Functions of Corticocortical Neurons of Somatosensory, Motor, and Parietal Cortex

  • Peter Zarzecki
Part of the Cerebral Cortex book series (CECO, volume 5)


There is an intimate relationship between advances in the understanding of localization of function within cerebral cortex and studies of the operation of corticocortical connections. Obviously, without some understanding of the specific functions of different cortical areas, it was not possible to hypothesize specific functions for connections between these cortical areas. With the division of cerebral cortex into even vaguely defined sensory, motor, and association areas, the assumption arose that intracortical connections are the “substrate for associations between afferent, efferent and centrally originating activity” (Imbert et al., 1966). Presumably because of this long-standing assumption, the ipsilateral corticocortical paths with functions most extensively studied are those interconnecting sensory receiving areas, parietal association areas, and motor areas. As the understanding of the operation of these cortical areas has increased in sophistication, so too have proposals for the functions of corticocortical neurons. Starting from the rather vague concept of “associations” (see Amassian, 1954), there is now experimental support for a number of quite specific roles for corticocortical neurons, e.g., controlling receptive field size or firing patterns of their target neurons.


Motor Cortex Receptive Field Supplementary Motor Area Motor Cortex Stimulation Parietal Association Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albe-Fessard, D., and Rougeul, A., 1958, Activités d’origine somesthésique évoquées sur le cortex non-spécifique du chat anesthésié au chloralose: rôle du centre median du thalamus, Electroencephalogr. Clin. Neurophysiol. 10:131–152.PubMedCrossRefGoogle Scholar
  2. Amassian, V. E., 1954, Studies on organization of a somesthetic association area, inluding a single unit analysis, J. Neurophysiol 17:39–58.PubMedGoogle Scholar
  3. Asanuma, H., and Sakata, H., 1976, Functional organization of a cortical efferent system examined with focal depth stimulation in cats, J. Neurophysiol 30:35–54.Google Scholar
  4. Asanuma, H., Larsen, K. D., and Zarzecki, P., 1979, Peripheral input pathways projecting to the motor cortex in the cat, Brain Res. 172:197–208.PubMedCrossRefGoogle Scholar
  5. Asanuma, H., Waters, R. S., and Yumiya, H., 1982, Physiological properties of neurons projecting from area 3a to area 4 γ of feline cerebral cortex, J. Neurophysiol 48:1048–1057.PubMedGoogle Scholar
  6. Bénita, M., Condé, H., Dormont, J. F., and Schmied, A., 1979, Effects of ventrolateral thalamic nucleus cooling on initiation of forelimb ballistic flexion movements by conditioned cats, Exp. Brain Res. 34:435–452.PubMedCrossRefGoogle Scholar
  7. Bignall, K. E., and Imbert, M., 1969, Polysensory and cortico-cortical projections to frontal lobe of squirrel and rhesus monkeys, Electroencephalogr. Clin. Neurophysiol 26:206–215.PubMedCrossRefGoogle Scholar
  8. Blum, B., Halpern, L. M., and Ward, A. A., Jr., 1968, Microelectrode studies of the afferent connections and efferent projections of neurons in the sensorimotor cortex of the cat, Exp. Neurol 20:156–173.PubMedCrossRefGoogle Scholar
  9. Brinkman, C., and Porter, R., 1979, Supplementary motor area in the monkey: Activity of neurons during performance of a learned motor task, J. Neurophysiol 42:681–709.PubMedGoogle Scholar
  10. Brinkman, J., Bush, B. M., and Porter, R., 1978, Deficient influences of peripheral stimuli on precentral neurones in monkeys with dorsal column lesions, J. Physiol (London) 276:27–48.Google Scholar
  11. Brock, L. G., Coombs, J. S., and Eccles, J. C., 1953, Intracellular recording from antidromically activated motoneurones, J. Physiol (London) 122:429–461.Google Scholar
  12. Chapin, J. K., and Woodward, D. J., 1982, Somatic sensory transmission to the cortex during movement: Phasic modulation over the locomotor step cycle, Exp. Neurol 78:670–684.PubMedCrossRefGoogle Scholar
  13. Critchley, M., 1953, The Parietal Lobes, Arnold, London.Google Scholar
  14. Darian-Smith, I., Isbister, J., Mok, H., and Yokota, T., 1966, Somatic sensory cortical projection areas excited by tactile stimulation of the cat: A triple representation, J. Physiol (London) 182:671–689.Google Scholar
  15. Deschênes, M., 1977, Dual origin of fibers projecting from motor cortex to SI in cat, Brain Res. 132:159–162.PubMedCrossRefGoogle Scholar
  16. Dubner, R., and Sessle, B. J., 1971, Presynaptic excitability changes of primary afferent and corticofugal fibers projecting to trigeminal brain stem nuclei, Exp. Neurol 30:223–238.PubMedCrossRefGoogle Scholar
  17. Dykes, R. W., 1983, Parallel processing of somatosensory information: A theory, Brain Res. Rev. 6(1):47–115.CrossRefGoogle Scholar
  18. Evarts, E. V., and Fromm, C., 1977, Sensory responses in motor cortex neurons during precise motor control, Neurosci. Lett. 5:267–272.PubMedCrossRefGoogle Scholar
  19. Friedman, D. P., Jones, E. G., and Burton, H., 1980, Representation pattern in the second somatic sensory area of the monkey cerebral cortex, J. Comp. Neurol. 192:21–41.PubMedCrossRefGoogle Scholar
  20. Fuster, J. M., 1981, Prefrontal cortex in motor control, in: Handbook of Physiology, Section I, Volume II, Part II (V. B. Brooks, ed.), American Physiological Society, Bethesda, pp. 1149–1178.Google Scholar
  21. Gibson, J. J., 1962, Observations on active touch, Psychol Rev. 69:477–491.PubMedCrossRefGoogle Scholar
  22. Gioanni, Y., Everett, J., and Lamarche, M., 1983, The transcortical reflex triggered by cutaneous or muscle stimulation in the cat with a penicillin epileptic focus: Relative importance of regions 3a and 4, Exp. Brain Res. 51:57–64.PubMedCrossRefGoogle Scholar
  23. Goldman-Rakic, P. S., 1984, The frontal lobes: Uncharted provinces of the brain, Trends Neurosci. 7:425–429.CrossRefGoogle Scholar
  24. Goldman-Rakic, P. S., and Schwartz, M. L., 1982, Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates, Science 216:755–757.PubMedCrossRefGoogle Scholar
  25. Grant, G., Landgren, S., and Silfvenius, H., 1975, Columnar distribution of U-fibres from the postcruciate cerebral projection area of the cat’s group I muscle afferents, Exp. Brain Res. 24:57–74.PubMedCrossRefGoogle Scholar
  26. Hartmann-von Monakow, K., Akert, K., and Kunzle, H., 1979, Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis, Exp. Brain Res. 34:91–105.Google Scholar
  27. Hassler, R., and Muhs-Clement, K., 1964, Architektonischer aufbau des sensorimotorischen und parietalen cortex der katze, J. Hirnforsch. 6:377–420.Google Scholar
  28. Heath, C. J., Hore, J., and Phillips, C. G., 1976, Inputs from low threshold muscle and cutaneous afferents of hand and forearm to areas 3a and 3b of baboon’s cerebral cortex, J. Physiol (London) 257:199–227.Google Scholar
  29. Hendry, S. H. C., and Jones, E. G., 1973, Thalamic inputs to identified commissural neurons in the monkey somatic sensory cortex, J. Neurocytol. 12:299–316.CrossRefGoogle Scholar
  30. Herman, D., Kang, R., Maillis, M., and Zarzecki, P., 1985, Responses of cat motor cortex neurons to cortico-cortical and somatosensory inputs, Exp. Brain Res. 57:598–604.PubMedCrossRefGoogle Scholar
  31. Hikosaka, O., Tanaka, M., Sakamoto, M., and Iwamura, Y., 1985, Deficits in manipulative behaviors induced by local injections of muscimol in the first somatosensory cortex of the conscious monkey, Brain Res. 325:375–380.PubMedCrossRefGoogle Scholar
  32. Humphrey, D. R., 1979, On the cortical control of visually directed reaching: Contributions by nonprecentral motor areas, in: Posture and Movement (R. E. Talbot, and D. R. Humphrey, eds.), Raven Press, New York, pp. 51–112.Google Scholar
  33. Hyvärinen, J., and Poranen, A., 1974, Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys, Brain 97:673–692.PubMedCrossRefGoogle Scholar
  34. Hyvärinen, J., and Poranen, A., 1978, Receptive field integration and submodality convergence in the hand area of the post-central gyrus of the alert monkey, J. Physiol (London) 283:539–556.Google Scholar
  35. Ichikawa, M., Arissian, K., and Asanuma, H., 1985, Distribution of corticocortical and thalamocortical synapses on identified motor cortical neurons in the cat: Golgi, electron microscopic and degeneration study, Brain Res. 345:87–101.PubMedCrossRefGoogle Scholar
  36. Imbert, M., Bignall, K.E., and Buser, P., 1966, Neocortical interconnections in the cat, J. Neurophysiol. 29:382–395.PubMedGoogle Scholar
  37. Innocenti, G. M., Manzoni, T., and Spidalieri, G., 1972, Peripheral and transcallosal reactivity of neurones within SI and SI I cortical areas. Segmental divisions, Arch. Ital Biol 110:415–443.Google Scholar
  38. Innocenti, G. M., Manzoni, T., and Spidalieri, G., 1973, Relevance of the callosal transfer in defining the peripheral reactivity of somesthetic cortical neurones, Arch. Ital Biol 111:187–221.PubMedGoogle Scholar
  39. Iwamura, Y., and Tanaka, M., 1978a, Functional organization of receptive fields in the cat somatosensory cortex. I. Integration within the coronal region, Brain Res. 151:49–60.PubMedCrossRefGoogle Scholar
  40. Iwamura, Y., and Tanaka, M., 1978b, Functional organization of receptive fields in the cat somatosensory cortex. II. Second representation of the forepaw in the ansate region, Brain Res. 151:61–72.PubMedCrossRefGoogle Scholar
  41. Iwamura, Y., Tanaka, M., Sakamoto, M., and Hikosaka, O., 1985a, Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey, Exp. Brain Res. 58:400–411.PubMedGoogle Scholar
  42. Iwamura, Y., Tanaka, M., Sakamoto, M., and Hikosaka, O., 1985b, Vertical neuronal arrays in the postcentral gyrus signaling active touch: A receptive field study in the conscious monkey, Exp. Brain Res. 58:412–420.PubMedGoogle Scholar
  43. Jones, E. G., and Powell, T. P. S., 1968, The ipsilateral cortical connexions of the somatic sensory areas in the cat, Brain Res. 9:71–94.PubMedCrossRefGoogle Scholar
  44. Jones, E. G., and Powell, T. P. S., 1969, Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral cortical connexions, Brain 92:717–730.PubMedCrossRefGoogle Scholar
  45. Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey, Brain 93:793–820.PubMedCrossRefGoogle Scholar
  46. Jones, E. G., and Wise, S. P., 1977, Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys, J. Comp. Neurol. 175:391–438.PubMedCrossRefGoogle Scholar
  47. Jones, E. G., Coulter, J. D., and Hendry, S. H. C., 1978, Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys, J. Comp. Neurol. 181:291–348.PubMedCrossRefGoogle Scholar
  48. Jones, E. G., Coulter, J. D., and Wise, S. P., 1979, Commissural columns in the sensory-motor cortex of monkeys, J. Comp. Neurol. 188:113–136.PubMedCrossRefGoogle Scholar
  49. Kang, R., Herman, D., MacGillis, M., and Zarzecki, P., 1985, Convergence of sensory inputs in somatosensory cortex: Interactions from separate afferent sources, Exp. Brain Res. 57:271–278.PubMedCrossRefGoogle Scholar
  50. Kosar, E., Waters, R. S., Tsukahara, N., and Asanuma, H., 1985, Anatomical and physiological properties of the projection from the sensory cortex to the motor cortex in normal cats: The difference between corticocortical and thalamocortical projections, Brain Res. 345:68–78.PubMedCrossRefGoogle Scholar
  51. Landgren, S., Silfvenius, H., and Wolsk, D., 1967, Somato-sensory paths to the second cortical projection area of the group I muscle afferents, J. Physiol. (London) 191:543–559.Google Scholar
  52. Lipski, J., 1981, Antidromic activation of neurones as an analytic tool in the study of the central nervous system, J. Neurosci. Methods 4:1–32.PubMedCrossRefGoogle Scholar
  53. Lynch, J. C., Mountcastle, V. B., Talbot, W. H., and Yin, T. C. T., 1977, Parietal lobe mechanisms for directed visual attention, J. Neurophysiol. 40:362–389.PubMedGoogle Scholar
  54. MacGillis, M., Kang, R., Herman, D., and Zarzecki, P., 1983, Interactions among convergent inputs to somatosensory cortex neurons, Brain Res. 276:329–332.PubMedCrossRefGoogle Scholar
  55. Malis, L. I., Pribram, K. H., and Kruger, L., 1953, Action potentials in “motor” cortex evoked by peripheral nerve stimulation, J. Neurophysiol. 16:161–167.PubMedGoogle Scholar
  56. Manzoni, T., Caminiti, R., Spidalieri, G., and Morelli, E., 1979, Anatomical and functional aspects of the associative projections from somatic area SI to SII, Exp. Brain Res. 34:453–470.PubMedCrossRefGoogle Scholar
  57. Matsumura, M., and Kubota, K., 1979, Cortical projection to hand-arm motor area from postarcuate area in macaque monkeys: A histological study of retrograde transport of horseradish peroxidase, Neurosci. Lett. 11:241–246.PubMedCrossRefGoogle Scholar
  58. Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., and Felleman, D. J., 1983, Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys, Neuroscience 10:639–665.PubMedCrossRefGoogle Scholar
  59. Morse, R. W., and Towe, A. L., 1964, The dual nature of the lemnisco-cortical afferent system in the cat, J. Physiol. (London) 171:231–246.Google Scholar
  60. Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol. 20:408–434.PubMedGoogle Scholar
  61. Mountcastle, V. B., 1979, An organizing principle for cerebral function: The unit module and the distributed system, in: The Neurosciences, Fourth Study Program (F.O. Schmidt, and F. G. Worden, eds.), MIT Press, Cambridge, Massachusetts, pp. 21–42.Google Scholar
  62. Mountcastle, V. B., Lynch, J . C., Georgopoulos, A., Sakata, H., and Acuna, C., 1975, Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space, J. Neurophysiol. 38:871–908.PubMedGoogle Scholar
  63. Muakkassa, K. F., and Strick, P. L., 1979, Frontal lobe inputs to primate motor cortex: Evidence for four somatotopically organized “premotor” areas, Brain Res. 177:176–182.PubMedCrossRefGoogle Scholar
  64. Murphy, J. T., Wong, Y. C., and Kwan, H. C., 1975, Afferent-efferent linkages in motor cortex for single forelimb muscles, J. Neurophysiol. 38:990–1014.PubMedGoogle Scholar
  65. Murray, E. A., and Coulter, J. D., 1981, Organization of corticospinal neurons in the monkey, J. Comp. Neurol. 195:339–365.PubMedCrossRefGoogle Scholar
  66. Murray, H. G., and Heath, C. J., 1978, The spread of connections within cat primary somatic sensory cort ex, Brain Res. 141:160–164.PubMedCrossRefGoogle Scholar
  67. Nakahama, H., 1959a, Cerebral response in somatic area II of ipsilateral somatic I origin, J. Neurophysiol. 22:16–32.PubMedGoogle Scholar
  68. Nakahama, H., 1959b, Cerebral response of anterior sigmoid gyrus to ipsilateral posterior sigmoid stimulation in cat, J. Neurophysiol. 22:573–589.PubMedGoogle Scholar
  69. Nelson, C. N., and Bignall, K. E., 1973, Interactions of sensory and nonspecific thalamic inputs to cortical polysensory units in the squirrel monkey, Exp. Neurol. 40:189–206.PubMedCrossRefGoogle Scholar
  70. Nelson, R. J., 1984, Responsiveness of monkey primary somatosensory cortical neurons to peripheral stimulation depends on “motor-set,” Brain Res. 304:143–148.PubMedCrossRefGoogle Scholar
  71. Ödkvist, L. M., Liedgren, S. R. C., Larsby, B., and Jerlvall, L., 1975, Vestibular and somatosensory inflow to the vestibular projection area in the post cruciate dimple region of the cat cerebral cortex, Exp. Brain Res. 22:185–196.PubMedCrossRefGoogle Scholar
  72. Oscarsson, O., and Rosén, I., 1963, Projection to cerebral cortex of large muscle-spindle afferents in forelimb nerves of the cat, J. Physiol. (London) 169:924–945.Google Scholar
  73. Oscarsson, O., Rosén, I., and Sulg, I., 1966, Organization of neurones in the cat cerebral cortex that are influenced from group I muscle afferents, J. Physiol. (London) 183:189–210.Google Scholar
  74. Pandya, D. N., and Vignolo, L. A., 1969, Interhemispheric projections of the parietal lobe in the rhesus monkey, Brain Res. 15:49–65.PubMedCrossRefGoogle Scholar
  75. Robinson, C. J., and Burton, H., 1980a, Somatotopographic organization in the second somatosensory area of M. fascicularis, J. Comp. Neurol. 192:43–67.PubMedCrossRefGoogle Scholar
  76. Robinson, C. J., and Burton, H., 1980b, Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis, J. Comp. Neurol. 192:69–92.PubMedCrossRefGoogle Scholar
  77. Robinson, D. L., 1973, Electrophysiological analysis of interhemispheric relations in the second somatosensory cortex of the cat, Exp. Brain Res. 18:131–144.PubMedCrossRefGoogle Scholar
  78. Robinson, D. L., Goldberg, M. E., and Stanton, G. B., 1978, Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations, J. Neurophysiol. 41:910–932.PubMedGoogle Scholar
  79. Sakata, H., and Iwamura, Y., 1978, Cortical processing of tactile information in the first somatosensory and parietal association areas in the monkey, in: Active Touch (G. Gordon, ed.), Pergamon Press, Elmsford, N.Y., pp. 55–72.Google Scholar
  80. Schell, G. R., and Strick, P. L., 1984, The origin of thalamic inputs to the arcuate premotor and supplementary motor areas, J. Neurosci. 4:539–560.PubMedGoogle Scholar
  81. Sloper, J. J., and Powell, T. P. S., 1979, An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices, Phil. Trans. R. Soc. Ser. B 285:199–226.CrossRefGoogle Scholar
  82. Smith, A. M., 1979, The activity of supplementary motor area neurons during a maintained precision grip, Brain Res. 172:315–327.PubMedCrossRefGoogle Scholar
  83. Swadlow, H. A., and Waxman, S. G., 1976, Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit, Exp. Neurol. 53:128–150.PubMedCrossRefGoogle Scholar
  84. Szentagothai, J., 1976, Basic circuitry of the neocortex, Exp. Brain Res. 26(Suppl. l):282–287.Google Scholar
  85. Tanji, J., Taniguchi, K., and Saga, T., 1980, Supplementary motor area: Neuronal response to motor instructions, J. Neurophysiol. 43:60–68.PubMedGoogle Scholar
  86. Thompson, F. J., Fernandez, J., Asanuma, H., and Kubota, K., 1973, Relationship between 3a sensory cortex and motor cortex in the cat, Fed. Proc. 32:340.Google Scholar
  87. Thompson, R. F., Smith, H. E., and Bliss, D., 1963, Auditory, somatic sensory, and visual response interactions and interrelations in association and primary cortical fields of the cat, J. Neurophysiol 26:365–378.PubMedGoogle Scholar
  88. Thompson, W. D., Stoney, S. D., Jr., and Asanuma, H., 1970, Characteristics of projections from primary sensory cortex to motorsensory cortex in cats, Brain Res. 22:15–27.PubMedCrossRefGoogle Scholar
  89. von Bonin, G., and Bailey, P., 1947, The Neocortex of Macaca Mulatta, University of Illinois Press, Urbana.Google Scholar
  90. Waters, R. S., Favorov, O., and Asanuma, H., 1982, Physiological properties and pattern of projection of cortico-cortical connections from the anterior bank of the ansate sulcus to the motor cortex, area 4 gamma, in the cat, Exp. Brain Res. 46:403–412.PubMedCrossRefGoogle Scholar
  91. Weinrich, M., and Wise, S. P., 1982, The premotor cortex of the monkey, J. Neurosci. 2:1329–1345.PubMedGoogle Scholar
  92. White, E. L., and Hersch, S. M., 1981, Thalamocortical synapses of pyramidal cells which project from S to Msl cortex in the mouse, J. Comp. Neurol. 198:167–181.PubMedCrossRefGoogle Scholar
  93. White, E. L., and Hersch, S. M., 1982, A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse S cortex, J. Neu- rocytol. 11:137–157.Google Scholar
  94. Wiesendanger, M., 1981, Organization of secondary motor areas of cerebral cortex, in: Handbook of Physiology, Section I, Volume II, Part II (V. B. Brooks, ed.), American Physiological Society, Bethesda, pp. 1121–1147.Google Scholar
  95. Wiesendanger, M., Seguin, J. J., and Künzle, H., 1973, The supplementary motor area—A control system for posture? in: Control of Posture and Locomotion (R. B. Stein, K. G. Pearson, R. S. Smith, and J. B. Redford, eds.), Plenum Press, New York, pp. 331–346.Google Scholar
  96. Wiesendanger, M., Rüegg, D. G., and Lucier, G. E., 1975, Why transcortical reflexes?, Can. J. Neurol. Sci. 2:295–301.PubMedGoogle Scholar
  97. Wise, S. P., and Strick, P. L., 1984, Anatomical and physiological organization of the non-primary motor cortex, Trends Neurosci. 7:442–446.CrossRefGoogle Scholar
  98. Wise, S. P., and Tanji, J., 1981, Supplementary and precentral motor cortex: Contrast in responsiveness to peripheral input in the hindlimb area of the unanesthetized monkey, J. Comp. Neurol. 195:433–451.PubMedCrossRefGoogle Scholar
  99. Zarzecki, P., and Asanuma, H., 1979, Proprioceptive influences on somatosensory and motor cortex, Prog. Brain Res. 50:113–119.PubMedCrossRefGoogle Scholar
  100. Zarzecki, P., and Wiggin, D. M., 1982, Convergence of sensory inputs upon projection neurons of somatosensory cortex, Exp. Brain Res. 48:28–42.PubMedCrossRefGoogle Scholar
  101. Zarzecki, P., Shinoda, Y., and Asanuma, H., 1978a, Projection from area 3a to the motor cortex by neurons activated from group I muscle afferents, Exp. Brain Res. 33:269–282.PubMedCrossRefGoogle Scholar
  102. Zarzecki, P., Strick, P. L., and Asanuma H., 1978b, Input to primate motor cortex from posterior parietal cortex (area 5). II. Identification by antidromic activation, Brain Res. 157:331–335.PubMedCrossRefGoogle Scholar
  103. Zarzecki, P., Blum, P. S., Bakker, D. A., and Herman, D., 1983, Convergence of sensory inputs upon projection neurons of somatosensory cortex: Vestibular, neck, head and forelimb inputs, Exp. Brain Res. 50:408–414.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Peter Zarzecki
    • 1
  1. 1.Department of PhysiologyQueen’s UniversityKingstonCanada

Personalised recommendations