Skip to main content

Image Analysis of Transmitter Identified Neurons Using the IBAS System

  • Chapter
Quantitative Neuroanatomy in Transmitter Research

Part of the book series: Wenner-Gren Center International Symposium Series ((WGCISS,volume 42))

Abstract

The introduction of advanced technology and a much more flexible hardware concept now means that image analysis systems can be used efficiently in diverse fields of scientific research and industrial inspection work. Thus, digital image processing has furnished mankind with some highly spectacular products: enhanced satellite photographs of the planets (including the earth), colourful representations of more distant celestial objects, aerial photography analysis, automatic material testing, industrial quality control and medical diagnosis such as images assembled from X-ray data to show a cross section of the human body (see e.g. IEEE, 1983). Technological advances have increased both the sensitivity, resolution and speed of the detecting systems as well as the computing power of the host systems. In the present chapter some studies using the Zeiss/Kontron IBAS interactive image analyser in conjunction with typical problems of neurobiology will be presented. The communication will review some preliminary data obtained regarding the distribution of transmitter identified nerve cells in a brain nucleus as well as morphometric analysis both at the light and electron microscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnati, L.F., Fuxe, K., Benfenati, F., Zini, I., Zoli, M., Fabbri, L. and Härfstrand, A. (1984). Computer assisted morphometry and microdensitometry of transmitter identified neurons with special reference to the mesostriatal dopamine pathway. Methodological aspects. Acta physiol. scand., Suppl. 532, 5–36.

    CAS  Google Scholar 

  • Agnati, L.F., Fuxe, K., Calza, L., Benfenati, F., Battistini, N., Zini, I., Fabbri, L. and Goldstein, M. (1983). Characterization of striatal ibotenate lesions and of 6-hydroxydopamine induced nigral lesions by morphometric and densitometric approaches. In Excitotoxins (eds. K. Fuxe, P. Roberts and R. Schwarcz). Macmillan Press, London.

    Google Scholar 

  • Agnati, L.F., Fuxe, K., Calza, L., Hökfelt, T., Johansson, O., Benfenati, F. and Goldstein, M. (1982a). A morphometric analysis of transmitter identified dendrites and nerve terminals. Brain Res. Bull., 9, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Agnati, L.F., Fuxe, K., Hökfelt, T., Benfenati, F., Calza, L., Johansson, O. and De Mey, J. (1982b). Morphometric characterization of transmitter-identified nerve cell groups: Analysis of mesencephalic 5-HT nerve cell bodies. Brain Res. Bull., 9, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Agnati, L.F., Fuxe, K., Locatelli, V., Benfenati, F., Zini, I., Panerai, A.E., El Etreby, M.F. and Hökfelt, T. (1982c) Neuroanatomical methods for the quantitative evaluation of coexistence of transmitters in nerve cells. Analysis of the ACTH- and beta-endorphin immunoreactive nerve cell bodies of the mediobasal hypothalamus of the rat. J. Neurosci. Meth., 5, 203–214.

    Article  CAS  Google Scholar 

  • Agnati, L.F., Fuxe, K., Zini, I., Benfenati, F., Hökfelt, T. and De Mey, J. (1982d). Principles for the morphological characterization of transmitter-identified nerve cell groups. J. Neurosci. Meth., 6, 157–167.

    Article  CAS  Google Scholar 

  • Agnati, L.F., Fuxe, K., Zini, I., Calza, L., Benfenati, F., Zoli, M., Hökfelt, T and Goldstein, M. (1982e). A new approach to quantitate the density and antigen contents of high densities of transmitter-identified terminals, immunocytochemical studies on different types of tyrosine hydroxylase immunoreactive nerve terminals in nucleus caudatus putamen of the rat. Neurosci. Lett., 32, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Coons, A.H. (1958). Fluorescent antibody methods. In General Cytochemical Methods, Vol. 1 (ed. J.F. Danielli). Academic Press, New York.

    Google Scholar 

  • Dimova, R., Vaillet, J. and Seite, R. (1980). Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections. Neuroscience, 5, 1581–1596.

    Article  PubMed  CAS  Google Scholar 

  • Foster, G.A. and Johansson, O. (1985). Ultrastructural morphometric analysis of somatostatin-like immunoreactive neurones in the rat central nervous system after labelling with colloidal gold. Brain Res., submitted.

    Google Scholar 

  • Fuxe, K., Agnati, L.F., Ganten, D., Lang, R.E., Calza, L., Poulsen, K. and Infantellina, F. (1982). Morphometrical evaluation of the coexistence of renin-like and oxytocin-like immunoreac- tivity in nerve cells of the paraventricular hypothalamic nucleus of the rat. Neurosci. Lett., 33, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Graham, R.C. Jr and Karnovsky, M.J. (1966). The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem., 14, 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, B.K., Zide, D. and Udenfriend, S. (1972). The use of dopamine-3-hydroxylase as a marker for the central nor-adrenergic nervous system in rat brain. Proc. natn. Acad. Sci. U.S.A., 69, 2722–2726.

    Article  CAS  Google Scholar 

  • Hökfelt, T., Fuxe, K., Goldstein, M. and Joh, T.H. (1973). Immunohistochemical localization of three catecholamine synthesizing enzymes: aspects on methodology. Histochemie, 33, 231–254.

    PubMed  Google Scholar 

  • Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M. and Schultzberg, M. (1980a). Peptidergic neurones. Nature, 284, 515–521.

    Article  PubMed  Google Scholar 

  • Hökfelt, T, Lundberg, J.M., Schultzberg, M., Johansson, O., Ljungdahl, A. and Rehfeld, J. (1980b). Coexistence of peptides ana putative transmitters in neurons. In Neural Peptides and Neuronal Communication (eds. E. Costa and M. Trabucchi). Raven Press, New York.

    Google Scholar 

  • Hökfelt, T., Lundberg, J.M., Skirboll, L., Johansson, O., Schultzberg, M. and Vincent, S.R. (1982). Coexistence of classical transmitters and peptides in neurones. In Co-transmission (ed. A.C. Cuello). MacMillan Press, London.

    Google Scholar 

  • IEEE (1983). Proceedings of the 1983 Computer Vision and Pattern Recognition Conference. IEEE Computer Society Press, Maryland.

    Google Scholar 

  • Johansson, O. (1983). Peptide neurons in the central and peripheral nervous system. Light and electron microscopic studies. Doctoral Dissertation, Stockholm.

    Google Scholar 

  • Johansson, O. and Backman, J. (1983). Enhancement of immune-peroxidase staining using osmium tetroxide. J. Neurosci. Meth., 7, 185–193.

    Article  CAS  Google Scholar 

  • Johansson, O., Foster, G. A. and Hókfelt, T. (1984). EM-immunocytochemistry of transmitter identified neurons. In Proceedings of the 1984 Scandinavian Society for Electron Microscopy Meeting (Abstr.).

    Google Scholar 

  • Johansson, O. and Hallman, H. (1984). The use of interactive image analysis for demonstrating coexistence. Neurochem. Internat., in press.

    Google Scholar 

  • Johansson, O., Hökfelt, T., Pernow, B., Jeffcoate, S.L., White, N., Steinbusch, H.W.M., Verhofstad, A.A.J., Emson, P.C. and Spindel, E. (1981). Immunohistochemical support for three putative transmitters in one neuron: Coexistence of 5-hydroxytryptamine, substance P- and thyrotropin releasing hormonelike immunoreactivity in medullary neurons projecting to the spinal cord. Neuroscience, 6, 1857–1881.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, O. and Vincent, S.R. (1984). Coexistence of somatostatin- and NPY-like immunoreactivity in the forebrain. In Proceedings of the Vllth International Congress of Histochemistry and Cytochemistry (Abstr.).

    Google Scholar 

  • Lundberg, J.M. (1981). Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands. Morphological, biochemical and functional studies. Acta Physiol. Scand., Suppl. 496, 1–57.

    CAS  Google Scholar 

  • Lundberg, J.M. and Hökfelt, T. (1983). Coexistence of peptides and classical transmitters. Trends in NeuroSciences, 6, 325–333.

    Article  CAS  Google Scholar 

  • Scherer-Singler, U., Kimura, H., Vincent, S.R. and McGeer, E.G. (1984). The NADPH-diaphorase technique: Methods description. J. Comp. Neurol., in preparation.

    Google Scholar 

  • Sternberger, L.A. (1979). Immunocytochemistry, 2nd Edn. John Wiley and Sons, New York.

    Google Scholar 

  • Vincent, S.R. and Johansson, O. (1983). Striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity: A light and electron microscopic study. J. Comp. Neurol., 217, 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.R., Johansson, O., Hökfelt, T., Skirboll, L., Elde, R.P., Terenius, L., Kimmel, J. and Goldstein, M. (1983). NADPH-diaphorase: A selective histochemical marker for striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities. J. Comp. Neurol., 217, 252–263.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.R., Johansson, O., Skirboll, L. and Hökfelt, T. (1982a). Coexistence of somatostatin- and avian pancreatic polypeptide-like immunoreactivities in striatal neurons which are selectively stained for NADPH-diaphorase activity. In Regulatory Peptides: From Molecular Biology to Function (eds. E. Costa and M. Trabucchi). Raven Press, New York.

    Google Scholar 

  • Vincent, S.R., Skirboll, L., Hökfelt, T., Johansson, O., Lundberg, J.M., Elde, R.P., Terenius, L. and Kimmel, J. (1982b). Coexistence of somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivity in some forebrain neurons. Neuroscience, 7, 439–446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Wenner-Gren Centre

About this chapter

Cite this chapter

Johansson, O., Hallman, H. (1985). Image Analysis of Transmitter Identified Neurons Using the IBAS System. In: Agnati, L.F., Fuxe, K. (eds) Quantitative Neuroanatomy in Transmitter Research. Wenner-Gren Center International Symposium Series, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2139-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2139-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9263-0

  • Online ISBN: 978-1-4613-2139-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics