Molecular Basis for Teratocarcinoma Cell-Cell Adhesion

  • Masatoshi Takeichi
Part of the Developmental Biology book series (DEBO, volume 2)


Cell-cell interactions are essential for many developmental systems. Molecules responsible for joining cells presumably play important roles in cellular interaction—not only by providing bridges between cells but also by functioning as a key factor for cell-cell recognition and for other cellular processes. Characterizing cell adhesion molecules is therefore of great interest in elucidating the molecular nature of various cell-cell interacting systems.


Cell Adhesion Molecule Inner Cell Mass Embryonal Carcinoma Cell Teratocarcinoma Cell Tryptic Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brackenbury, R., Rutishauser, U., and Edelman, G. M., 1981, Distinct calcium-independent and dependent adhesion systems of chicken embryo cells, Proc. Natl. Acad. Sci. USA 78: 387–391.PubMedCrossRefGoogle Scholar
  2. Damsky, C. H., Knudsen, K. A., Dorio, R. J., and Buck, C. A., 1981, Manipulation of cell-cell and cell-substratum interactions in mouse mammary tumor epithelial cells using broad spectrum antisera, J. Cell Biol. 89: 173–184.PubMedCrossRefGoogle Scholar
  3. Damsky, C. H., Richa, C., Solter, D., Knudsen, K., and Buck, C. A., 1983, Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissues, Cell 34: 455–456.PubMedCrossRefGoogle Scholar
  4. Ducibella, T., 1980 Divalent antibodies to mouse embryonal carcinoma cells inhibit compaction in the mouse embryos, Dev. Biol. 79: 356–366.PubMedCrossRefGoogle Scholar
  5. Edelman, G. M., 1983, Cell adhesion molecules, Science 219: 450–457.PubMedCrossRefGoogle Scholar
  6. Edelman, G. M., Gallin, W. J., Delouvee, A., Cunningham, B. A., and Thiery, J.-P., 1983, Early epochal maps of two different cell adhesion molecules, Proc. Natl. Acad. Sci. USA 80: 4384–4388.PubMedCrossRefGoogle Scholar
  7. Gallin, W. J., Edelman, G. M., and Cunningham, B. A., 1983, Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells, Proc. Natl. Acad. Sci. USA 80: 1038–1042.PubMedCrossRefGoogle Scholar
  8. Grabel, L. B., Rosen, S., and Martin, G. R., 1979, Teratocarcinoma stem cells have a cell surface carbohydrate-binding component implicated in cell-cell adhesion, Cell 17: 477–483.PubMedCrossRefGoogle Scholar
  9. Grabel, L. B., Singer, M. S., Martin, G. R., and Rosen, S. D., 1983, Teratocarcinoma stem cell adhesion: The role of divalent cations and a cell surface lectin, J. Cell Biol. 96: 1532–1537.PubMedCrossRefGoogle Scholar
  10. Grunwald, G. B., Pratt, R. S., and Lilien, J. 1982, Enzymic dissection of embryonic cell adhesive Teratocarcinoma Cell-Cell Adhesion mechanisms. III. Immunological identification of a component of the calcium-dependent ad-hesive system of embryonic chick neural retina cells, J. Cell Sci. 55: 69–83.PubMedGoogle Scholar
  11. Handyside, A. H., 1980, Distribution of antibody- and lectin-binding sites on dissociated blasto- meres from mouse morulae: Evidence for polarization at compaction, J. Embryol. Ex p. Morphol. 60: 99–116.Google Scholar
  12. Hatta, K., Okada, T. S., and Takeichi, M., 1985, A monoclonal antibody disrupting calcium-depen¬dent cell-cell adhesion of brain tissues: Possible role of its target antigen in animal pattern formation, Proc. Natl. Acad. Sci. USA 82: 2789–2793.PubMedCrossRefGoogle Scholar
  13. Hillman, N., Sherman, M. I., and Graham, C. F., 1972, The effect of spatial arrangement on cell determination during mouse development, J. Embryol. Exp. Morphol. 28: 263–278.PubMedGoogle Scholar
  14. Hyafil, F., Morello, D., Babinet, C., and Jacob, F., 1980, A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos, Cell 21: 927–934.PubMedCrossRefGoogle Scholar
  15. Hyafil, F., Babinet, C., and Jacob, F., 1981, Cell-cell interactions in early embryogenesis: A molecular approach to the role of calcium, Cell 26: 447–454.PubMedCrossRefGoogle Scholar
  16. Imhof, B. A., Vollmers, H. P., Goodman, S. L., and Birchmeier, W., 1983, Cell-cell interaction and polarity of epithelial cells: Specific perturbation using a monoclonal antibody, Cell 35: 667–675.PubMedCrossRefGoogle Scholar
  17. Johnson, M. H., Chakraborty, J., Handyside, A. H., Willison, K., and Stern, P., 1979, The effect of prolonged decompaction on the development of the preimplantation mouse embryo, J. Embryol. Exp. Morphol. 54: 241–261.PubMedGoogle Scholar
  18. Johnson, M. H., and Ziomek, C. A., 1981a, Induction of polarity in mouse 8-cell blastomeres: Specificity, geometry, and stability, J. Cell Biol. 91: 303–308.PubMedCrossRefGoogle Scholar
  19. Johnson, M. H., and Ziomek, C. A., 1981b, The foundation of two distinct cell lineages within the mouse morula, Cell 24: 71–80.PubMedCrossRefGoogle Scholar
  20. Kemler, R., Babinet, C., Eisen, H., and Jacob, F., 1977, Surface antigen in early differentiation, Proc. Natl. Acad. Sci. USA 74: 4449–4452.PubMedCrossRefGoogle Scholar
  21. Knudsen, K. A., Rao, P. E., Damsky, C. H., and Buck, C. A., 1981, Membrane glycoprotein involved in cell-substratum adhesion, Proc. Natl. Acad. Sci. USA 78: 6071–6075.PubMedCrossRefGoogle Scholar
  22. Lilien, J., Hermolin, J., Lipke, P., 1978, Molecular interactions in specific cell adhesion, in: Specificity of Embryological Interactions ( D. R. Garrod, ed.), pp. 133–155, Chapman and Hall, London.Google Scholar
  23. Mintz, B., 1965, Experimental genetic mosaicism in the mouse, in: Preimplantation Stages of Pregnancy ( G. W. Wolstenholme and M. O’Connor, eds.), pp. 194–207, J and A Churchill, London.Google Scholar
  24. Miiller, K., Gerisch, G., 1978, A specific glycoprotein as the target site of adhesion blocking Fab in aggregating Dictyostelium cells, Nature (Lond.) 274: 445–449.CrossRefGoogle Scholar
  25. Nicolas, J., Kemler, R., and Jacob, F., 1981, Effects of antiembryonal carcinoma serum on aggregation and metabolic cooperation between teratocarcinoma cells, Dev. Biol. 81: 127–132.PubMedCrossRefGoogle Scholar
  26. Oesch, B., Birchmeier, W., 1982, New surface component of fibroblast’s focal contacts identi-fied by a monoclonal antibody, Cell 31: 671–679.PubMedCrossRefGoogle Scholar
  27. Ogou, S., Okada, T. S., Takeichi, M., 1982, Cleavage stage mouse embryos share a common cell adhesion system with teratocarcinoma cells, Dev. Biol. 92: 521-528.PubMedCrossRefGoogle Scholar
  28. Ogou, S., Yoshida-Noro, C., and Takeichi, M., 1983, Calcium-dependent cell-cell adhesion mole-cules common to hepatocytes and teratocarcinoma stem cells, J. Cell Biol. 97:944v948.PubMedCrossRefGoogle Scholar
  29. Oppenheimer, S. B., 1975, Functional involvement of specific carbohydrate in teratocarcinoma cell adhesion factor, Exp. Cell Res. 92: 122–126.PubMedCrossRefGoogle Scholar
  30. Oppenheimer, S. B., and Humphreys, T., 1971, Isolation of specific macromolecules required for adhesion of mouse tumor cells, Nature (Lond.) 232: 125–127.CrossRefGoogle Scholar
  31. Peyrieras, N., Hyafil, F., Louvard, D., Ploegh, H. L., and Jacob, F., 1983, Uvomorulin: A nonintegral membrane protein of early mouse embryo, Proc. Natl. Acad. Sci. USA 80: 6274–6277.PubMedCrossRefGoogle Scholar
  32. Shirayoshi, Y., Okada, T. S., and Okada, T. S., 1983, The calcium-dependent cell-cell adhesion system regulates inner cell mass formation and cell surface polarization in early mouse development, Cell 35: 631–638.PubMedCrossRefGoogle Scholar
  33. Spiegel, M., 1954a, The role of specific surface antigens in cell adhesion. Part I. The reaggregation of sponge cells, Biol. Bull. 107: 130–148.CrossRefGoogle Scholar
  34. Spiegel, M., 1954b, The role of specific surface antigens in cell adhesion. Part II. Studies on embryonic amphibian cells, Biol. Bull. 107: 149–155.CrossRefGoogle Scholar
  35. Takeichi, M., 1977, Functional correlation between cell adhesive properties and some cell surface proteins, J. Cell Biol. 75: 464–474.PubMedCrossRefGoogle Scholar
  36. Takeichi, M., Ozaki, H. S., Tokunaga, K., and Okada, T. S., 1979, Experimental manipulation of cell surface to affect cellular recognition mechanisms, Dev. Biol. 70: 195–205.PubMedCrossRefGoogle Scholar
  37. Takeichi, M., Atsumi, T., Yoshida, C., Uno, K., and Okada, T. S., 1981, Selective adhesion of embryonal carcinoma cells and differentiated cells by Ca2+-dependent sites, Dev. Biol. 87: 340–350.PubMedCrossRefGoogle Scholar
  38. Takeichi, M., Atsumi, T., Yoshida, C., and Ogou, S., 1982, Molecular approaches to cell-cell recognition mechanisms in mammalian embryos, in: Teratocarcinoma and Embryonic Cell Interactions ( T. Muramatsu, G. Gachelin, A. A. Mossona, and Y. Ikawa, eds.), pp. 283–293, Japan Scientific Societies Press, Tokyo.Google Scholar
  39. Tarkowski, A. K., and Wroblewska, J., 1967, Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage, J. Embryol. Exp. Morphol. 18: 155–180.PubMedGoogle Scholar
  40. Turner, R. S., 1978, Sponge cell adhesions, in: Specificity of Embryological Interactions ( D. R. Garrod, ed.), pp. 202–231, Chapman and Hall, London.Google Scholar
  41. Urushihara, H., and Takeichi, M., 1980, Cell-cell adhesion molecule: Identification of a glycopro¬tein relevant to the Ca2 + -independent aggregation of Chinese hamster fibroblasts, Cell 20: 363–371.PubMedCrossRefGoogle Scholar
  42. Urushihara, H., Ozaki, H. S., and Takeichi, M., 1979, Immunological detection of cell surface components related with aggregation of Chinese hamster and chick embryonic cells, Dev. Biol. 70: 206–216.PubMedCrossRefGoogle Scholar
  43. Vestweber, D., and Kemler, R., 1984, Rabbit antiserum against a purified surface glycoprotein decompacts mouse preimplantation embryos and react with specific adult tissues, Exp. Cell Res. 152: 169–178.PubMedCrossRefGoogle Scholar
  44. Yoshida, C., and Takeichi, M., 1982, Teratocarcinoma cell adhesion: Identification of a cell surface protein involved in calcium-dependent cell aggregation, Cell 28: 217–224.PubMedCrossRefGoogle Scholar
  45. Yoshida-Noro, C., Suzuki, N., and Takeichi, M., 1984, Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody, Dev. Biol. 101: 19–27.PubMedCrossRefGoogle Scholar
  46. Ziomek, C. A., and Johnson, M. H., 1980, Cell surface interaction induces polarization of mouse 8- cell blastomeres at compaction, Cell 21: 935–942.PubMedCrossRefGoogle Scholar
  47. Ziomek, C. A., and Johnson, M. H., 1982, The roles of phenotype and position in guiding the fate of 16-cell mouse blastomeres, Dev. Biol. 91: 440–447.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Masatoshi Takeichi
    • 1
  1. 1.Department of BiophysicsKyoto UniversityKyotoJapan

Personalised recommendations