Skip to main content

Mechanisms of Axonal Guidance The Problem of Intersecting Fiber Systems

  • Chapter

Part of the book series: Developmental Biology ((DEBO,volume 2))

Abstract

The complex patterns exhibited by axon fiber tracts in animals present an intriguing challenge in the study of morphogenesis. How are these patterns established? What mechanisms determine the routes that particular axon growth cones will follow during development? This chapter first outlines the major historical theories of axonal guidance. These classic theories and their modern counterparts are then discussed in relationship to the development of intersecting fibers systems. Can these theories explain intersection? The second part of this chapter discusses an in vivo paradigm in which it is possible to study the ontogeny of an intersecting system of fibers in the mammalian central nervous system. A possible mechanism for axonal guidance in this system is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attardi, D. G., and Sperry, R. W., 1963, Preferential selection of central pathways by regenerating optic fibers, Exp. Neurol. 7: 46–64.

    Article  PubMed  CAS  Google Scholar 

  • Balfour, F.M., 1876, On the development of the spinal nerves in elasmobranch fishes, Philos. Trans. R. Soc. Lond. B 166: 175–195.

    Article  Google Scholar 

  • Bentley, D., and Caudy, M., 1983, Pioneer axons lose directed growth after selective killing of guidepost cells, Nature (Lond.) 304: 62–65.

    Article  CAS  Google Scholar 

  • Berlot, J., and Goodman, C. S., 1984, Guidance of peripheral pioneer neurons in the grasshopper: Adhesive hierarchy of epithelial and neuronal surfaces, Science 223: 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Bethe, A., 1901, Uber die Regeneration peripherischen Nerven, 26 Wandervers. des Sudwestdeutsch. Neurol Gesellschaft, 8, June.

    Google Scholar 

  • Bidder, F.H., and Kiipffer, C., 1857, Untersuchungen uber die Textur des Ruckenmarks und die Entwicklung seiner Formelemente, Breitkopf and Hartl, Leipzig.

    Google Scholar 

  • Bunt, S. M., and Horder, T. J., 1983, Evidence for an orderly arrangement of optic axons within the optic nerves of the major nonmammlian vertebrate classes, J.Comp. Neurol. 213: 4–14.

    Article  Google Scholar 

  • Campenot, R. B., 1977, Local control of neurite development by nerve growth factor, Proc. Natl. Acad. Sci. USA 74: 4516–4519.

    Article  PubMed  CAS  Google Scholar 

  • Carney, P. R., and Silver, J., 1983, Studies on cell migration and axon guidance in the developing distal auditory system of the mouse, J.Comp. Neurol. 215: 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Caviness, V. S., 1975, Architectonic map of neocortex of the normal mouse, J. Comp. Neurol. 164: 247–264.

    Article  PubMed  Google Scholar 

  • Collins, F., and Dawson, A., 1983, An effect of nerve growth factor on parasympathetic neurite outgrowth, Proc. Natl. Acad. Sci. USA 80: 2091–2094.

    Article  PubMed  CAS  Google Scholar 

  • Collins, F., and Lee, M. R., 1984, The spatial control of ganglionic neurite growth by the substrate associated material from conditioned medium: An experimental model of haptotaxis, J. Neurosci. 4: 2823–2829.

    PubMed  CAS  Google Scholar 

  • Constantine-Paton, M., 1983, Trajectories of axons in ectopic Vlllth nerves, Dev. Biol. 97: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton, M., and Law, M. I., 1978, Eye-specific termination bands in tecta of three-eyed frogs, Science 202: 639–641.

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton, M., Pitts, E. C., and Reh, T. A., 1983, The relationship between retinal axon ingrowth, terminal morphology, and terminal patterning in the optic tectum of the frog, J.Comp. Neurol. 218: 297–313.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J. E., and Horder, T. J., 1977, The multiple factors determining retinotopic order in the growth of optic fibers into the optic tectum, Philos. Trans. R. Soc. Lond. B 278: 261–276.

    Article  CAS  Google Scholar 

  • Ebendal, T., and Jacobson, C.-D., 1977, Tissue explants affecting extension and orientation of axons in cultured chick embryo ganglia, Exp. Cell Res. 105: 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Elliot Smith, G., 1897, The fornix superior, J. Anat. 31: 80–94.

    Google Scholar 

  • Fawcett, J. W., and Gaze, R. M., 1981, The organization of regenerating axons in the Xenopus optic nerve,Brain Res. 229: 487–490.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. L., and Slattery, M., 1983, Local differences in the amount of early cell death in neocortex predict adult local specializations, Science 219: 1349–1351.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, S. E., and Hunt, R. K., 1980, Retinotectal specificity: Models and experiments in search of a mapping function, Annu. Rev. Neurosci. 3: 319–352.

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa, H., Tani, N., Watanabe, K., and Ibata, Y., 1982, Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connection in the newt, Dev. Biol.90: 43–57.

    Article  PubMed  CAS  Google Scholar 

  • Gaze, R. M., and Sharma, S. C., 1970, Axial differences in the reinnervation of the goldfish optic tectum by regenerating optic nerve fibers, Exp. Cell Res. 10: 171–181.

    CAS  Google Scholar 

  • Globus, J. H., and Kuhlenbeck, H., 1944, The subependymal plate (matrix) and its relation to brain tumors of the ependymal type, J. Comp. Neurol. 3: 1–35.

    Google Scholar 

  • Goodman, C. S., Raper, J. A., Ho, R., and Chang, S., 1982, Pathfinding by neuronal growth cones in grasshopper embryos, in: Cytochemical Methods in Neuroanatomy ( V. Chan-Palay and S. L. Palay, eds.), pp. 461–494, Alan R. Liss, New York.

    Google Scholar 

  • Gundersen, R. W., and Barrett, J. N., 1979, Neuronal chemotaxis: Chick dorsal-root axons turn toward high concentrations of nerve growth factor, Science 206: 1079–1080.

    Article  PubMed  CAS  Google Scholar 

  • Hankin, M. H., 1984, Mechanisms of axonal guidance: The problem of intersecting fiber systems, Doctoral Thesis, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  • Hankin, M. H., and Silver, J., 1984, The role of the environment in guiding intersecting axon tracts in the mammalian telencephalon, Soc. Neurosci. Abs. 10: 372.

    Google Scholar 

  • Harrison, R. G., 1907, Experiments in transplanting limbs and their bearing upon the development of nerves, J. Exp. Zool. 4: 239–281.

    Article  Google Scholar 

  • Harrison, R. G., 1910, The outgrowth of the nerve fiber as a mode of protoplasmic movement, J.Exp. Zool. 9: 787–848.

    Article  Google Scholar 

  • Harrison, R. G., 1914, The reaction of embryonic cells to solid structures, J. Exp. Zool. 17: 521–544.

    Article  Google Scholar 

  • Hensen, V., 1864, Über die Entwicklung des Gewebes und der Nerven im Schwänze der Froschlarve, Virchows Arch. Cell Pathol. 31: 51.

    Article  Google Scholar 

  • Hibbard, W. J., 1959, Central integration of developing nerve tracts from supernumerary grafted eyes and brain in the frog,. Exp. Zool. 141: 323–341.

    Article  CAS  Google Scholar 

  • His, W., 1879, Uber die Anfange des peripherischen Nerven Systemes, Arch. Anat. Physiol. ( Anat. Abt. ) 455–482.

    Google Scholar 

  • His, W., 1887, Die Entwicklung der ersten Nervenbahnen beim menschlichen Embryo. Über- sichliche Darstellung, Arch. Anat. Physiol. ( Anat. Abt.] 368.

    Google Scholar 

  • His, W., 1890, Die Neuroblasten und deren Entstehung im embryonalen Mark, Abhandl. Math.- Phys. Cl. Sachs. Gesselisch. Wissensch. 15: 311.

    Google Scholar 

  • Horder, T. J., 1971, Retention, by fish optic nerve fibers regenerating to new terminal sites in the tectum, of “chemospecific” affinity for their original sites,. Physiol. (Lond.) 216: 53 P.

    Google Scholar 

  • Horder, T. J., and Martin, K. A. C., 1978, Morphogenetics as an alternative to chemospecificity in the formation of nerve connections, in: Cell-Cell Recognition ( A. S. Curtis, ed.), pp. 275–358, Cambridge University Press, New York.

    Google Scholar 

  • Innocenti, G. M., Fiore, L., and Caminiti, R., 1977, Exuberant projections into the corpus callosum from the visual cortex of newborn cats, Neurosci. Lett. 4: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Ivy, G. D., and Killackey, H. P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol. 195: 367–389.

    Article  PubMed  CAS  Google Scholar 

  • Ivy, G. D., Akers, R. M., and Killackey, H. P., 1979, Differential distribution of callosal projection neurons in the neonatal and adult rat, Brain Res. 173: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Kappers, C. U. A., Huber, G. C., and Crosby, C. C., 1936, The Comparative Anatomy of the Nervous System of Vertebrates Including Man, Vol. II, Macmillan New York.

    Google Scholar 

  • Katz, M. J., and Lasek, R. J., 1979, Substrate pathways which guide growing axons in Xenopus embryos, J. Comp. Neurol. 183: 817–832.

    Article  PubMed  CAS  Google Scholar 

  • Katz, M. J., and Lasek, R. J., 1981, Substrate pathways demonstrated by transplanted Mauthner axons, J. Comp. Neurol. 195: 627–641.

    Article  PubMed  CAS  Google Scholar 

  • Keshishian, H., and Bentley, D., 1983a, Embryogenesis of peripheral nerve pathways in grasshop-per legs. I. The initial nerve pathway to the CNS, Dev. Biol. 96: 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Keshishian, H., and Bentley, D., 1983b, Embryogenesis of peripheral nerve pathways in grasshop-per legs. II. The major nerve routes, Dev. Biol. 96: 103–115.

    Article  PubMed  CAS  Google Scholar 

  • Keshishian, H., and Bentley, D., 1983c, Embryogenesis of peripheral nerve pathways in grasshop-per legs. III. Development without pioneer neurons, Dev. Biol. 96: 116–124.

    Article  PubMed  CAS  Google Scholar 

  • Kölliker, A., 1894, Über den Fornix longus von Forel und die Riechstrahlungen im Gehirn des Kaninchens, VerhandJ. Anat. Gesellsch. 8: 45.

    Google Scholar 

  • Kostovic, I., and Molliver, M. E., 1974, A new interpretation of the laminar development of cerebral cortex: Synaptogenesis in different layers of neopallium in the human fetus, Anat. Ree. 97: 395.

    Google Scholar 

  • Krayanek, S., 1980, Structure and orientation of extracellular matrix in developing chick optic tectum, Anat. Ree. 97: 95–109.

    Article  Google Scholar 

  • Kromer, L. F., Bjorklund, A., and Stenevi, U, 1981, Regeneration of septohippocampal pathways in adult rats in promoted by using embryonic hippocampal implants as bridges, Brain Res. 210: 173–200.

    Article  PubMed  CAS  Google Scholar 

  • Lance-Jones, C., and Landmesser, L., 1981a, Pathway selection by chick lumbosacral motoneurons during normal development, Proc. R. Soc. Lond. B 260: 1–18.

    Article  Google Scholar 

  • Lance-Jones, C., and Landmesser, L., 1981b, Pathway selection by embryonic chick motoneurons in an experimentally altered environment, Proc. R. Soc. Lond. B 260: 19–52.

    Article  Google Scholar 

  • Letourneau, P. C., 1975, Cell-to-substratum adhesion and guidance of axonal elongation, Dev. Biol. 44: 92–101.

    Article  PubMed  CAS  Google Scholar 

  • Letourneau, P. C., 1978, Chemotactic response of nerve fiber elongation to nerve growth factor, Dev. Biol. 66: 183–196.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., 1952, Effects of mouse tumor transplantation on the nervous system, Ann. N.Y. Acad. Sei. 55: 330–343.

    Article  CAS  Google Scholar 

  • Levi-Montalcini, R., 1962, Analysis of specific nerve growth factor and of its antiserum, Sei. Rep. 1st. Super. Sanita 2: 245–368.

    Google Scholar 

  • Levi-Montalcini, R., 1982, Developmental neurobiology and the natural history of nerve growth factor, Annu. Rev. Neurosci. 5: 341–362.

    Article  PubMed  CAS  Google Scholar 

  • Levine, R., 1983, Neuronal plasticity in the optic tectum of amphibians, in: Comparative Neurology of the Optic Tectum ( H. Vanegas, ed.), pp. 495–545, Plenum Press, New York.

    Google Scholar 

  • Lumsden, A. G. S., and Davies, A. M., 1983, Earliest sensory nerve fibers are guided to peripheral targets by attractants other than nerve growth factor, Nature (Lond.) 306: 786–788.

    Article  CAS  Google Scholar 

  • Menesini-Chen, M. G., Chen, J. S., and Levi-Montalcini, R., 1978, Sympathetic nerve fibers in-growth in the central nervous system of neonatal rodent upon intracerebral NGF injections, Arch. Ital. Biol. 116: 53–84.

    PubMed  CAS  Google Scholar 

  • Mesulam, M.-M., 1978, Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural af- ferents and efferents, J. Histochem. Cytochem. 26: 106–117.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R. L., 1979, Retinotectal projection in goldfish to an inappropriate region with a reversal in polarity, Science 205: 819–821.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R. L., 1980, Mapping for normal and regenerating retinotectal projection of goldfish with autoradiographic methods, J. Comp. Neurol. 189: 273–289.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, S., 1983, Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mice, Dev. Biol. 95: 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Nardi, J. B., 1983, Neuronal pathfinding in developing wings of the moth Manduca sexta, Dev. Biol. 95: 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Noble, M., Seang, J. F., and Cogan, J., 1984, Glia are a unique substrate for in vitro growth of CNS neurones,. Neurosci. 4: 1892–1903.

    CAS  Google Scholar 

  • Privat, A., and Leblond, C. P., 1972, The subependymal layer and neighboring region in the brain of the young rat, J. Comp. Neurol. 146: 277–302.

    Article  PubMed  CAS  Google Scholar 

  • Probst, M., 1901, Über den Bau des balkenlosen Grosshirns, sowie über Mikrogyrie und Hetero-topic der grauen Substanz, Arch. Psychiatry 34: 709–786.

    Article  Google Scholar 

  • Rager, G., 1980, Specificity of nerve connections by unspecific mechanisms, Trends Neurosci. 3: 43–44.

    Article  Google Scholar 

  • Ramon y Cajal, S., 1908, Terminación periférica del nervio acústico de los aves, Trab. Inst. Cajal Invest. Biol. 6: 161–176.

    Google Scholar 

  • Ramon y Cajal, S., 1928, Degeneration and Regeneration of the Nervous System, Vols. I and II, repr. 1959, Hafner, New York.

    Google Scholar 

  • Ramon y Cajal, S., 1937, Recollections of My Life (E. H. Cragie, tr.), American Philosophical Society, Philadelphia.

    Google Scholar 

  • Ramon y Cajal, S., 1960, Studies on Vertebrate Neurogenesis (L. Guth, tr.), Charles C Thomas, Springfield, Illinois.

    Google Scholar 

  • Reh, T. A., Pitts, E., and Constantine-Paton, M., 1983, The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens, J. Comp. Neurol. 218: 282–296.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A., and Taylor, J. S. H., 1982, A scanning electron microscope study of the development of a peripheral neurite network, J. Embryol. Exp. MorphoJ. 69: 237–250.

    CAS  Google Scholar 

  • Rutishauser, U., Gall, W. E., and Edelman, G. M., 1978, Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule N-CAM in the formation of neurite bundles in cultures of spinal ganglia, J. Cell Biol. 79: 382–393.

    Article  PubMed  CAS  Google Scholar 

  • Schwann, T., 1839, Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und den Wachstum der Thiere und Pflantzen, Sander, Berlin.

    Google Scholar 

  • Shoukimas, G. M., and Hinds, J. W., 1978, The development of the cerebral cortex in the embryonic mouse. An electron microscopic serial section analysis, J.Comp. Neurol. 179: 295–330.

    Article  Google Scholar 

  • Silver,]., 1984, Studies on the factors that govern directionality of anoxal growth in the embryonic optic nerve and at the chiasm of mice,. Comp. Neurol. 223: 238–251.

    Article  CAS  Google Scholar 

  • Silver, J., and Mason, C. A., 1984, Postnatally induced regeneration of the corpus callosum in acallosal mice, in: The Eric K. Fernstrom Symposium on Transplantation in the Mammalian CNS, Lund, Sweden, June, 1984.

    Google Scholar 

  • Silver, J., and Ogawa, M., 1983, Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges, Science220: 1067–1069.

    Article  PubMed  CAS  Google Scholar 

  • Silver, J., and Robb, R. M., 1979, Studies on the development of the eye cup and optic nerve in normal mice and in mutants with congenital optic nerve aplasia, Dev. Biol. 68: 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Silver, J., and Rutishauser, U., 1984, Guidance of optic axons by a preformed adhesive pathway on neuroepithelial endfeet, Soc. Neurosci. Abs. 10: 372.

    Google Scholar 

  • Silver, J., and Sapiro, J., 1981, Axonal guidance during development of the optic nerve: The role of pigmented epithelia and other extrinsic factors,. Comp. Neurol. 202: 521–538.

    Article  CAS  Google Scholar 

  • Silver, J., and Sidman, R. L., 1980, A mechanism for the guidance and topographic patterning of retinal ganglion cell axons, J. Comp. Neurol. 189: 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Silver, J., Lorenz, S. E., Wahlsten, D., and Coughlin, J., 1982, Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies in vivo on the role of preformed glial pathways.J. Comp. Neurol. 210: 10–29.

    Article  PubMed  CAS  Google Scholar 

  • Silver, J., Smith, G. M., Miller, R. H., and Levitt, P. R., 1985, The immature astrocyte: Its role during normal CNS axon tract development and its ability to reduce scar formation and promote axonal regeneration when transplanted into the brain of adults, Soc. Neuro Sei. Abs. 11: 334.

    Google Scholar 

  • Singer, M., Nordlander, R. H., and Egar, M., 1979, Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: The Blueprint hypothesis of neuronal pathway patterning, J. Comp. Neurol. 185: 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Smart, I. M. H., 1961, The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection, J. Comp. Neurol. 116: 325–347.

    Article  Google Scholar 

  • Speidel, C. C., 1932, Studies of living nerves. I. The movements of individual sheath cells and nerve sprouts correlated with the process of myelin-sheath formation in amphibian larvae, J. Exp. Zool61: 279–331.

    Article  Google Scholar 

  • Speidel, C. C., 1933, Studies of living nerves. II. Activities of ameboid growth cones, sheath cells, and myelin segments, as revealed by prolonged observation of individual nerve fibers in frog tadpoles, Am. J. Anat. 52: 1–79.

    Article  Google Scholar 

  • Sperry, R. W., 1944, Optic nerve regeneration with return of vision in anurans, Neurophysiol. 7: 57–69.

    Google Scholar 

  • Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sei. USA50: 703–710.

    Article  CAS  Google Scholar 

  • Stuermer, C. A. O., and Easter, S. S., 1984, A comparison of the normal and regenerating retinotec- tal pathways of goldfish, J. Comp. Neurol. 223: 57–76.

    Article  PubMed  CAS  Google Scholar 

  • Taghert, P. H., Bastiani, M. J., Ho, R. K., and Goodman, C. S., 1982, Guidance of pioneer growth cones: Filopodial contacts and coupling revealed with an antibody to Lucifer Yellow, Dev. Biol. 94: 391–399.

    Article  PubMed  CAS  Google Scholar 

  • Thanos, S., Bonhoeffer, F., and Rutishauser, U., 1984, Fiber-fiber interactions and tectal cues influence the development of the chick retinotectal projection, Proc. Natl. Acad. Sei. USA81: 1906–1910.

    Article  CAS  Google Scholar 

  • Thiery, J.-P., Brackenbury, R., Rutishauser, U., and Edelman, G., 1977, Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina, J. Cell Biol. 252: 6841–6845.

    CAS  Google Scholar 

  • Thiery, J.-P., Duband, J.-L., Rutishauser, U., and Edelman, G., 1982, Cell adhesion molecules in early chicken embryogenesis, Proc. Natl. Acad. Sei. USA79: 6737–6741.

    Article  CAS  Google Scholar 

  • Udin, S., 1978, Permanent disorganization of the regenerating optic tract in the frog, Exp. Neurol. 58: 455–470.

    Article  PubMed  CAS  Google Scholar 

  • Van Ness, J., Maxwell, I. H., and Hahn, W. E., 1979, Complex population of non-polyadenylated messenger RNA in mouse brain, Cell18: 1341–1349.

    Article  PubMed  Google Scholar 

  • von Biingner, O., 1891, Über die Regeneration und Denervationvorgänge am Nerven nach Ver-letzungen, Beitr. Pathol. Anat. Allg. Pathol. 10: 321–393.

    Google Scholar 

  • Wahlsten, D., 1984, Growth of the mouse corpus callosum, Dev. Brain Res. 15: 59–67.

    Article  Google Scholar 

  • Warkany, J., 1971, Cogenital Malformations, pp. 252–254, Year Book Medical, Chicago.

    Google Scholar 

  • Weiss, P. A., 1934, In vitro experiments on the factors determining the course of the outgrowing nerve fiber, J. Exp. Zool. 68: 393–448.

    Article  Google Scholar 

  • Weiss, P. A., 1955, Nervous system (neurogenesis), in: Analysis of Development ( B. H. Willier, P. A. Weiss, and V. Hamburger, eds.), pp. 346–401, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Weiss, P. A., and Taylor, A. C., 1944, Further experimental evidence against “neurotropism” in nerve regeneration,. Exp. Zool. 95: 233–257.

    Article  Google Scholar 

  • Wessells, N. K., Letourneau, P. C., Nuttall, R. P., Luduena-Anderson, M., and Geiduschek, J. M., 1980, Responses to cell contacts between growth cones, neurites, and ganglionic non-neuronal cells, J. Neurocytol. 9: 647–664.

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw, V., and Hollyday, M., 1983a, Thigh and calf discrimination in the motor innervation of the chick hindlimb following deletions of limb segments, J. Neurosci. 3: 1199–1215.

    PubMed  CAS  Google Scholar 

  • Whitelaw, V., and Hollyday, M., 1983b, Postition-dependent motor innervation of the chick hindlimb following serial and parallel duplications of limb segments,J.Neurosci. 3: 1216–1225.

    PubMed  CAS  Google Scholar 

  • Whitelaw, V., and Hollyday, M., 1983c, Neural pathway constraints in the motor innervation of the chick hindlimb following dorsoventral rotations of distal limb segments, J. Neurosci. 3:1226– 1233.

    Google Scholar 

  • Wigglesworth, V. B., 1964, The Life of Insects, New American Library, New York.

    Google Scholar 

  • Yoon, M., 1972, Reversibility of the reorganization of retinotectal projection in goldfish, Exp. Neurol. 35: 565–577.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, M., 1975, Readjustment of retinotectal projection following reimplantation of a rotated or innervated tectal tissue in adult goldfish, J.Physiol. (Lond.) 252: 137–158.

    CAS  Google Scholar 

  • Yorke, C. H., and Caviness, V. S., 1975, Interhemispheric neocortical connections of the corpus callosum in the normal mouse: A study based on anterograde and retrograde methods, J. Comp. Neurol. 164: 233–246.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hankin, M.H., Silver, J. (1986). Mechanisms of Axonal Guidance The Problem of Intersecting Fiber Systems. In: Browder, L.W. (eds) The Cellular Basis of Morphogenesis. Developmental Biology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2141-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2141-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9264-7

  • Online ISBN: 978-1-4613-2141-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics