Skip to main content

Primordial Germ Cell Migration

  • Chapter
The Cellular Basis of Morphogenesis

Part of the book series: Developmental Biology ((DEBO,volume 2))

Abstract

Many, if not all, cells in the body can show motile activity when placed in a permissive environment. Cells held in an apparently immutable array in the intact body will nonetheless exhibit some sort of motile behavior when disaggregated and placed in culture. It is clear, therefore, that all cells possess or can make the machinery for cell movement. However, few cells actively move in the adult body; the phase of the life cycle during which large scale cell and tissue movements take place is during embryonic development. These movements result in the correct tissue architecture of the embryonic body becoming established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beverley, P. C. L., Linch, D., and Delia, D., 1980, Isolation of human haematopoietic progenitor cells using monoclonal antibodies, Nature (Lond.) 287: 332–333.

    Article  PubMed  CAS  Google Scholar 

  • Carter, S. B., 1967, Haptotaxis and the mechanisms of cell motility, Nature (Lond.) 215: 256–260.

    Article  Google Scholar 

  • de Felici, M., and McLaren, A., 1983, In vitro culture of mouse primordial germ cells, Exp. Cell Res. 144: 417–427.

    Article  PubMed  Google Scholar 

  • Dubois, R., 1968, La colonisation des étranches gonadiques par les cellules germinales de l’embryon de poulet, en culture in vitro, J. Embryol. Exp. Morphol. 20: 189–213.

    PubMed  CAS  Google Scholar 

  • Eddy, E. M., 1975, Germ plasm and the differentiation of the germ cell line, Int. Rev. Cytol. 43:229– 280.

    Google Scholar 

  • Eddy, E. M., and Hahnel, A. C., 1983, Establishment of the germ line in mammals, in: Current Problems in Germ Cell Differentiation ( A. McLaren and C. C. Wylie, eds.), pp. 41–70, Cambridge University Press, Cambridge.

    Google Scholar 

  • England, M. A., 1983, The migration of primordial germ cells in avian embryos, in: Current Problems in Germ Cell Differentiation ( A. McLaren and C. C. Wylie, eds.), pp. 91–114, Cambridge University Press, Cambridge.

    Google Scholar 

  • Eyal-Giladi, H., Ginsburg, M., and Farborov, A., 1981, Avian primordial germ cells are of epiblastic origin, J. Embryol. Exp. Morphol. 65: 139–147.

    PubMed  CAS  Google Scholar 

  • Giorgi, P. P., 1974, Germ cell migration in toad (Bufo bufo): Effect of ventral grafting on embryonic dorsal regions, J. Embryol. Exp. MorphoJ. 31: 75–87.

    CAS  Google Scholar 

  • Gipouloux, J. D., 1970, Recherches experimentales sur l’origine de la migration des cellules germinales, et l′édification des crêtes génitales chez les Amphibiens Anoures, Bull. Biol. F r. Belg. 104: 22–93.

    Google Scholar 

  • Godsave, S. F., Anderton, B. H., Heasman, J., and Wylie, C. C., 1984a, Oocytes and early embryos of Xenopus laevis contain intermediate filaments which react with anti–mammalian vimentin antibodies, J. Embryol. Exp. Morphol. 83: 169–187.

    PubMed  CAS  Google Scholar 

  • Godsave, S. F., Wylie, C. C., Lane, E. B., and Anderton, B. H., 1984b, Intermediate filaments in the Xenopus oocyte: The appearance and distribution of cytokeratin–containing filaments, f. Embryol. Exp. Morphol. 83: 157–167.

    CAS  Google Scholar 

  • Heasen, J., and Wylie, C. C., 1981, Contact relations and guidance of primordial germ cells on their migratory route in embryos of Xenopus laevis, Proc. R. Soc. Lond. B 213: 41–58.

    Article  Google Scholar 

  • Heasman, J., Wylie, C. C., 1983, Amphibian primordial germ cells—What can they tell us about directed cell migration?, in: Current Problems in Germ Cell Differentiation ( A. McLaren and C. C. Wylie, eds.), pp. 73–90, Cambridge University Press, Cambridge.

    Google Scholar 

  • Heasman, J., Mohun, T. J., and Wylie, C. C., 1977, Studies on the locomotion of primordial germ cells from Xenopus laevis in vitro, J. Embryol. Exp. Morphol. 42: 149–161.

    Google Scholar 

  • Heasman, J., Hynes, R. O., Swan, A. P., Thomas, V. A., and Wylie, C. C., 1981, Primordial germ cells of Xenopus embryos; the role of fibronectin in their adhesion during migration, Cell 27:437– 447.

    Google Scholar 

  • Heath, J., 1977, Characterization of a Xenogeneic antiserum raised against the fetal germ cells of the mouse: Cross–reactivity with embryonal carcinoma cells, Cell 15: 299–306.

    Article  Google Scholar 

  • Heath, J., 1978, Mammalian primordial germ cells, in: Development in Mammals, Vol. 3 ( M. H. Johnson, ed.), pp. 267–298, Elsevier/North–Holland, New York.

    Google Scholar 

  • Heath, J., and Wylie, C. C., 1981, Cell surface molecules of mammalian foetal germ cells, in: Development and Function of Reproductive Organs (A. G. Byskov and H. Peters, eds.), pp. 83– 92, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Karol, R. A., Kundu, S. K., and Marcus, D. M., 1981, Immunochemical relationship between Forssman and globoside glycolipid antigens, Immunol. Commun. 10: 137–250.

    Google Scholar 

  • Mahowald, A. P., 1977, The germ plasm of Drosophila: A model system for the study of embryonic determination, Am. ZooJ. 17: 551–563.

    Google Scholar 

  • Nieuwkoop, P. D., and Sutasurya, L. A., 1979, Primordial Germ Cells in the Chordates, Cambridge University Press, Cambridge.

    Google Scholar 

  • Nieuwkoop, P. D., and Sutasurya, L. A., 1981, Primordial Germ Cells in the Invertebrates, Cambridge University Press, Cambridge.

    Google Scholar 

  • Nieuwkoop, P. D., and Sutasurya, L. A., 1983, Some problems in the development and evolution of the chordates, in: Development and Evolution ( B. C. Goodwin, N. Holder, and C. C. Wylie, eds.), pp. 123–136, Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynaud, G., 1969, Transferí de cellules germinales primordiales de dindon á l′embryon de poulet par injection intravasculaire, J. Embryol. Exp. MorphoJ. 21: 485–507.

    CAS  Google Scholar 

  • Rogulska, T. R., Ozdzenski, L., and Komar, A., 1971, Behaviour of mouse primordial germ cells in the chick embryo, J. Embryol. Exp. MorphoJ. 25: 155–164.

    CAS  Google Scholar 

  • Shevinsky, L. H., Knowles, B. B., Damjanov, I., and Solter, D., 1982, Monoclonal antibody to murine embryos defines a stage–specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells, Cell 30: 697–705.

    Article  PubMed  CAS  Google Scholar 

  • Snow, M. H. L., and Monk, M., 1983, Emergence and migration of mouse primordial germ cells, in: Current Problems in Germ Cell Differentiation (A. McLaren and C. C. Wylie, eds.), pp. 115– 136, Cambridge University Press, Cambridge.

    Google Scholar 

  • Solter, D., and Knowles, D. P., 1978, Monoclonal antibody defining a stage specific mouse embryonic antigen (SSEA–1), Proc. Natl. Acad. Sci. USA 75: 5565–5569.

    Article  PubMed  CAS  Google Scholar 

  • Stem, P., 1983, Serological and cell–mediated immune recognition of teratocarcinomas, in: Current Problems in Germ Cell Differentiation ( A. McLaren and C. C. Wylie, eds.), pp. 157–174, Cambridge University Press, Cambridge.

    Google Scholar 

  • Strome, S., and Wood, W. B., 1983, Generation of asymmetry and segregation of germ line granules in early C. elegans embryos, Cell 35: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Whitington, P. McD., and Dixon, K. E., 1975, Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis, J. Embryol. Exp. Morphol. 33: 57–74.

    PubMed  CAS  Google Scholar 

  • Willison, K. R., Karol, R. A., Suzuki, A., Kundu, S. K., and Marcus, D. M., 1982, Neutral glycolipid antigens as developmental markers of mouse teratocarcinoma and early embryos: An immunologic and chemical analysis, J. Immunol. 129 (2): 603–609.

    PubMed  CAS  Google Scholar 

  • Wylie, C. C., and Heasman, J., 1976, The formation of the gonadal ridge in Xenopus laevis. I. A light and transmission electron microscope study, J. Embryol. Exp. Morphol. 35: 125–138.

    PubMed  CAS  Google Scholar 

  • Wylie, C. C., Heasman, J., Swan, A. P., and Anderton, B. H., 1979, Evidence for substrate guidance of primordial germ cells, Exp. Cell Res. 121: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Zigmund, S. H., 1978, Chemotaxis by polymorphonuclear leucocytes, J. Cell Biol. 77: 269–287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Wylie, C.C., Stott, D., Donovan, P.J. (1986). Primordial Germ Cell Migration. In: Browder, L.W. (eds) The Cellular Basis of Morphogenesis. Developmental Biology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2141-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2141-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9264-7

  • Online ISBN: 978-1-4613-2141-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics