Skip to main content

The Cellular Basis of Amphibian Gastrulation

  • Chapter
Book cover The Cellular Basis of Morphogenesis

Part of the book series: Developmental Biology ((DEBO,volume 2))

Abstract

Amphibian gastrulation is a complex integration of local cellular behavior to produce a supracellular system that, in turn, constrains and organizes the behavior of individual cells. Such behavior has fascinated and challenged embryologists for over a hundred years and has also perplexed some of them to the point of thinking it not reducible to part-processes. These thoughts were expressed by Walter Vogt (translated in Spemann, 1938), who did more than anyone to characterize the early morphogenesis of amphibians:

It does not appear at all as if cells were walking in the sense, that single part movements were combining to form the movements of the masses; for even the most natural and plausible explanation by means of amoeboid moving of single cells fails utterly. We evidently have not the wandering of cells before us, but rather a passive obedience to a superior force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, P., 1965, Fine structure and morphogenetic movements in the gastrula of the treefrog, Hyla regilla, J. Cell Biol. 24: 95–116.

    PubMed  CAS  Google Scholar 

  • Balinsky, B. I., 1961, Ultrastructural mechanisms of gastrulation and neurulation, in: Symposium on Germ Cells and Development, pp. 550–563, Pallanza, Institut International d’Embryologie, and Fondazione, A. Baselli, Pallanza.

    Google Scholar 

  • Ballard, W., 1955, Cortical ingression during cleavage of amphibian eggs, studied by means of vital dyes, J. Exp. Zool. 129: 77–97.

    Google Scholar 

  • Ballard, W., 1976, Problems of gastrulation: Real and verbal, Bioscience 26: 36–39.

    Google Scholar 

  • Ballard, W., 1981, Morphogenetic movements and fate maps of vertebrates, Am. Zool. 21: 391–399.

    Google Scholar 

  • Ballard, W., and Ginsberg, A., 1980, Morphogenetic movements in acipenserid embryos, J. Exp. Zool. 213: 69–103.

    Google Scholar 

  • Bautzmann, H., 1933, Über Determinationsgrad und Wirkungsbezichungen der Randzonenteilanlagen (Chorda, Ursegmente Seitenplatten und Kopfdarmanlage) bei Urodelen und Anuren, Roux Arch. 128: 666–765.

    Google Scholar 

  • Bell, E., 1958, Removal of the surface coat with ultrasound, Anat. Rec. 131: 532.

    Google Scholar 

  • Bell, E., 1960, Some observations on the surface coat and intercellular matrix material of the amphibian ectoderm, Exp. Cell Res. 20: 378–383.

    PubMed  CAS  Google Scholar 

  • Beloussov, L. V., 1978, Formation and cellular structure of cross-lines in axial rudiments of the amphibian embryo, Soviet J. Dev. Biol. 9: 105–109. [Transl, from Ontogenez. 9:124–130.]

    Google Scholar 

  • Beloussov, L. V., 1980, The role of tensile fields and contact cell polarization in the morphogenesis of amphibian axial rudiments, Wilhelm Roux Arch. 188: 1–7.

    Google Scholar 

  • Beloussov, L. V., Dorfman, J. G., and Cherdantzev, V. G., 1975, Mechanical stresses and morphological patterns in amphibian embryos, J. Embryol. Exp. Morphol. 34: 559–574.

    PubMed  CAS  Google Scholar 

  • Bijtel, J. H., 1930, Beiträge zur Schwanzentwicklung der Amphibien, Anat. Anz. 71: 87–93.

    Google Scholar 

  • Bijtel, J. H., 1931, Über die Entwicklung des Schwanzes bei Amphibien, Wilhelm Roux Arch. Entwicklungsmech. Org. 125: 448–486.

    Google Scholar 

  • Bijtel, J. H., 1958, The mode of growth of the tail in urodele larvae, J. Embryol. Exp. Morphol. 6: 466–460.

    PubMed  CAS  Google Scholar 

  • Black, S., and Gerhart, J., 1985, Experimental control of the site of embryonic axis formation in Xenopus Laevis eggs centrifuged before first cleavage, Dev. Biol. 108: 310–324.

    PubMed  CAS  Google Scholar 

  • Black, S., and Gerhart, J., 1985, Experimental control of the site of embryonic axis formation in Xenopus Laevis eggs centrifuged before first cleavage, Dev. Biol. 108: 310–324.

    PubMed  CAS  Google Scholar 

  • Bluemink, J. G., Tertoolen, L. G. J., Ververgaert, P. H. J., and Verkleij, A. J., 1976, Freeze-fracture electron microscopy of preexisting and nascent cell membrane in cleaving eggs of Xenopus laevis, Biochim. Biophys. Acta 443: 143–155.

    PubMed  CAS  Google Scholar 

  • Bluemink, J. G., and deLaat, S. W., 1973, New membrane formation during cytokinesis in normal and cytochalasin-B treated eggs of Xenopus laevis. I. Electron microscopic observations. J. Cell Biol. 59: 89–108.

    PubMed  CAS  Google Scholar 

  • Bluemink, J. G., and deLaat, S. W., 1977, Plasma membrane assembly as related to cell division, in: The Synthesis, Assembly, and Turnover of Cell Surface Components ( G. Poste and G. L. Nicolson, eds.), pp. 403–461, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Boell, E. J., 1956, Energy exchange and enzyme development during embryogenesis, in: Analysis of Development ( B. H. Willier, P. Weiss, and V. Hamburger, eds.), pp. 520–555, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Boucaut, J.-C., 1974, Étude autoradiographique de la distribution de cellules embryonnaires isolées, transplantées dans le blastocoele chez Pleurodeles waltlii Michah (Amphibien, Urodele), Ann. D’Embryol. Morphol. 7: 7–50.

    Google Scholar 

  • Boucaut, J.-C., and Darriberre, T., 1983, Presence of fibronectin during early embryogenesis in amphibian Pleurodeles waltii, Cell Diff. 12: 77–83.

    CAS  Google Scholar 

  • Boucaut, J.-C., Darribere, T., Boulekbache, H. and Thierry, J.-P., 1984a, Antibodies to fibronectin prevent gastrulation but do not perturb neurulation in gastrulated amphibian embryos, Nature (Lond.) 307: 364–367.

    CAS  Google Scholar 

  • Boucaut, J.-C., Darribere, T., Poole, T. J., Aoyama, H., Yamada, K. M., and Thiery, J. P., 1984b, Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin functions inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos, J. Cell Biol. 99: 1822–1830.

    PubMed  CAS  Google Scholar 

  • Brachet, A., 1903, Rechérches sur l’ontogénèse des Amphibiens, Urodeles et Anoures (Siredon piciformis, Rana temporaria), Arch. Biol. 20: 1–243.

    Google Scholar 

  • Bragg, A. N., 1938, The organization of the early embryo of Bufo cognatus as revealed especially by the mitotic index, Z. Zellforsch. Mikrosk. Anat. 28: 154–178.

    Google Scholar 

  • Brick, I., Schaeffer, B. E., Schaeffer, H. E., and Gennaro, J. F., Jr., 1974, Electrokinetic properties and morphological characteristics of amphibian gastrula cells, Ann. N.Y. Acad. Sci. 238: 390–407.

    PubMed  CAS  Google Scholar 

  • Briggs, R., 1939, Changes in the density of the frog embryo (Rana pipiens) during development, J. Cell Comp. Physiol. 13: 77–98.

    CAS  Google Scholar 

  • Brun, R., and Garson, J., 1984, Notochord formation in the Mexican salamander (Ambystoma mexicanum) is different from notochord formation in Xenopus laevis, J. Exp. Zool. 229: 235–240.

    Google Scholar 

  • Buytendijk, F. J. J., and Woerdeman,M.W., 1927, Die physicochemischen Erscheinungen während der Entwicklung, Arch. Entwicklungsmech. Org. 112: 387–410.

    Google Scholar 

  • Campanella, C., and Gabbiani, G., 1980, Cytoskeletal and contractile proteins in coelomic oocytes, unfertilized, and fertilized eggs of Discoglossus pictus (Anura), Gamete Res. 3: 99–114.

    CAS  Google Scholar 

  • Chen, W.-T., and Singer, S. J., 1980, Fibronectin is not present in focal adhesions between normal and cultured fibroblasts and their substrata, Proc. Natl. Acad. Sci. USA 77: 7318–7322.

    PubMed  CAS  Google Scholar 

  • Chuang, H. H., 1947, Defekt- und Vitalfarungsversuche zur Analyse der Entwicklung der kaudelen Rumpfabschnitte und des Schwanzes bei Urodelen, Roux Arch. 143: 19–125.

    Google Scholar 

  • Clark, T. G., and Merriam, R. W., 1978, Actin in Xenopus oocytes. I. Polymerization and gelation in vitro, J. Cell Biol. 77: 427–438.

    PubMed  CAS  Google Scholar 

  • Columbo, R., Benedusi, P., and Valle, G., 1980, Actin in Xenopus development: Indirect immunofluorescence study of actin localization, Differentiation 20: 45–51.

    Google Scholar 

  • Cooke, J., 1972a, Properties of the primary organization field in the embryo of Xenopus laevis. I. Autonomy of cell behavior at the site of initial organizer formation, J. Embryol. Exp. Morphol. 28: 13–26.

    PubMed  CAS  Google Scholar 

  • Cooke, J., 1972b, Properties of the primary organization field in the embryo of Xenopus laevis. II. Positional information for axial organization in embryos with two head organizers, J. Embryol. Exp. Morphol. 28: 27–46.

    PubMed  CAS  Google Scholar 

  • Cooke, J., 1972c, Properties of the primary organization field in the embryo of Xenopus Jaevis. III. Retention of polarity in cell groups excised from the region of the early organizer, J. EmbryoJ. Exp. Morphol. 28: 47–56.

    CAS  Google Scholar 

  • Cooke, J., 1973a, Properties of the primary organization field in the embryo of Xenopus laevis. IV. Pattern formation and regulation following early inhibition of mitosis, J. Embryol. Exp. Morphol. 30: 49–62.

    PubMed  CAS  Google Scholar 

  • Cooke, J., 1973b, Properties of the primary organization field in the embryo of Xenopus laevis. V. Regulation after removal of the head organizer in normal early gastrulae and in those already possessing a second implanted organizer, J. Embryol. Exp. Morphol. 30: 283–300.

    PubMed  CAS  Google Scholar 

  • Cooke, J., 1975, Local autonomy of gastrulation movements after dorsal lip removal in two anuran amphibians, J. EmbryoJ. Exp. Morphol. 33: 147–157.

    CAS  Google Scholar 

  • Cooke, J., 1979a, Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. I. The cell cycle during new pattern formation in response to implanted organizers, J. Embryol. Exp. Morphol. 51: 165–182.

    PubMed  CAS  Google Scholar 

  • Cooke, J., 1979b, Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. II. Sequential cell recruitment and control of the cell cycle, during mesoderm formation, J. Embryol. Exp. Morphol. 53: 269–289.

    PubMed  CAS  Google Scholar 

  • Curtis, A. S. G., 1978, Cell positioning, in: Receptors and Recognition, Vol. 4, Ser. B, Specificity of Embryological Interactions ( D. R. Garrod, ed.) pp. 159–195, Chapman and Hall, London.

    Google Scholar 

  • Daniel, J. F., and Yarwood, E., 1939, The early embryology of Triturus torosus, Univ. Calif. Publ. Zool. 43: 321–356.

    Google Scholar 

  • Davis, G., 1984, Migration-directing liquid properties of embryonic amphibian tissues, Am. Zool. 24: 649–655.

    Google Scholar 

  • Decker, R. S., 1981, Disassembly of the zonula occludens during amphibian neurulation, Dev. Biol. 81: 12–22.

    PubMed  CAS  Google Scholar 

  • Decker, R. S., and Friend, D. S., 1974, Assembly of gap junctions during amphibian neurulation, J. Cell Biol. 62: 32–47.

    PubMed  CAS  Google Scholar 

  • deLaat, S. W., and Barts, P. W. J. A., 1976, New membrane formation and intercellular communication in the early Xenopus embryo. II. Theoretical analysis, J. Membr. Biol. 27: 131–151.

    CAS  Google Scholar 

  • deLaat, S. W., Barts, P. W. J. A., and Bakker, M. I., 1976, New membrane formation and intercellular communication in the early Xenopus embryo. I. Electrophysiological analysis, J. Membr. Biol. 27: 109–129.

    CAS  Google Scholar 

  • del Pino, E., and Elinson, R., 1983, A novel development pattern for frogs: Gastrulation produces an embryonic disk, Nature (Lond.) 306: 589–591.

    Google Scholar 

  • del Pino, E., and Escobar, B., 1981, Embryonic stages of Gastrotheca riobambae (Fowler) during maternal incubation and comparison of development with that of the egg-brooding hylid frogs, J. Morphol. 167: 277–295.

    PubMed  Google Scholar 

  • del Pino, E., and Humphries, A. A., Jr., 1978, Multiple nuclei during early oogenesis in Flectonotus pygmaeus and other marsupial frogs, Biol. Bull. 154: 198–212.

    Google Scholar 

  • Detlaff, T. A., 1983, A study of the properties, morphogenetic potencies and prospective fate of outer and inner layers of ectodermal and chrodamesodermal regions during gastrulation, in various Anuran amphibians, J. Embryol. Exp. Morphol. 75: 67–86.

    Google Scholar 

  • DiCaprio, R. A., French, A. S., and Sanders, E. J., 1974, Dynamic properties of electrotonic coupling between cells of early Xenopus embryos, Biophys. J. 14: 387–411.

    PubMed  CAS  Google Scholar 

  • Dictus, W. J. A. G., van Zoelen, E. J. J., Tetteroo, P. A. J., Tertoolen, L. G. J., DeLaat, S. W., and Bluemink, J. G., 1984, Lateral mobility of plasma membrane lipids in Xenopus eggs; regional differences related to animal/vegetal polarity become extreme upon fertilization, Dev. Biol. 101: 201–211.

    PubMed  CAS  Google Scholar 

  • Dorfman, Ya., and Cherdantsev, V. G., 1977a, Structure of morphogenetic movements of gastrulation in anuran amphibians. Communication I. Destabilization of ooplasmatic segregation and subdivision under the influence of clinostat rotation, Soviet J. Dev. Biol. 8: 201–210.

    Google Scholar 

  • Dorfman, Ya., and Cherdantsev, V. G., 1977b, Structure of morphogenetic movements of gastrulation in anuran amphibians. Communication II. Elementary morphogenetic processes, Soviet J. Dev. Biol. 8: 211–219.

    Google Scholar 

  • Doucet-de Bruine, M. H. M., 1973, Blastopore formation in Ambystoma mexicanum, Wilhelm Boux Arch. 173: 136–163.

    Google Scholar 

  • Eakin, R., 1933, Regulatory development in Triturus torosus (Rathke), Univ. Calif. Publ. Zool. 39: 191–200.

    Google Scholar 

  • Eakin, R., 1939, Further studies in regulatory development of Triturus torosus, Univ. Calif. Publ. Zool. 43: 185–209.

    Google Scholar 

  • Elinson, R., 1975, Isozymes and morphology of five amphibian hybrid embryo combinations which develop beyond gastrulation, Can. J. Zool. 53: 993–1003.

    PubMed  CAS  Google Scholar 

  • Elinson, R., 1980, The amphibian egg cortex in fertilization and early development, Symp. Soc. Dev. Biol. 38: 217–234.

    Google Scholar 

  • Ellinson, R., 1984, Cytoplasmic phases in the first cleavage cycle of the activated frog egg, Dev. Biol. 100: 440–451.

    Google Scholar 

  • Ettensohn, C., 1984a, Primary invagination of the vegetal plate during sea urchin gastrulation, Am. Zool. 24: 571–588.

    Google Scholar 

  • Ettensohn, C., 1984b, An analysis of invagination during sea urchin gastrulation, Ph.D. thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Eycleshymer, A. C., 1895, The early development of Ambystoma, with observations on some other vertebrates, J. Morphol. 10: 343–418.

    Google Scholar 

  • Ezzell, R., Brothers, A. J., and Cande, W. Z., 1984, Phosphorylation-dependent contraction of actomyosin gels from amphibian eggs, Nature (Lond.) 306: 620–622.

    Google Scholar 

  • Fankhauser, G., 1948, The organization of the amphibian egg during fertilization and cleavage, Ann. N.Y. Acad. Sci. 49: 684–702.

    PubMed  CAS  Google Scholar 

  • Franke, W. W., Rathke, P. C., Sieb, E., Trendelenburg, M. F., Osborn, M., and Weber, K., 1976, Distribution and mode of arrangement of microfilamentous structures and actin in the cortex of the amphibian oocyte, Cytobiologie 14: 111–130.

    PubMed  CAS  Google Scholar 

  • Franz, J. K., Gall, L., Williams, M., Picheral, B., and Franke, W., 1983, Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frog Xenopus, Proc. Natl. Acad. Sci. USA 80: 6254–6258.

    PubMed  CAS  Google Scholar 

  • Fristrom, D., 1976, The mechanism of evagination of imaginal discs of Drosphila melanogaster. III. Evidence for cell rearrangement, Dev. Biol. 54: 163–171.

    PubMed  CAS  Google Scholar 

  • Fristrom, D., and Chihara, C., 1978, The mechanism of evagination of imaginal discs of Drosophila melanogaster. V. Evagination of disc fragments, Dev. Biol. 66: 564–570.

    PubMed  CAS  Google Scholar 

  • Fristrom, D., 1982, Septate junctions in imaginal disks of Drosophila: A model for the redistribution of septa during cell rearrangement, J. Cell Biol. 94: 77–87.

    PubMed  CAS  Google Scholar 

  • Fristrom, D., and Rickoll, W., 1983, Morphogenesis of imaginal discs of Drosophila, in: Insect Ultrastructure. I. ( R. King and H. Akai, eds.), Plenum Press, New York.

    Google Scholar 

  • Fujinami, N., 1976, Studies on the mechanism of circus movement in dissociated cells of a teleost, Oryzias latipes: Fine structural observations, J. Cell Sci. 22: 133–147.

    PubMed  CAS  Google Scholar 

  • Gadenne, M., van Zoelen, E. J. J., Tencer, R., and deLaat, S. W., 1984, Increased rate of capping of Concanavalin A receptors during early Xenopus development is related to changes in protein and lipid mobility, Dev. Biol. 104: 461–468.

    PubMed  CAS  Google Scholar 

  • Gall, L., Picheral, B., and Gounon, P., 1983, Cytochemical evidence for the presence of intermediate filaments and microfilaments in the egg of Xenopus laevis, Biol. Cell 47: 331–342.

    CAS  Google Scholar 

  • Gerhart, J., 1980, Mechanisms regulating pattern formation in the amphibian egg and early embryo, in: Biological Regulation and Development, Vol. 2 ( R. Goldberger, ed.), pp. 133–316, Plenum Press, New York.

    Google Scholar 

  • Gerhart, J., Black, S., Gimlich, R., and Scharf, S., 1983a, Control of polarity in the amphibian egg, in: Time, Space, and Pattern in Embryonic Development ( W. Jeffery and R. Raff, eds.), pp. 261–286, Alan Liss, New York.

    Google Scholar 

  • Gerhart, J., Black, S., and Scharf, S., 1983b, Cellular and pancellular organization of the amphibian embryo, in: Modern Cell Biology, Vol. 2: Spatial Organization of Eukaryotic Cells ( R. McIntosh, ed.), pp. 403–508, Alan Liss, New York.

    Google Scholar 

  • Gillespie, J. I., 1983, The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos, J. Physiol. (Lond.) 344: 359–377.

    CAS  Google Scholar 

  • Gimlich, R., and Cooke, J., 1983, Cell lineage and the induction of second nervous systems in amphibian development, Nature (Lond.) 306: 471–473.

    CAS  Google Scholar 

  • Gimlich, R., and Gerhart, J., 1984, Early cellular interactions promote embryonic axis formation in Xenopus laevis, Dev. Biol. 104: 117–130.

    PubMed  CAS  Google Scholar 

  • Gingell, D., 1970, Contractile responses at the surface of an amphibian egg, J. Embryol. Exp. Morphol. 23: 583–609.

    PubMed  CAS  Google Scholar 

  • Goerttler, K., 1925a, Die Formbildung der Medullaranlage bei Urodelen, Sitzgsber. Ges. Morphol. Physiol. Munch. 36: 57–66.

    Google Scholar 

  • Goerttler, K., 1925b, Die Formbildung der Medullaranlage bei Urodelen, im Rahmen der Verscheiebungsvorgange von Keimbezirken wahrend der Gastrulation und als entwicklungs-physiologishes Problem, Roux Arch. 106: 503–541.

    Google Scholar 

  • Goerttler, K., 1926, Experimentell erqeugte “Spina bifida” und “Ringembryonenbildungen” und ihre Bedeutung für die Entwicklungsphysiologie der Urodeleneier, Z. Anat. Anz. Erg. 63: 75–80.

    Google Scholar 

  • Goodale, H. D., 1911a, On blastopore closure in amphibia, Anat. Anz. 38: 275–279.

    Google Scholar 

  • Goodale, H. D., 1911b, The early development of SpeJerpes bilineatus (Green), Am. J. Anat. 12: 173–247.

    Google Scholar 

  • Graf, L., and Gierer, A., 1980, Size, shape and orientation of cells in budding hydra and regulation of regeneration in cell aggregates, Wilhelm Roux Arch. Dev. Biol. 188: 141–151.

    Google Scholar 

  • Grant, P., and Wacaster, J. F., 1972, The amphibian grey crescent—A site of developmental informa¬tion?, Dev. Biol. 28: 454–471.

    PubMed  CAS  Google Scholar 

  • Gregg, J. R., 1957, Morphogenesis and metabolism of gastrula-arrested embryos of the hybrid Rana pipiens O x Rana sylvatica O, in: The Beginnings of Embryonic Development ( A. Tyler, A. C. von Borstel, and C. Metz, eds.) pp. 231–261, American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Gregg, J., and Klein, D., 1955, Morphogenetic movements of normal and gastrula-arrested hybrid amphibian tissues, Biol Bull. 109: 265–270.

    Google Scholar 

  • Gustafson, T., and Wolpert, L., 1967, Cellular movement and contact in sea urchin morphogenesis, Biol. Rev. 42: 442–498.

    PubMed  CAS  Google Scholar 

  • Hall, E. K., 1937, Regional differences in the action of the organization center, Wilhelm Roux Arch. Entwicklungsmech. Org. 135: 671–688.

    Google Scholar 

  • Hama, T., 1978, Dynamics of the organizer. B. New findings on the regionally and morphogenetic movement of the organizer, in: Organizer—A Milestone of a Half-century from Spemarnn ( O. Nakamura and S. Toivonen, eds.), pp. 71–92, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Hamburger, V., 1960, A Manual of Experimental Embryology, rev. ed., University of Chicago Press, Chicago.

    Google Scholar 

  • Hara, K., 1971, Cinematographic observation of “surface contraction waves” (SCW) during the early cleavage of axolotl eggs, Wilhelm Roux Arch. 167: 183–186.

    Google Scholar 

  • Hara, K., Tydeman, P., and Hengst, R. T. M., 1977, Cinematographic observation of “Post-Fertilization Waves” ( PFW) on the zygote of Xenopus laevis, Wilhelm Roux Arch. 181: 189–192.

    Google Scholar 

  • Hardin, J., and Keller, R. E., 1986, The role of bottle cells in gastrulation of Xenopus laevis, in preparation.

    Google Scholar 

  • Harris, T. M., 1964, Pregastrular mechanisms in the morphogenesis of the salamander Ambystoma maculatum, Dev. Riol. 10: 247–268.

    CAS  Google Scholar 

  • Harris, A., 1976, Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis, J. Theoret. Biol. 61: 267–285.

    CAS  Google Scholar 

  • Hatta, S., 1907, Gastrulation in Petromyzon, J. Colloq. Sci. Imp. Univ. Tokyo 21: 3–44.

    Google Scholar 

  • Hertwig, O. 1892, Urmund und Spina bifida. Eine vergleichend morphologische teratologishe Studie an missgebildeten Froscheieren, Arch. Mikrosk. Anat. 39: 353–505.

    Google Scholar 

  • Hilton, W. A., 1909, General features of the early development of Desmognathus fusca, J. Morphol. 20: 533–54 7.

    Google Scholar 

  • Hirose, G., and Jacobson, M., 1979, Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16 cell and earlier stages, Dev. Riol. 71: 191–202.

    CAS  Google Scholar 

  • Hollinger, T. G., and Schuetz, A. W., 1976, “Cleavage” and cortical granule breakdown in Rana pipiens oocytes induced by direct microinjection of calcium, J. Cell Riol. 71:395–401.

    CAS  Google Scholar 

  • Holmdahl, D. E., 1947, Das Verhalten des Entoderms und Hautektoderms bei der sekundaren Korperentwicklung, Anat. Anz. 96: 56–69.

    Google Scholar 

  • Holtfreter, J., 1929, Über die Aufzucht isolierter Teile des Amphibienkeimes, Arch. EntwickJungsmech. Org. 124: 404–466.

    Google Scholar 

  • Holtfreter, J., 1933a, Nicht typische Gestaltungsbewegungen, sondern Induktions vorgange Bedin¬gen die medulläre Entwicklung von Gastrulaektoderm, Arch. Entwicklungsmech. Org. 127: 591–618.

    Google Scholar 

  • Holtfreter, J., 1933b, Die totale Exogastrulation, eine Selbstablösung des Ektoderms von Entomesoderm, Arch. Entwicklungsmech. Org. 129: 669–793.

    Google Scholar 

  • Holtfreter, J., 1934, Formative Reize in der Embryonalentwicklung der Amphibien, dargestellt an Explantationsversuchen, Arch. Exp. Zellforsch. 15: 281–301.

    Google Scholar 

  • Holtfreter, J., 1938a, Differenzierungspotenzen isolierter Teile der Urodeleangastrula, Wilhelm Roux Arch. 138: 522–656.

    Google Scholar 

  • Holtfreter,)., 1938b, Differenzierungspotenzen isolierter Teile der Anurengastrula, Wilhelm Roux Arch. 138: 657 - 738.

    Google Scholar 

  • Holtfreter, J., 1939, Gewebeaffinität, ein Mittel der embryonalen Formbildung, Arch. Exp. Zellforsch. Besonders Geweb. 23: 169–209.

    Google Scholar 

  • Holtfreter, J., 1943a, Properties and function of the surface coat in amphibian embryos, J. Exp. Zool. 93: 251–323.

    Google Scholar 

  • Holtfreter, J., 1943b, A study of the mechanics of gastrulation. Part I, J. Exp. Zool. 94:261–318. Holtfreter, J., 1943c, Experimental studies on the development of the pronephros, Rev. Can. Riol. 3: 220–249.

    Google Scholar 

  • Holtfreter, J., 1944, A study of the mechanics of gastrulation. Part II, J. Exp. Zool. 95: 171–212.

    Google Scholar 

  • Holtfreter, J., 1946a, Structure, motility and locomotion in isolated embryonic amphibian cells, J. Morphol. 72: 27–62.

    Google Scholar 

  • Holtfreter, J., 1946b, Experiments on the formed inclusions of the amphibian egg. I, J. Exp. Zool. 101: 355–405.

    PubMed  CAS  Google Scholar 

  • Holtfreter, J., 1946c, Experiments on the formed inclusions of the amphibian egg. II, J. Exp. Zool. 102: 51–108.

    PubMed  CAS  Google Scholar 

  • Holtfreter, J., 1946d, Experiments on the formed inclusions of the amphibian egg. III, J. Exp. Zool. 103: 81–112.

    PubMed  CAS  Google Scholar 

  • Holtfreter, J., 1947a, Observations on the migration, aggregation and phagocytosis of embryonic cells, J. Morphol. 80: 25–55.

    PubMed  CAS  Google Scholar 

  • Holtfreter, J., 1947b, Changes of structure and kinetics of differentiating embryonic cells, J. Morphol. 80: 57–92.

    PubMed  CAS  Google Scholar 

  • Holtfreter, J., 1948, The significance of the cell membrane in embryonic processes, Ann. N.Y. Acad. Sci. 49: 709–760.

    PubMed  CAS  Google Scholar 

  • Honda, H., Ogita, Y., Higuchi, S., and Kani, K., 1982, Cell movements in a living mammalian tissue: Long-term observation of individual cells in wounded corneal endothelia of cats, J. Morphol. 174: 25–39.

    PubMed  CAS  Google Scholar 

  • Horstadius, S., 1944, Uber die Folge von Chordaextirpation an spaten Gastrulae und Neurulae von Ambystoma punctatum, Acta Zool. Stockh. 25: 75–88.

    Google Scholar 

  • Ikedo, S., 1902, Contributions to the embryology of the amphibia: The mode of blastopore closure and the position of the embryonic body, J. Colloq. Sci. Imp. Univ. Tokyo 17: 82–90.

    Google Scholar 

  • Ikushima, N., 1958, Kinetic properties of the marginal zone of the amphibian egg in relation to the histological differentiation, Mem. Colloq. Sci. Univ. Kyoto 25: 145–160.

    Google Scholar 

  • Ikushima, N., 1959, The formation of two independent notochords in an explant taken from the dorsal blastoporal area of the early gastrula of Amphibia, Experientia 15: 475–476.

    PubMed  CAS  Google Scholar 

  • Ikushima, N., 1961, Formation of notochord in an explant derived from the dorsal marginal zone of the early gastrula of Amphibia, Jpn. J. Zool. 13: 117–140.

    Google Scholar 

  • Ikushima, N., and Maruyama, S., 1971, Structure and developmental tendency of the dorsal marginal zone in the early amphibian gastrula, J. Embryol. Exp. Morphol. 25: 263–276.

    PubMed  CAS  Google Scholar 

  • Ishikawa, C., 1905, The gastrulation of the gigantic salamander, Megalobatrachus maximus, Zool. Mag. Tokyo Zool. Soc. 17: 26–28.

    Google Scholar 

  • Jacobson, A., 1982, Morphogenesis of the neural plate and tube, in: Morphogenesis and Pattern Formation ( T. G. Connelly, L. Brinkley, and B. Carlson, eds.), pp. 223–263, Raven Press, New York.

    Google Scholar 

  • Jacobson, A., and Gordon, R., 1976, Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically, and by computer simulation, J. Exp. Zool. 197: 191–246.

    PubMed  CAS  Google Scholar 

  • Jenkinson, J. W., 1906, On the effect of certain solutions upon the development of the frog’s egg, Arch. Entwicklungsmech. Org. 21: 367–460.

    Google Scholar 

  • Johnson, K., 1969, Altered contact behavior of presumptive mesodermal cells from hybrid amphibian embryos arrested at gastrulation, J. Exp. Zool. 170: 325–332.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1970, The role of changes in cell contact behavior in amphibian gastrulation, J. Exp. Zool. 175: 391–428.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1972, The extent of cell contact and the relative frequency of small and large gaps between presumptive mesodermal cells in normal gastrulae of Rana pipiens and the arrested gastrulae of the Rana pipiens 9 x Rana catesbeiana 6 hybrid, J. Exp. Zool. 179: 227–238.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1976a, Ruffling and locomotion in Rana pipiens gastrula cells, Exp. Cell Res. 101: 71–77.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1976b, Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis, J. Cell Sci. 22: 575–583.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1977a, Changes in the cell coat at the onset of gastrulation in Xenopus laevis embryos, J. Exp. Zool. 199: 137–142.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1977b, Extracellular matrix synthesis in blastula and gastrula stages of normal and hybrid frog embryos. I. Toluidine blue and lanthanum staining, J. Cell Sci. 25: 313–322.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1977c, Extracellular matrix synthesis in blastula and gastrula stages of normal and hybrid frog embryos. II. Autoradiographic observations on the sites of synthesis and mode of transport of galactose- and glucosamine-labelled materials, J. Cell Sci. 25: 323–334.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1977d, Extracellular matrix synthesis in blastula and gastrula stages of normal and hybrid frog embryos. III. Characterization of gaslactose- and glucosamine-labelled materials. J. Cell Sci. 25: 335–356.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1978, Extracellular matrix synthesis in blastula and gastrula stages of normal and hybrid frog embryos. IV. Biochemical and autoradiographic observations on fucose-, glucose-, and mannose-labelled materials, J. Cell Sci. 32: 109–136.

    PubMed  CAS  Google Scholar 

  • Johnson, K., 1981, Normal frog gastrula extracellular materials serve as a substratum for normal and hybrid cell adhesion when covalently coupled with CNBr-activated Sepharose beads, Cell Diff. 10: 47–55.

    CAS  Google Scholar 

  • Johnson, K., and Adelman, M., 1981, Circus movements in dissociated cells in normal and hybrid frog embryos, J. Cell Sci. 49: 205–216.

    PubMed  CAS  Google Scholar 

  • Johnson, K., and Smith, E., 1976, The binding of concanavalin A to dissociated embryonic amphibian cells, Exp. Cell Res. 101: 63–70.

    PubMed  CAS  Google Scholar 

  • Johnson, K., and Smith, E., 1977, Lectin binding to dissociated cells from two species of Xenopus embryos, Cell Diff. 5: 301–309.

    CAS  Google Scholar 

  • Jordan, E. O., 1893, The habits and development of the newt (Diemyctylus viridescens), J. Morphol. 8: 269–366.

    Google Scholar 

  • Jumah, H., and Stanisstreet, M., 1980, Scanning electron microscopy of cells from Xenopus hybrid embryos, Acta Embryol. Morphol. Exp. 1: 129–135.

    PubMed  CAS  Google Scholar 

  • Kageura, H., and Yamana, K., 1983, Pattern regulation in isolated blastomeres of early Xenopus laevis, J. Embryol. Exp. Morphol. 74: 221–234.

    PubMed  CAS  Google Scholar 

  • Kageyama, T., 1982, Cellular basis of epiboly of the enveloping layer in the embryo of the medaka, Oryzias latipes. II. Evidence for cell rearrangement, J. Exp. Zool. 209: 241–256.

    Google Scholar 

  • Kageyama, T., and Sirakami, K., 1976, Circus movement in dissociated embryonic cells of amphibia, with special reference to velocity, Zoological Magazine (Dobutsugaku Zasshi) 85: 169–172.

    Google Scholar 

  • Kalt, M., 1971a, The relationship between cleavage and blastocoel formation in Xenopus laevis. I. Light microscopic observations, J. Embryol. Exp. Morphol. 26: 37–50.

    PubMed  CAS  Google Scholar 

  • Kalt, M., 1971b, The relationship between cleavage and blastocoel formation in Xenopus laevis. II. Electron microscopic observations, J. Embryol. Exp. Morphol. 26: 51–66.

    PubMed  CAS  Google Scholar 

  • Kaneda, T., and Hama, T., 1979, Studies on the formation and state of determination of the trunk organizer in the newt, Cynops pyrrhogaster, Wilhelm Roux Arch. 187: 25–34.

    Google Scholar 

  • Kaplan, R. H., 1980, The implications of ovum size variability for offspring fitness and clutch size within several populations of salamanders (Ambystoma), Evolution 34: 51–64.

    Google Scholar 

  • Karfunkel, P., 1977, SEM analysis of amphibian mesodermal migration, Wilhelm Roux Arch. 181: 31–40.

    Google Scholar 

  • Keller, R. E., 1975, Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer, Dev. Biol. 42: 222–241.

    PubMed  CAS  Google Scholar 

  • Keller, R. E., 1976, Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements in the deep region, Dev. Biol. 51: 118–137.

    PubMed  CAS  Google Scholar 

  • Keller, R. E., 1978, Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis, J. Morphol. 157: 223–248.

    Google Scholar 

  • Keller, R. E., 1980, The cellular basis of epiboly: An SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis, J. Embryol. Exp. Morphol. 60: 201–234.

    PubMed  CAS  Google Scholar 

  • Keller, R. E., 1981, An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis, J. Exp. Zool. 216: 81–101.

    PubMed  CAS  Google Scholar 

  • Keller, R. E., 1984, The cellular basis of gastrulation in Xenopus laevis: Active, postinvolution convergence and extension by mediolateral interdigitation, Am. Zool. 24: 589–603.

    Google Scholar 

  • Keller, R., Danilchik, M., Gimlich, R., and Shih, J., 1985, Convergent extension by cell intercalation during gastrulation of Xenopus laevis, in: Molecular Biology, New Series 31 ( G. M. Edelman, ed.), Alan R. Liss, New York.

    Google Scholar 

  • Keller, R. E., and Schoenwolf, G. C., 1977, An SEM study of cellular morphology, contact, and arrangement, as related to gastrulation in Xenopus laevis, Wilhelm Roux Arch. 182: 165–186.

    Google Scholar 

  • Keller, R. E., and Trinkaus, J. P., 1982, Cell rearrangement in a tightly-joined epithelial layer during Fundulus epiboly, J. Cell Biol. 95: 325a.

    Google Scholar 

  • King, H. D., 1902a, Experimental studies on the egg of Bufo lentiginosus, Arch. Entwicklungsmech. Org. 13: 545–564.

    Google Scholar 

  • King, H. D., 1902b, The gastrulation of the egg of Bufo lentiginosus, Am. Nat. 36: 527–548.

    Google Scholar 

  • King, H. D., 1903, The formation of the notochord in the amphibia, Biol. Bull. 4: 287–300.

    Google Scholar 

  • Kingsbury, B. J., 1924, The developmental significance of the notochord (Chorda dorsalis), Z. Morphol. Anthropol. 24: 59–73.

    Google Scholar 

  • Kirschner, M., Gerhart,]., Hara, K., and Ubbels, G., 1980, Initiation of the cell cycle and establishment of bilateral symmetry in Xenopus eggs, Symp. Soc. Dev. Biol. 38: 187.

    Google Scholar 

  • Kitchen, J. C., 1938, The effects of extirpation of the notochord undertaken at the medullary plate stage in Ambystoma mexicanum, Anat. Ree. 72: 34a.

    Google Scholar 

  • Kitchen, J. C., 1949, The effects of notochordectomy in Ambystoma mexicanum, J. Exp. Zool. 112: 393–415.

    Google Scholar 

  • Klag, J. J., and Ubbels, G., 1975, Regional morphological and cytochemical differentiation in the fertilized egg of Diseoglossus pictus (Anura), Differentiation 3: 15–20.

    Google Scholar 

  • Kubota, H., 1981, Creeping locomotion of the endodermal cells dissociated from gastrulae of the Japanese newt, Cynops pyrrhogaster, Exp. Cell Res. 133: 137–148.

    PubMed  CAS  Google Scholar 

  • Kubota, H., and Durston, A. J., 1978, Cinematographical study of cell migration in the opened gastrula of Ambystoma mexicanum, J. Embryol. Exp. Morphol. 44: 71–80.

    PubMed  CAS  Google Scholar 

  • Kühl, W., 1937, Untersuchungen über das Verhalten kunstlich getrennter Furchungszellen und Zellaggregate einiger Amphibienarten mit Hilfe des Zeitrafferfilms, Arch. Entwicklungsmech. Org. 136: 591–671.

    Google Scholar 

  • LeBlanc, J., and Brick, I., 1981a, Morphological aspects of adhesion and spreading behavior of amphibian blastula and gastrula cells, J. Embryol. Exp. Morphol. 61: 145–163.

    PubMed  CAS  Google Scholar 

  • LeBlanc, J., and Brick, I., 1981b, Calcium and spreading behaviour of amphibian blastula and gastrula cells, J. Embryol. Exp. Morphol. 64: 149–168.

    PubMed  CAS  Google Scholar 

  • Lee, G., Hynes, R. O., and Kirschner, M., 1982, Temporal and spatial expression of fibronectin in early Xenopus development, J. Cell Biol. 95: 135a.

    Google Scholar 

  • Lee, G., Hynes, R. O., and Kirschner, M., 1984, Temporal and spatial regulation of fibronectin in early Xenopus development, Cell 36: 729–740.

    PubMed  CAS  Google Scholar 

  • Lehman, F. E., 1932, Die Beteiligung von Implantats- und Wirtsgewebe bei der Gastrulation und Neurulation induzierter Embryonalanlagen, Arch. Entwicklungsmech. Org. 125: 566.

    Google Scholar 

  • Lehman, F. E., 1937, Mesodermisierung des presumptiven Chorda-materials durch Einwirkung von Lithiumchlorid auf die Gastrula von Triton alpestris, Wilhelm Roux Arch. 136: 111–146.

    Google Scholar 

  • Lehman, F. E., 1938, Regionale verschudenherten des Organizators von Triton, insbesondere in der vorderen und hintern Kopfregion, nachgewiesen durch phasen- Spezifishi Erzeugung von Lithiumbedingten und operativ Bewirkten Regionaldefekten, Roux Arch. 138: 106–158.

    Google Scholar 

  • Lehman, F. E., and Ris, H., 1938, Weitere Untersuchungen über die Entwicklung der Achsenorgene bei partiell chordalosen Tritonlarven, Rev. Suisse Zool. 45: 419–424.

    Google Scholar 

  • Lewis, W. H., 1947, Mechanics of invagination, Anat. Ree. 97: 139–156.

    CAS  Google Scholar 

  • Lewis, W. H., 1948, Mechanics of Ambystoma gastrulation, Anat. Ree. 101: 700.

    CAS  Google Scholar 

  • Lewis, W. H., 1952, Gastrulation of Ambystoma punetatum, Anat. Ree. 112: 473.

    Google Scholar 

  • Lillie, F. R., 1902, Differentiation without cleavage in the egg of the annelid Chaetopterus perga- mentaceus, Arch. Entwicklungsmech. Org. 14: 477–499.

    Google Scholar 

  • Lofberg, J., 1974, Apical surface topography of invaginating and noninvaginating cells. A scanning- transmission study of amphibian neurulae, Dev. Biol. 36: 311–329.

    PubMed  CAS  Google Scholar 

  • Løvtrup, S., 1966, Cell type distribution, germ layers, and fate maps, Acta Zool. 47: 209–276.

    Google Scholar 

  • Løvtrup, S., 1975, Fate maps and gastrulation in amphibia—A critique of current views, Can. J. Zool. 53: 473.

    PubMed  Google Scholar 

  • Luckenbill, L., 1971, Dense material associated with wound closure in the axolotl egg (Ambystoma mexicanum), Exp. Cell Res. 66: 263–267.

    PubMed  CAS  Google Scholar 

  • Luchinskaya, N. N., and Beloussov, L. V., 1977, Electron microscopic investigation of rapid mor- phogenetic processes in amphibian tissue explants, Soviet J. Dev. Biol. 8: 220–226.

    Google Scholar 

  • Lundmark, C., 1986, Role of bilateral zones of superficial mesodermal cell ingression during gas¬trulation of Ambystoma mexicanum, submitted for publication.

    Google Scholar 

  • Lundmark, C., Shih, J.,Tibbetts, P., and Keller, R., 1984, Amphibian gastrulation as seen by scanning electron microscopy, Scanning Electron Microscopy 111: 1289–1300.

    Google Scholar 

  • MacMurdo-Harris, H., and Zalik, S. E., 1970, Microelectrophoresis of early amphibian embryonic cells, Dev. Biol. 24: 335–347.

    Google Scholar 

  • Malacinski, G. M., Brothers, A. J., and Chung, H.-M., 1977, Destruction of components of the neural induction system of the amphibian egg with ultraviolet irradiation, Dev. Biol. 56: 24–39.

    PubMed  CAS  Google Scholar 

  • Malacinski, G., Ryan, B., and Chung, H.-M., 1978, Surface coat movements in unfertilized amphibian eggs, Differentiation 10: 101–107.

    Google Scholar 

  • Malacinski, G., and Youn, B.-W., 1981, Neural plate morphogenesis and axial stretching in “notochord defective” Xenopus laevis embryos, Dev. Biol. 88: 352–357.

    PubMed  CAS  Google Scholar 

  • Manes, E., and Elinson, R., 1980, Ultraviolet light inhibits grey crescent formation on the frog egg, Wilhelm Roux Arch. 189: 73–76.

    Google Scholar 

  • Mangold, O., 1920, Fragen der Regulation und Determination an umgeordneten Furchungsstadien und verschmolzenen Keimen von Triton, Roux Arch. 47: 250–301.

    Google Scholar 

  • Mangold, O., 1923, Transplantationsversuche zur Frage der Spezefitat und der Bildung der Keimblatter bei Triton, Arch. Mikrosk. Anat. Entwicklungsmech. Org. 100: 198–301.

    Google Scholar 

  • Meeusen, R. L., Bennet, J., and Cande, W. Z., 1980, Effect of microinjected N-ethylmaleimide- modified heavy meromyosin on cell division in amphibian eggs, J. Cell Biol. 86: 858–865.

    PubMed  CAS  Google Scholar 

  • Meeusen, R. L., Bennet,]., and Cande, W. Z., 1983, J. Cell Biol. 97: 1062–1071.

    Google Scholar 

  • Mookerjee, S., 1953, An experimental study of the development of the notochord, J. Embryol. Exp. Morphl. 1: 411–416.

    Google Scholar 

  • Mookerjee, S., Deuchar, E., and Waddington, C. H., 1953, The morphogenesis of the notochord in Amphibia, J. Embryol. Exp. Morphol. 1: 399–409.

    Google Scholar 

  • Monroy, A., Baccetti, B., and Denis-Donini, S., 1976, Morphological changes in the surface of the egg of Xenopus laevis in the course of development. III. Scanning electron microscopy of gastrulation, Dev. Biol. 59: 250–259.

    Google Scholar 

  • Moore, J. A., 1946, Development of frog hybrids. I. Embryonic development in the cross Rana pipiens O x Rana sylvatica O, J. Exp. Zool. 101: 173–219.

    PubMed  CAS  Google Scholar 

  • Moore, J. A., 1955, Abnormal combinations of nuclear and cytoplasmic systems in frogs and toads, Adv. Genet. 7: 139–182.

    PubMed  CAS  Google Scholar 

  • Moran, D., and Mouradian, W. E., 1975, A scanning electron microscopic study of the appearance and localization of cell surface material during amphibian gastrulation, Dev. Biol. 46: 422–429.

    PubMed  CAS  Google Scholar 

  • Morgan, T. H., 1897, The Development of the Frog’s Egg: An Introduction to Experimental Embryology, Macmillan, New York.

    Google Scholar 

  • Morgan, T. H., 1906a, Experiments with frog’s eggs, Biol. Bull. 11: 71–92.

    Google Scholar 

  • Morgan, T. H., 1906b, The origin of the organ-forming materials in the frog’s egg, Biol. Bull. 11:124– 136.

    Google Scholar 

  • Morrill, G. A., Kostellow, A. B., and Murphy, J. B., 1975, Role of Na +,K +-ATPase in early embryonic development, Ann. N.Y. Acad. Sci. 242: 543–559.

    Google Scholar 

  • Moscona, A., and Folkman, J., 1981, Role of cell shape in growth control, Nature (Lond.) 273:345– 349.

    Google Scholar 

  • Muchmore, W. B., 1951, Differentiation of the trunk mesoderm in Ambystoma maculatum, J. Exp. Zool. 118: 137–186.

    Google Scholar 

  • Nakamura, O., 1938, Tail formation in the urodele, Zool. Mag. Tokyo 50: 442–446.

    Google Scholar 

  • Nakamura, O., 1942, Die Entwicklung der hinteren Korperhalfte bei Urodelen, Annot. Zool. Jpn. 21: 169–235.

    Google Scholar 

  • Nakamura, O., 1947, Determination and differentiation in the development of the urodele tail, Exp. Morphol. 3: 169 (English summary).

    Google Scholar 

  • Nakamura, O., and Kishiyama, K., 1971, Prospective fates of blastomeres at the 32 cell stage of Xenopus laevis embryos, Proc. Jpn. Acad. 47: 407–412.

    Google Scholar 

  • Nakatsuji, N., 1974, Studies on the gastrulation of amphibian embryos; pseudopodia in the gastrula of Bufo bufo japonicus and their significance to gastrulation, J. Embryol. Exp. Morphol. 32: 795–804.

    PubMed  CAS  Google Scholar 

  • Natatsuji, N., 1975a, Studies on the gastrulation of amphibian embryos: Light and electron microscopic observations of a urodele Cynops pryyhogaster, J. Embryol. Exp. Morphol. 34: 669–685.

    Google Scholar 

  • Nakatsuji, N., 1975b, Studies on the gastrulation of amphibian embryos: Cell movement during gastrulation in Xenopus laevis embryos, Wilhelm Roux Arch. 178: 1–14.

    Google Scholar 

  • Nakatsuji, N., 1976, Studies on the gastrulation of amphibian embryos: Ultrastructure of the migrating cells of anurans, Wilhelm Roux Arch. 180: 229–240.

    Google Scholar 

  • Nakatsuji, N., 1979, Effects of injected inhibitors of microfilament and microtubule function on the gastrulation movements in Xenopus laevis, Dev. Biol. 68: 140–150.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N., 1984, Cell locomotion and contact guidance in amphibian gastrulation, Am. Zool. 24: 615–627.

    Google Scholar 

  • Nakatsuji, N., Gould, A. C., and Johnson, K., 1982, Movement and guidance of migrating mesodermal cells in Ambystoma maculatum gastrulae, J. Cell Sci. 56: 207–222.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N., and Johnson, K., 1982, Cell locomotion in vitro by Xenopus laevis gastrula mesodermal cells, Cell Motil. 2: 149–161.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N., and Johnson, K., 1983a, Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells, J. Cell Sci. 59: 43–60.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N., and Johnson, K., 1983b, Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species, J. Cell Sci. 59: 61–70.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N., and Johnson, K., 1984, Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension, Nature (Lond.) 307: 453–455.

    CAS  Google Scholar 

  • Newport, J., and Kirschner, M., 1982, A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage, Cell 30: 675–686.

    PubMed  CAS  Google Scholar 

  • Nicholas, J. S., 1945, Blastulation, its role in pregastrular organization in Ambystoma punctatum, J. Exp. Zool. 51: 159–184.

    Google Scholar 

  • Nieuwkoop, P., 1947, Experimental investigations on the origin and determination of the germ cells, and on the development of the lateral plates and germ ridges in urodeles, Arch. Neerl. Zool. 8: 1–205.

    Google Scholar 

  • Nieuwkoop, P., 1977, Origin and establishment of embryonic polar axes in amphibian development, Curr. Top. Dev. Biol. 11: 115.

    PubMed  CAS  Google Scholar 

  • Nieuwkoop, P., and Faber, J., 1967, Normal Table of Xenopus laevis (Daudin), 2nd ed., North- Holland, Amsterdam.

    Google Scholar 

  • Nieuwkoop, P., and Florshutz, P., 1950, Quelques caractères speciaux de la gastrulation et de la neurulation de l’oeuf de Xenopus laevis, Daud. et de quelques autres Anoures, 1’ère partie. Étude déscriptive, Arch. Biol. (Liège) 61: 113–150.

    Google Scholar 

  • O’Dell, D., Tencer, R., Monroy, A., and Brachet, J., 1974, The pattern of concanavalin A-binding sites during the early development of Xenopus laevis, Cell Diff. 3: 193–198.

    Google Scholar 

  • Palecek, J., Ubbels, G. A., and Rzehak, K., 1978, Changes of the external and internal pigment pattern upon fertilization in the egg of Xenopus laevis, J. Embryol. Exp. Morphol. 45: 203–214.

    PubMed  CAS  Google Scholar 

  • Pasteels, J., 1940, Un aperçu comparatif de la gastrulation chez les chordes, Biol. Rev. 15: 59–106.

    Google Scholar 

  • Pasteels, J., 1942, New observations concerning the maps of presumptive areas of the young amphibian gastrula (Ambystoma and Discoglossus), J. Exp. Zool. 89: 255–281.

    Google Scholar 

  • Perry, M., 1975, Microfilaments in the external surface layer of the early amphibian embryo, J. Embryol. Exp. Morphol. 32: 127–146.

    Google Scholar 

  • Perry, M., and Waddington, C. H., 1966, Ultrastructure of the blastoporal cells in the newt, J. Embryol. Exp. Morphol. 15: 317–330.

    PubMed  CAS  Google Scholar 

  • Phillips, H., 1984, Physical analysis of tissue mechanisms in amphibian gastrulation, Am. Zool. 24: 657–672.

    Google Scholar 

  • Phillips, H., and Davis, G. S., 1978, Liquid tissue mechanics in amphibian gastrulation: Germ-layer assembly in Rana pipiens, Am. Zool. 18: 81–93.

    Google Scholar 

  • Poole, T., and Steinberg, M., 1981, Amphibian pronephric duct morphogenesis; segregation, cell rearrangement and directed migration of the Ambystoma duct rudiment, J. Embryol. Exp. Morphol. 63: 1–16.

    PubMed  CAS  Google Scholar 

  • Rhumbler, L., 1902, Zur Mechanik des Gastrulationsvorganges, insbesondere der Invagination. Eine entwicklungsmechanishe Studie, Wilhelm Roux Arch. Entwickslungsmech. Org. 14:401– 476.

    Google Scholar 

  • Richards, O. W., 1940, The capsular fluid of Amblystoma punctatum eggs compared with Holt- freter’s and Ringer’s solutions, J. Exp. Zool. 83: 401–406.

    CAS  Google Scholar 

  • Rink, T. J., Tsien, R. Y., and Warner, A. E., 1980, Free calcium in Xenopus embryos measured with ion-selective microelectrodes, Nature (Lond.) 283: 658–660.

    CAS  Google Scholar 

  • Roberson, M., and Armstrong, P., 1980, Carbohydrate-binding component of amphibian embryo cell surfaces: Restriction to surface regions capable of cell adhesion, Proc. Natl. Acad. Sci. USA 77: 3460–3463.

    PubMed  CAS  Google Scholar 

  • Roberson, M., Armstrong, J., and Armstrong, P., 1980, Adhesive and nonadhesive membrane do-mains of amphibian embryo cells, J. Cell Sci. 44: 19–31.

    PubMed  CAS  Google Scholar 

  • Roux, W., 1894, Über den “Cytotropismus” der Furchungszellen des Grasfrosches (Rana fusca), Arch. Entwickslungmech. Org. 1:43-68; 160 - 202.

    Google Scholar 

  • Roux, W., 1896, Über die Selbstordung (Cytotaxis) sich “berührender” Furchungszellen des Froscheies durch Zellen zussamenfugung, Zellentrennung, und Zellengleiten, Roux Arch. 3: 387–468.

    Google Scholar 

  • Ruffini, A., 1925, Fisogenia, Francesco Vallardi, Milan.

    Google Scholar 

  • Salthe, S., and Duellman, W. E., 1973, Evolutionary Biology of the Anurans (J. L. Vial, ed.), pp. 229– 249, University of Missouri Press, Columbia.

    Google Scholar 

  • Sanders, E. J., and DiCaprio, R. A., 1976, A freeze-fracture and concanavalin A-binding study of the membrane of cleaving Xenopus embryos, Differentiation 7: 13–21.

    PubMed  CAS  Google Scholar 

  • Sanders, E. J., and Singal, P. K., 1975, Furrow formation in Xenopus embryos. Involvement of the Golgi body as revealed by ultrastructural localization of thiamine pyrophosphatase activity, Exp. Cell Res. 93: 219–224.

    PubMed  CAS  Google Scholar 

  • Sanders, E. J., and Zalik, S. E., 1972, The blastomere periphery of Xenopus laevis with special reference to intercellular relationships, Wilhelm Roux Arch. 171: 181–194.

    Google Scholar 

  • Satoh, N., 1977, Metachronous cleavage and initiation of gastrulation in amphibian embryos, Dev. Growth Diff. 19: 111–117.

    Google Scholar 

  • Satoh, N., Kageyama, T., and Sirakami, K.-I., 1976, Motility of dissociated embryonic cells in Xenopus laevis: Its significance to morphogenetic movements, Dev. Growth Diff. 18: 55–67.

    Google Scholar 

  • Schaeffer, B., Schaeffer, H., and Brick, I., 1973a, Cell electrophoresis of amphibian blastula and gastrula cells; the relationship of surface charge and morphogenetic movement, Dev. Biol. 34: 66–76.

    PubMed  CAS  Google Scholar 

  • Schaeffer, H., Schaeffer, B., and Brick, I., 1973b, Effects of cytochalasin B on the adhesion and electrophoretic mobility of amphibian gastrula cells, Dev. Biol. 34: 163–166.

    PubMed  CAS  Google Scholar 

  • Schaeffer, H., Schaeffer, B., and Brick, I., 1973c, Electrophoretic mobility as a function of pH for disaggregated amphibian gastrula cells, Dev. Biol. 35: 376–381.

    PubMed  CAS  Google Scholar 

  • Scharf, S., and Gerhart, J., 1983, Axis determination in eggs of Xenopus laevis: A critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation, Dev. Biol. 99: 75–87.

    PubMed  CAS  Google Scholar 

  • Scharf, S. R., Vincent, J.-V., and Gerhart, J., 1984, Axis determination in the Xenopus egg, in: Molecular Biology of Development ( E. Davidson and R. Firtel, eds.), pp. 51–73, Allan Liss, New York.

    Google Scholar 

  • Schechtman, A. M., 1934, Unipolar ingression in Triturus torosus: A hitherto undescribed movement in the pregastrula stages of a urodele, Univ. Calif. Publ. Zool. 39: 303.

    Google Scholar 

  • Schechtman, A. M., 1942, The mechanism of amphibian gastrulation. I. Gastrulation-promoting interactions between various regions of an anuran egg (Hyla regilla), Univ. Calif. Publ. Zool. 51: 1–39.

    Google Scholar 

  • Schenk, R., 1952, Über quantitativ gestufte Defektversuche an der dorsalen Urmundlippe Jungen Gastrulae von Triton alpestris, Roux Arch. 145: 345–386.

    Google Scholar 

  • Schroeder, T. E., and Strickland, D. L., 1974, Ionophore A23187, calcium, and contractility in frog eggs, Exp. Cell Res. 83: 139–148.

    PubMed  CAS  Google Scholar 

  • Selman, G., and Perry, M., 1970, Ultrastructural changes in the surface layers of the newt’s egg in relation to the mechanism of its cleavage, J. Cell Sci. 6: 2070–227.

    Google Scholar 

  • Shapiro, B., 1958, Influences of the salinity and pH of blastocoelic perfusates on the initiation of amphibian gastrulation, J. Exp. Zool. 139: 381–396.

    Google Scholar 

  • Singal, P. K., and Sanders, E. J., 1974a, Cytomembranes in first cleavage Xenopus embryos. Interre¬lationship between Golgi bodies, endoplasmic reticulum and lipid droplets, Cell Tissue Res. 154: 189–209.

    PubMed  CAS  Google Scholar 

  • Singal, P. K., and Sanders, E. J., 1974b, An ultrastructural study of the first cleavage of Xenopus embryos, J. Ultrastruct. Res. 47: 433–451.

    PubMed  CAS  Google Scholar 

  • Sirikami, K. I., 1959, Cyto-embryological studies of amphibians. II. On “tug cells” and their bearing upon the gastrulation and some other morphogenetic movements, Mem. Fac. Liberal Arts Educ. Yamanashi Univ. 10: 125–127.

    Google Scholar 

  • Sirlin, J. L., 1956, Tracing morphogenetic movements by means of labeled cells, Wilhelm Roux Arch. 148: 489–493.

    Google Scholar 

  • Slack, C., and Warner, A., 1973, Intracellular and intercellular potentials in the early amphibian embryo, J. Physiol. (Lond.) 232: 313–330.

    CAS  Google Scholar 

  • Slack, C., Warner, A., and Warren, R. L., 1973, The distribution of sodium and potassium in amphibian embryos during early development, J. Physiol. (Lond.) 232: 297–312.

    CAS  Google Scholar 

  • Smith, B. G., 1912, The embryology of Cryptobranchus allegheniensis, including comparisons with some other vertebrates. II. General embryonic and larval development, with special reference to external features, J. Morphol. 23: 455–579.

    Google Scholar 

  • Smith, J. C., and Malacinski, G. M., 1983, The origin of the mesoderm in an Anuran, Xenopus laevis, and a Urodele, Ambystoma mexicanum, Dev. Biol. 98: 250–254.

    PubMed  CAS  Google Scholar 

  • Smith, J. L., Osborn, J. C., and Stanisstreet, M., 1976, Scanning electron microscopy of lithium- induced exogastrulae of Xenopus laevis, J. Embryol. Exp. Morphol. 36: 513–522.

    PubMed  CAS  Google Scholar 

  • Smithberg, M., 1954, The origin and development of the tail of the frog, J. Exp. Zool. 127: 397.

    Google Scholar 

  • Spemann, H., 1902, Entwicklungsphysiologische Studien am Triton-Ei. II, Arch. Ent- wicklungsmech. Org. 15: 448–534.

    Google Scholar 

  • Spemann, H., 1931, Uber den Anteil von Implantat und Wirtskeim an der Orientierung und Be- schaffenheit der induzierten Embryonalange, Arch. Entwicklungsmech. Org. 123: 390–517.

    Google Scholar 

  • Spemann, H., 1938, Embryonic Development and Induction, Yale University Press, repr. 1962, Hafner, New York.

    Google Scholar 

  • Spemann, H., and Mangold, H., 1924, Uber Induction von Embryonalanlagen durch Implantation artfremder Organisatoren, Wilhelm Roux Arch. 100: 599–638.

    Google Scholar 

  • Spofford, W., 1945, Observations on the posterior part of the neural plate in Ambystoma, J. Exp. Zool. 99: 35–53.

    Google Scholar 

  • Spofford, W., i948, Observations on the posterior parts of the neural plate in Ambystoma. II. The inductive effect of the intact posterior part of the chordamesodermal axis on competent prospective ectoderm, J. Exp. Zool. 107: 123–164.

    Google Scholar 

  • Stableford, L.]., 1949, The blastocoel fluid in amphibian gastrulation, J. Exp. Zool. 112: 529–546.

    Google Scholar 

  • Stableford, L. J., 1967, A study of calcium in the early development of the amphibian embryo, Dev. Biol. 16: 303–314.

    PubMed  CAS  Google Scholar 

  • Stanisstreet, M., and Smith, J., 1978, Scanning electron microscopy of cells isolated from amphibian early embryos, J. Embryol. Exp. Morphol. 48: 215–223.

    PubMed  CAS  Google Scholar 

  • Steinberg, M., 1964, The problem of adhesive selectivity in cellular interactions, in: Cellular Membranes in Development (M. Locke, ed.), Symp. Soc. Study Dev. Growth 22: 321–366.

    Google Scholar 

  • Steinberg, M., 1970, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool. 173: 395–434.

    PubMed  CAS  Google Scholar 

  • Steinberg, M., 1978, Cell-cell recognition in multicellular assembly: Levels of specificity, in: Cell- Cell Recognition (A. S. G. Curtis, ed.), Soc. Exp. Biol. Symp. 32: 25–49.

    Google Scholar 

  • Steinberg, M., and Kelland, J. L., 1967, Cellular and adhesive differentials in the determination of the structure of the amphibian gastrula, in: Control Mechanisms in Morphogenesis, American Association for the Advancement of Science, 134th Annual Meeting, New York, 1967.

    Google Scholar 

  • Stewart-Savage, J., and Grey, R. D., 1982, The temporal and spatial relationships between cortical contraction, sperm trail formation, and pronuclear migration in fertilized Xenopus eggs, Wilhelm Roux Arch. 191: 241–245.

    Google Scholar 

  • Stopak, D., and Harris, A., 1982, Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations, Dev. Biol. 90: 383–398.

    PubMed  CAS  Google Scholar 

  • Subtelny, S., 1974, Nucleocytoplasmic interactions in the development of amphibian hybrids, Int. Rev. Cytol. 39: 35–88.

    PubMed  CAS  Google Scholar 

  • Tickle, C. A., and Trinkaus, J. P., 1973, Change in surface extensibility of FunduJus deep cells during early development, J. Cell Sci. 13: 721–726.

    PubMed  CAS  Google Scholar 

  • Todd, E. H., 1904, Results of injuries to the blastopore region of the frog’s embryo, Arch. Entwicklungsmech. Org. 18: 489–506.

    Google Scholar 

  • Tondury, G., 1936, Beitrage zum Problem der Regulation und Induktion, Roux Arch. 134: 1–111.

    Google Scholar 

  • Townes, P. L., and Holtfreter, J., 1955, Directed movements and selective adhesion of embryonic amphibian cells, J. Exp. Zool. 128: 53–120.

    Google Scholar 

  • Trinkaus, J. P., 1963, The cellular basis of Fundulus epiboly. Adhesivity of blastula and gastrula cells in culture, Dev. Biol. 1: 513–532.

    Google Scholar 

  • Trinkaus, J. P., 1973, Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages, Dev. Biol. 30: 68–103.

    Google Scholar 

  • Trinkaus, J. P., 1984, Cells into Organs: Forces That Shape the Embryo, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Tuft, P., 1957, The osmotic activity of the blastocoel and archenteron fluids, Proc. R. Physiol. Soc. Edinb. 26: 42–48.

    Google Scholar 

  • Tuft, P., 1962, The uptake and distribution of water in the embryo of Xenopus laevis (Daudin), J. Exp. Biol. 39: 1–19.

    PubMed  CAS  Google Scholar 

  • Tuft, P., 1965, The uptake and distribution of water in the developing amphibian embryo, Soc. Exp. Biol. Symp. 19: 385–402.

    CAS  Google Scholar 

  • Turin, L., and Warner, A. E., 1980, Intracellular pH in early Xenopous embryos: Its effect on current flow between blastomeres, J. Physiol. (Lond.) 300: 489–504.

    CAS  Google Scholar 

  • Viamontes, G., Fochtmann, L., and Kirk, D., 1979, Morphogenesis in VoJvox: Analysis of critical variables, Cell 17: 537–550.

    PubMed  CAS  Google Scholar 

  • Vogt, W., 1922a, Die Einrollung und Streckung der Urmundlippen bei Triton nach Versuchen mit einer neuen Methode embryonaler Transplantation, Verh. Zool. Ges. 27: 49–51.

    Google Scholar 

  • Vogt, W., 1922b, Operativ bewirkte “Exogastrulation” bei Triton und ihre Bedeutung für die Theorie der Wirbeltiergastrulation, Anat. Anz. Erg. 55: 53–64.

    Google Scholar 

  • Vogt, W., 1923a, Morphologische und physiologische Fragen der Primitiv Entwicklung, Versuche zu ihrer Lösung mittels vitaler Farbmarkierung, Sitz. Ber. Ges. Morph. Physiol. Munch. 35: 22–32.

    Google Scholar 

  • Vogt, W., 1923b, Weitere Versuche mit vitaler Färbmarkierung von Triton, Anat. Anz. Erg. 57: 30–38.

    Google Scholar 

  • Vogt, W., 1925, Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. I Teil. Method und Wirkungsweise der örtlicher Vitalfärbung mit Agar als Farbtrager, Roux Arch. 106: 542–610.

    Google Scholar 

  • Vogt, W., 1929a, Chorda, Hypochorda und Darmentoderm bei anuren Amphibien, Verh. Anat. Ges. Tubingen. Anat. Anz. Erg. 67: 153–163.

    Google Scholar 

  • Vogt, W., 1929b, Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. II Teil. Gas-trulation und Mesodermbildung bei Urodelen and Anuren, Wilhelm Roux Arch. Ent- wicklungsmech. Org. 120: 384–706.

    Google Scholar 

  • Vogt, W., 1939, Die Rumpfschwanzknopse bei Amphibien und die Theorie der sekundären Körperentwicklung (Holmdahl), Anat. Anz. Erg. 88: 112–127.

    Google Scholar 

  • Voigtländer, G., 1932, Untersuchungen über den “Cytotropismus” der Furchungszellen, Arch. Entwicklungsmech. Org. 127: 151.

    Google Scholar 

  • Waddington, C. H., 1939, Order of magnitude of morphogenetic forces, Nature (Lond.) 144: 637.

    Google Scholar 

  • Waddington, C. H., 1940, Organizers and Genes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Waddington, C. H., 1942, Observations on the forces of morphogenesis in the amphibian embryo, J. Exp. Biol. 19: 284–293.

    Google Scholar 

  • Waddington, C. H., 1952, Modes of gastrulation in vertebrates, Q. J. Microsc. Sci. 93: 221–229.

    Google Scholar 

  • Wilder, H. H., 1899, Desmongnathus fusca (Rafinesque) and SpeJerpes bilineatus (Green), Am. Nat. 33: 231–246.

    Google Scholar 

  • Wilder, H. H., 1904, The early development of Desmognathus fusca, Am. Nat. 38: 231–246.

    Google Scholar 

  • Wilson, C. B., 1897, Experiments on the early development of the amphibian embryos under the influence of Ringer’s and salt solutions, Arch. Entwicklungsmech. Org. 5: 615–648.

    Google Scholar 

  • Youn, B.-W., Keller, R. E., and Malacinski, G. M., 1981, An atlas of notochord and somite mor-phogenesis in several Anuran and Urodelean amphibians, J. Embryol. Exp. Morphol. 59: 223–247.

    Google Scholar 

  • Zotin, A. I., 1965, The uptake and movement of water in embryos, Soc. Exp. Biol. Symp. 19: 365–384.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Keller, R.E. (1986). The Cellular Basis of Amphibian Gastrulation. In: Browder, L.W. (eds) The Cellular Basis of Morphogenesis. Developmental Biology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2141-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2141-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9264-7

  • Online ISBN: 978-1-4613-2141-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics