Applications of Stepwise Electron and Laser Excitation Of Atoms To Atomic Collision Studies

  • M. C. Standage
Part of the NATO ASI Series book series (NSSB, volume 134)

Abstract

Over the past decade, the application of tunable dye lasers to the field of electron-atom collision physics has produced a range of new techniques for investigating collision processes. One of these techniques utilizes stepwise excitation of target atoms by a combination of electron and laser excitation. Information about the collision processes involved in the electron excitation step is obtained from intensity and polarization measurements made on fluorescence emitted from the stepwise excited atoms. Such experiments fall into two categories determined by whether laser excitation is used in the first or second excitation steps. In the former case, electron excitation from the laser excited state to higher lying states provides information on excited state collision parameters. In this paper, we consider only the latter case which provides new techniques for studying the electron impact excitation of ground state atoms (1–7) and allows several aspects of such collision processes to be studied in new detail. The narrow bandwidth of laser radiation permits the fine and hyperfine structure of many atomic transitions to be resolved in the laser excited step providing a method for studying the effects of such structure on atomic collisions, as in the case of tests of the Percival-Seaton hypothesis, or for eliminating such effects in the measurement of atomic collision parameters.

Keywords

Quartz Mercury Tungsten Flange 199Hg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phillips, M.H., Anderson, L.W. and Lin, C.C., 1981, Phys. Rev. A23, 2751.ADSCrossRefGoogle Scholar
  2. 2.
    Miers, R.W., Gastineau, J.E., Phillips, M.H., Anderson, L.W. and Lin, C.C., 1982, Phys. Rev. A25, 1185.ADSCrossRefGoogle Scholar
  3. 3.
    Phelps, J.O., Phillips, M.H., Anderson, L.W. and Lin, C.C., 1983, J. Phys. B: At. Mol. Phys. 16, 3825.ADSCrossRefGoogle Scholar
  4. 4.
    McLucas, C.W., MacGillivray, W.R. and Standage, M.C., 1982a, Phys. Rev. Lett. 48, 88.ADSCrossRefGoogle Scholar
  5. 5.
    McLucas, C.W., Wehr, H.J.E., MacGillivray, W.R. and Standage, M.C., 1982b, J. Phys. B: At. Mol. Phys. 15, 1983.Google Scholar
  6. 6.
    Webb, C.J., MacGillivray, W.R. and Standage, M.C., 1984a, J. Phys. B: At. Mol. Phys. 17, 1675.ADSCrossRefGoogle Scholar
  7. 7.
    Webb, C.J., MacGillivray, W.R. and Standage, M.C., 1984b, J. Phys. B: At. Mol. Phys. 17, 2377.Google Scholar
  8. 8.
    Hertel, I.V. and Stoll, W., 1977, Adv. At. Mol. Phys. B, 113.Google Scholar
  9. 9.
    Blum, K., 1981, Density Matrix Theory and Applications (N.Y. Plenum).Google Scholar
  10. 10.
    Webb, C.J., MacGillivray, W.R. and Standage, M.C., 1985, submitted to J. Phys. B: At. Mol. Phys.Google Scholar
  11. 11.
    McConnell, J.C. and Moiseiwitsch, B.L., 1968, J. Phys. B: At. Mol. Phys. 81, 406.ADSCrossRefGoogle Scholar
  12. 12.
    Skinner, H.W.B. and Appleyard, E.T.S., 1927, Proc. Roy. Soc. (London), A117, 224.ADSCrossRefGoogle Scholar
  13. 13.
    Ottley, T.W., Denne, D.R. and Kleinpoppen, H., 1974, J. Phys. B: At. Mol. Phys. 7, L179.ADSCrossRefGoogle Scholar
  14. 14.
    Webb, C.J., MacGillivray, W.R. and Standage, M.C., 1985, submitted to J. Phys. B: At. Mol. Phys.Google Scholar
  15. 15.
    Bartschat, K., 1983, Private communication.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. C. Standage
    • 1
  1. 1.Schoo1 of ScienceGriffith UniversityNathanAustralia

Personalised recommendations