and Antonini, A., 1983, The commissural organization of the bilateral claustro-cortical projections, Neurosci. Lett. Suppl. 14:S248.

    Google Scholar 

  • Moran, J., Desimone, r., Schein, S. J., and Mishkin, M., 1983, Suppression from ipsilateral visual field in area V4 of the macaque, Soc. Neurosci. Abstr. 9:957.

    Google Scholar 

  • Mountcastle, V. B., and Powell, T. P. S., 1959, Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination, Bull. Johns Hopkins Hosp. 105:201–232.

    PubMed  CAS  Google Scholar 

  • Myers, R. E., 1962, Commissural connections between occipital lobes of the monkey, J. Comp. Neurol. 118:1–10.

    PubMed  CAS  Google Scholar 

  • Naito, H., Nakamura, K., Kurosaki, T., and Tamura, Y., 1970, Transcallosal excitatory postsynaptic potentials of fast and slow pyramidal tract cells in cat sensorimotor cortex, Brain Res. 19:299–301.

    PubMed  CAS  Google Scholar 

  • Naito, H., Miyakawa, F., and Ito, N., 1971, Diameters of callosal fibers interconnecting cat sensorimotor cortex, Brain Res. 27:369–372.

    PubMed  CAS  Google Scholar 

  • Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis, J. Comp. Neurol. 194:209–233.

    CAS  Google Scholar 

  • O’Leary, D. D. M., Stanfield, B. B., and Cowan, W. M., 1981, Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons, Dev. Brain Res. 1:607–617.

    Google Scholar 

  • Pandya, D. N., and Rosene, D. L., 1983, Termination patterns of thalamic, callosal, and association afferents of the primary auditory area in the rhesus monkey, Soc. Neurosci. Abstr. 9:954.

    Google Scholar 

  • Pandya, D. N., and Vignolo, L. A., 1968, Interhemispheric neocortical projections of somatosensory areas I and II in the rhesus monkey, Brain Res. 7:300–303.

    PubMed  CAS  Google Scholar 

  • Pandya, D. N., and Vignolo, L. A., 1969, Interhemispheric projections of the parietal lobe in the rhesus monkey, Brain Res. 15:49–65.

    PubMed  CAS  Google Scholar 

  • Pandya, D. N., and Vignolo, L. A., 1971, Intra- and interhemispheric projections of the precentral, premotor arcuate areas in the rhesus monkey, Brain Res. 26:217–233.

    PubMed  CAS  Google Scholar 

  • Pandya, D. N., Hallett, M., and Mukherjee, S. K., 1969, Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey, Brain Res. 14:49–65.

    PubMed  CAS  Google Scholar 

  • Pandya, D. N., Dye, P., and Butters, N., 1971a, Efferent cortico-cortical projections of the prefontal cortex in the rhesus monkey, Brain Res. 31:35–46.

    PubMed  CAS  Google Scholar 

  • Pandya, D. N., Karol, E. A., and Heilbronn, D., 1971b, The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey, Brain Res. 32:31–43.

    PubMed  CAS  Google Scholar 

  • Payne, B. R., Elberger, A. J., Berman, N., and Murphy, E. H., 1980, Binocularity in the cat visual cortex is reduced by sectioning the corpus callosum, Science 207:1097–1099.

    PubMed  CAS  Google Scholar 

  • Pines, L. J., and Maiman, R. M., 1939, Cells of origin of fibers of corpus callosum: Experimental and pathologic observations, Arch. Neurol Psychiatry 42:1076–1082.

    Google Scholar 

  • Porter, L. L., and White, E. L., 1983, Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse, J. Comp. Neurol 214:279–289.

    PubMed  CAS  Google Scholar 

  • Porter, L. L., White, E. L., and Belford, G. R., 1983, Reciprocal synaptic relationships of Msl pyramidal neurons which project transcallosally in the mouse, Soc. Neurosci. Abstr. 9:493.

    Google Scholar 

  • Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition, Science 183:425–427.

    PubMed  CAS  Google Scholar 

  • Rakic, P., and Yakovlev, P. I., 1968, Development of the corpus callosum and cavum septi in man, J. Comp. Neurol 132:45–72.

    PubMed  CAS  Google Scholar 

  • Ramóny Cajal, S., 1894, Les Nouvelles Idées sur la Structure du Système Nerveux chez l’Homme et chez les Vertébrés, Reinwald, Paris.

    Google Scholar 

  • Ramnóy Cajal, S., 1911, Histologie du système Nerveux de l’Homme et des Vertébrés, Volume II, Maloine, Paris, pp. 604–606.

    Google Scholar 

  • Rao, V. M., 1979, Interhemispheric connections between primary visual areas in adult sheep and new-born lambs, J. Physiol. (London) 55:89P.

    Google Scholar 

  • Ravizza, R. J., Straw, R. B., and Long, P. D., 1976, Laminar origin of efferent projections from auditory cortex in the golden Syrian hamster, Brain Res. 114:497–500.

    PubMed  CAS  Google Scholar 

  • Reale, R. A., and Imig, T. J., 1980, Tonotopic organization in auditory cortex of the cat, J. Comp. Neurol 192:265–291.

    PubMed  CAS  Google Scholar 

  • Rhoades, R. W., and Dellacroce, D. D., 1980a, Visual callosal connections in the golden hamster, Brain Res. 190:248–254.

    PubMed  CAS  Google Scholar 

  • Rhoades, R. W., and Dellacroce, D. D., 1980b, Neonatal enucleation induces an asymmetric pattern of visual callosal connections in hamsters, Brain Res. 202:189–195.

    PubMed  CAS  Google Scholar 

  • Rhoades, R. W., Mooney, R. D., Yuen, G., and Fish, S. E., 1983, A comparison of visual connections in normal, neonatally blinded and congenitally anophthalmic mice, Soc. Neurosci. Abstr. 9:910.

    Google Scholar 

  • Ribak, E., 1977, A note on the laminar organization of rat visual cortical projections, Exp. Brain Res. 27:413–418.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., 1975, The development of the primary somatosensory cortex in the mouse: (1) A Nissl study of the ontogenesis of the barrels and the barrel field, (2) A quantitative autoradiographic study of the time of origin and pattern of migration of neuroblasts in area SI, Doctoral disseration, Johns Hopkins University.

    Google Scholar 

  • Rice, F. L., and Van der Loos, H., 1977, Development of the barrels and barrel field in the somatosensory cortex of the mouse, J. Comp. Neurol. 171:545–560.

    PubMed  CAS  Google Scholar 

  • Rizzolatti, G., Scandolara, C., Matelli, M., and Gentilucci, M., 1981a, Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses, Behav. Brain Res. 2:125–146.

    PubMed  CAS  Google Scholar 

  • Rizzolatti, G., Scandolara, C., Matelli, M., and Gentilucci, M., 1981b, Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses, Behav. Brain Res. 2:147–163.

    PubMed  CAS  Google Scholar 

  • Robinson, D. L., 1973, Electrophysiological analysis of interhemispheric relations in the second somatosensory cortex of the cat, Exp. Brain Res. 18:131–144.

    CAS  Google Scholar 

  • Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179:3–20.

    PubMed  CAS  Google Scholar 

  • Rothblat, L. A., and Hayes, L. L., 1982, Age-related changes in the distribution of visual callosal neurons following monocular enucleation in the rat, Brain Res. 246:146–149.

    PubMed  CAS  Google Scholar 

  • Sanides, D., 1978, The retinotopic distribution of visual callosal projections in the suprasylvian visual areas compared to the classical visual areas (17, 18, 19) in the cat, Exp. Brain Res. 33:435–443.

    PubMed  CAS  Google Scholar 

  • Sanides, D., and Albus, K., 1980, The distribution of interhemispheric projections in area 18 of the cat: Coincidence with discontinuities of the representation of the visual field in the second visual area (V2), Exp. Brain Res. 38:237–240.

    PubMed  CAS  Google Scholar 

  • Sanides, D., and Donate-Oliver, F., 1978, Identification and localisation of some relay cells in cat visual cortex, in: Architectonics of the Cerebral Cortex (M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 227–234.

    Google Scholar 

  • Schwartz, M. L., and Goldman-Rakic, P. S., 1982, Single cortical neurones have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates, Nature 299:154–155.

    PubMed  CAS  Google Scholar 

  • Seggie, J., and Berry, M., 1972, Ontogeny of interhemispheric evoked potentials in the rat: Significance of myelination of the corpus callosum, Exp. Neurol. 35:215–232.

    PubMed  CAS  Google Scholar 

  • Segraves, M. A., and Innocenti, G. M., 1982, An examination of the projections of cat visual callosal neurons using double retrograde tracers, Neurosci. Lett. Suppl. 10:S442.

    Google Scholar 

  • Segraves, M. A., and Innocenti, G. M., 1985, A comparison of the distribution of ipsilaterally and contralaterally projecting corticocortical neurons in cat visual cortex using two fluorescent tracers, J. Neurosci. 5:2107–2118.

    PubMed  CAS  Google Scholar 

  • Segraves, M. A., and Rosenquist, A. C., 1982a, The distribution of the cells of origin of callosal projections in cat visual cortex, J. Neurosci. 2:1079–1089.

    PubMed  CAS  Google Scholar 

  • Segraves, M. A., and Rosenquist, A. C., 1982b, The afferent and efferent callosal connections of retinotopically defined areas in cat cortex, J. Neurosci. 2:1090–1107.

    PubMed  CAS  Google Scholar 

  • Seltzer, B., and Pandya, D. N., 1983, The distribution of posterior parietal fibers in the corpus callosum of the rhesus monkey, Exp. Brain Res. 49:147–150.

    PubMed  CAS  Google Scholar 

  • Shanks, M. F., Rockel, A. J., and Powell, T. P. S., 1975, The commissural fibre connections of the primary somatic sensory cortex, Brain Res. 98:166–171.

    PubMed  CAS  Google Scholar 

  • Shatz, C., 1977a, Abnormal interhemispheric connections in the visual system of Boston Siamese cats: A physiological study, J. Comp. Neurol. 171:229–246.

    PubMed  CAS  Google Scholar 

  • Shatz, C. J., 1977b, Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats, J. Comp. Neurol. 173:497–518.

    PubMed  CAS  Google Scholar 

  • Shofer, R. J., and Purpura, D. P., 1972, Spread of transcallosally evoked responses in immature association cortex, Exp. Neurol. 37:431–445.

    PubMed  CAS  Google Scholar 

  • Sholl, D. A., 1955, The organization of the visual cortex in the cat, J. Anat. 89:33–46.

    PubMed  CAS  Google Scholar 

  • Shoumura, K., 1972, Patterns of fiber degeneration in the lateral wall of the suprasylvian gyrus (Clare-Bishop area) following lesions in the visual cortex in cats. Brain Res. 43:264–267.

    PubMed  CAS  Google Scholar 

  • Shoumura, K., 1974, An attempt to relate the origin and distribution of commissural fibers to the presence of large and medium pyramids in layer III in the cat’s visual cortex, Brain Res. 67:13–25.

    PubMed  CAS  Google Scholar 

  • Shoumura, K., Ando, T., and Kato, K., 1975, Structural organization of ‘callosal’ OBg in human corpus callosum agenesis, Brain Res. 93:241–252.

    PubMed  CAS  Google Scholar 

  • Sidtis, J. J., Volpe, B. T., Holtzman, J. D., Wilson, D. H., and Gazzaniga, M. S., 1981, Cognitive interaction after staged callosal section: Evidence for transfer of semantic activation, Science 212:344–346.

    PubMed  CAS  Google Scholar 

  • Silver, J., and Ogawa, M. Y., 1983, Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges, Science 220:1067–1069.

    PubMed  CAS  Google Scholar 

  • Silver, J., Lorenz, S. E., Wahlsten, D., and Coughlin, J., 1982, Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies, in vivo, on the role of preformed glial pathways, J. Comp. Neurol. 210:10–29.

    PubMed  CAS  Google Scholar 

  • Simmons, P. A., and Pearlman, A. L., 1983, Receptive-field properties of transcallosal visual cortical neurons in the normal and reeler mouse, J. Neurophysiol. 50:838–847.

    PubMed  CAS  Google Scholar 

  • Singer, M., Nordlander, R. H., and Egar, M., 1979, Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: The blueprint hypothesis of neuronal pathway patterning, J. Comp. Neurol. 185:1–22.

    PubMed  CAS  Google Scholar 

  • Singer, W., Treuer, F., and Cynader, M., 1975, Organization of cat striate cortex: A correlation of receptive-field properties with afferent and efferent connections, J. Neurophysiol. 38:1080–1098.

    PubMed  CAS  Google Scholar 

  • Sloper, J. J., and Powell, T. P. S., 1979, An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices, Philos. Trans. R. Soc. London Ser. B 285:199–226.

    CAS  Google Scholar 

  • Somogyi, P., Hodgson, A. J., and Smith, A. D., 1979, An approach to tracing neuron networks in the cerebral cortex and basal ganglia: Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material, Neuroscience 4:1805–1852.

    PubMed  CAS  Google Scholar 

  • Somogyi, P., Kisvárday, Z. F., Martin, K. A. C., and Whitteridge, D., 1983, Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat, Neuroscience 10:261–294.

    PubMed  CAS  Google Scholar 

  • Spatz, W. B., and Tigges, J., 1972, Experimental-anatomical studies on the “middle temporal visual area (MT)” in primates. I. Efferent cortico-cortical connections in the marmoset Callithrix jacchus, J. Comp. Neurol. 146:451–464.

    CAS  Google Scholar 

  • Sperry, R., 1982, Some effects of disconnecting the cerebral hemispheres, Science 217:1223–1226.

    PubMed  CAS  Google Scholar 

  • Squatrito, S., Battaglini, P. P., Galletti, C., and Riva Sanseverino, E., 1980, Projections from the visual cortex to the contralateral claustrum of the cat revealed by an anterograde axonal transport method, Neurosci. Lett. 19:271–275.

    PubMed  CAS  Google Scholar 

  • Steele Rüssel, I., Van Hof, M. W., and Berlucchi, G., 1979, Structure and Function of Cerebral Commissures, Macmillan & Co., London.

    Google Scholar 

  • Sunderland, S., 1940, The distribution of commissural fibres in the corpus callosum in the macaque monkey, J. Neurol. Psychiatry 3:9–18.

    PubMed  CAS  Google Scholar 

  • Swadlow, H.A., 1974, Properties of antidromically activated callosal neurons and neurons responsive to callosal input in rabbit binocular cortex, Exp. Neurol. 43:424–444.

    PubMed  CAS  Google Scholar 

  • Swadlow, H. A., 1977, Relationship of the corpus callosum to visual areas I and II of the awake rabbit, Exp. Neurol. 57:516–531.

    PubMed  CAS  Google Scholar 

  • Swadlow, H.A., and Waxman, S. G., 1976, Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit, Exp. Neurol. 53:128–150.

    PubMed  CAS  Google Scholar 

  • Swadlow, H. A., and Wayand, T. G., 1981, Efferent systems of the rabbit visual cortex: Laminar distribution of the cells of origin, axonal conduction velocities, and identification of axonal branches, J. Comp. Neurol. 203:799–822.

    PubMed  CAS  Google Scholar 

  • Swadlow, H. A., Weyand, T. G., and Waxman, S. G., 1978, The cells of origin of the corpus callosum in rabbit visual cortex, Brain Res. 156:129–134.

    PubMed  CAS  Google Scholar 

  • Swadlow, H. A., Geschwind, N., and Waxman, S. G., 1979, Commissural transmission in humans, Science 204:530–531.

    PubMed  CAS  Google Scholar 

  • Swadlow, H. A., Waxman, S. G., and Geschwind, N., 1980, Small-diameter nonmyelinated axons in the primate corpus callosum, Arch. Neurol. 37:114–115.

    PubMed  CAS  Google Scholar 

  • Teitelbaum, H., Sharpless, S. K., and Byck, R., 1968, Role of somatosensory cortex in interhemispheric transfer of tactile habits, J. Comp. Physiol. Psychol. 66:623–632.

    PubMed  CAS  Google Scholar 

  • Tigges, J., Spatz, W. B., and Tigges, M., 1974, Efferent cortico-cortical fiber connections of area 18 in the squirrel monkey (Saimiri), J. Comp. Neurol. 158:219–236.

    PubMed  CAS  Google Scholar 

  • Tomasch, J., 1954, Size, distribution and number of fibres in the human corpus callosum, Anat. Rec. 119:119–135.

    PubMed  CAS  Google Scholar 

  • Towns, L. C., Giolli, R. A., and Haste, D. A., 1977, Corticocortical fiber connections of the rabbit visual cortex: A fiber degeneration study, J. Comp. Neurol. 173:537–560.

    PubMed  CAS  Google Scholar 

  • Toyama, K., and Matsunami, K., 1976, Convergence of specific visual and commissural impulses upon inhibitory interneurones in cat’s visual cortex, Neuroscience 1:107–112.

    PubMed  CAS  Google Scholar 

  • Toyama, K., Tokashiki, S., and Matsunami, K., 1969, Synaptic action of commissural impulses upon association efferent cells in cat visual cortex, Brain Res. 14:518–520.

    PubMed  CAS  Google Scholar 

  • Toyama, K., Matsunami, K., Ohno, T., and Tokashiki, S., 1974, An intracellular study of neuronal organization in the visual cortex, Exp. Brain Res. 21:45–66.

    PubMed  CAS  Google Scholar 

  • Ulett, G., Dow, R. S., and Larsell, O., 1944, The inception of conductivity in the corpus callosum and the cortico-ponto-cerebellar pathway of young rabbits with reference to myelination, J. Comp. Neurol. 80:1–10.

    Google Scholar 

  • Valentino, K. L., and Jones, E. G., 1982, The early formation of the corpus callosum: A light and electron microscopic study in foetal and neonatal rats, J. Neurocytol. 11:583–609.

    PubMed  CAS  Google Scholar 

  • Valentino, K. L., Jones, E. G., and Kane, S. A., 1983, Expression of GFAP immunoreactivity during development of long fiber tracts in the rat CNS, Dev. Brain Res. 9:317–336.

    Google Scholar 

  • Van der Loos, H., 1965, The “improperly” oriented pyramidal cell in the cerebral cortex and its possible bearing on problems of neuronal growth and cell orientation, Bull. Johns Hopkins Hosp. 117:228–250.

    Google Scholar 

  • Van Essen, D. C., and Zeki, S. M., 1978, The topographic organization of rhesus monkey prestriate cortex, J. Physiol. (London) 277:193–226.

    CAS  Google Scholar 

  • Van Essen, D. C., Newsome, W. T., and Bixby, J. L., 1982, The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey, J. Neurosci. 2:265–283.

    PubMed  Google Scholar 

  • Vaughan, D. W., 1983, Thalamic and callosal connections of the rat auditory cortex, Brain Res. 260:181–189.

    PubMed  CAS  Google Scholar 

  • Vaughan, D. W., and Foundas, S., 1982, Synaptic proliferation in the auditory cortex of the young adult rat following callosal lesions, J. Neurocytol. 11:29–51.

    PubMed  CAS  Google Scholar 

  • Vogt, B. A., and Gorman, A. L. F., 1982, Responses of cortical neurons to stimulation of corpus callosum in vitro, J. Neurophysiol. 48:1257–1273.

    PubMed  CAS  Google Scholar 

  • Vogt, B. A., Rosene, D. L., and Peters, A., 1981, Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat, J. Comp. Neurol. 201:265–283.

    PubMed  CAS  Google Scholar 

  • Wagor, E., Lin, C. S., and Kaas, J. H., 1975, Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey, Aotus trivirgatus, J. Comp. Neurol. 163:227–250.

    CAS  Google Scholar 

  • Wahlsten, D., 1974, Heritable aspects of anomalous myelinated fibre tracts in the forebrain of the laboratory mouse, Brain Res. 68:1–18.

    PubMed  CAS  Google Scholar 

  • Waxman, S. G., and Swadlow, H. A., 1976, Ultrastructure of visual axons in the rabbit, Exp. Neurol. 53:115–127.

    PubMed  CAS  Google Scholar 

  • Weber, J. T., Rieck, R. W., and Gould, H. J., 1983, Interhemispheric and subcortical collaterals of single cortical neurons in the adult cat, Brain Res. 276:333–338.

    PubMed  CAS  Google Scholar 

  • White, E. L., and DeAmicis, R. A., 1977, Afferent and efferent projections of the region in mouse S cortex which contains the posteromedial barrel subfield, J. Comp. Neurol. 175:455–481.

    PubMed  CAS  Google Scholar 

  • Whitsel, B. L., Petrucelli, L. M., and Werner, G., 1969, Symmetry and connectivity in the map of the body surface in somatosensory area II of primates, J. Neurophysiol. 32:170–183.

    PubMed  CAS  Google Scholar 

  • Wilson, M. E., 1968, Cortico-cortical connexions of the cat visual areas, J. Anat. 102:375–386.

    PubMed  CAS  Google Scholar 

  • Winfield, D. A., Gatter, K. C., and Powell, T. P. S., 1975, Certain connections of the visual cortex of the monkey shown by the use of horseradish peroxidase, Brain Res. 92:456–461.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., 1975, The laminar organization of certain afferent and efferent fiber systems in the rat somatosensory cortex, Brain Res. 90:139–142.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., and Jones, E. G., 1976, The organization and postnatal development of the commissural projection of the rat somatic sensory cortex, J. Comp. Neurol. 168:313–344.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., and Jones, E. G., 1978, Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.

    PubMed  CAS  Google Scholar 

  • Witelson, S. F., 1983, The corpus callosum is larger in left handers, Soc. Neurosci. Abstr. 9:917.

    Google Scholar 

  • Wong, D., and Kelly, J. P., 1981, Differentially projecting cells in individual layers of the auditory cortex: A double-labeling study, Brain Res. 230:362–366.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., 1974, Demonstration ot geniculocortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase, Brain Res. 79:267–272.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., 1979, Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys, Brain Res. 162:201–217.

    PubMed  CAS  Google Scholar 

  • Woolsey, T., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex, Brain Res. 17:205–242.

    PubMed  CAS  Google Scholar 

  • Yakovlev, P. I., and Lecours, A. -R., 1967, The myelogenetic cycles of regional maturation of the brain, in: Regional Development of the Brain in Early Life (A. Minkowski, ed.), Blackwell, Oxford, pp. 3–70.

    Google Scholar 

  • Yorke, C. H., and Caviness, V. S., 1975, Interhemispheric neocortical connections of the corpus callosum in the normal mouse: A study based on anterograde and retrograde methods, J. Comp. Neurol. 164:233–246.

    PubMed  Google Scholar 

  • Záborszky, L., and Wolff, J. R., 1982, Distribution patterns and individual variations of callosal connections in the albino rat, Anat. Embryol. 165:213–232.

    PubMed  Google Scholar 

  • Zant, J. D., and Strick, P. L., 1978, The cells of origin of interhemispheric connections in the primate motor cortex, Soc. Neurosci. Abstr. 4:308.

    Google Scholar 

  • Zeki, S. M., 1970, Interhemispheric connections of prestriate cortex in monkey, Brain Res. 19:63–75.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1978, The cortical projections of foveal striate cortex in the rhesus monkey, J. Physiol. (London) 277:227–244.

    CAS  Google Scholar 

  • Zeki, S., and Fries, W., 1980, A function of the corpus callosum in the Siamese cat, Proc. R. Soc. London Ser. B 207:249–258.

    CAS  Google Scholar 

  • Zeki, S. M., and Sandeman, D. R., 1976, Combined anatomical and electrophysiological studies on the boundary between the second and third visual areas of rhesus monkey cortex, Proc. R. Soc. London Ser. B 194:555–562.

    CAS  Google Scholar 

  • Zuckerkandl, E., 1909, Zur Entwicklung des Balkens, Arb. Neurol. Inst. Univ. Wien 17:373–409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Innocenti, G.M. (1986). General Organization of Callosal Connections in the Cerebral Cortex. In: Jones, E.G., Peters, A. (eds) Sensory-Motor Areas and Aspects of Cortical Connectivity. Cerebral Cortex, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2149-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2149-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9268-5

  • Online ISBN: 978-1-4613-2149-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics