Anisotropy in Photofragmentation

  • Chris H. Greene
Part of the NATO ASI Series book series (NSSB, volume 134)


The past decade has seen intensive study of photoionization and photodissociation processes in atoms and molecules. The degree of experimental difficulty and the degree of theoretical sophistication needed to characterize a photofragmentation process both increase rapidly with the total number of correlated directions observed simultaneously. From this point of view the simplest processes involve only one direction, the incident photon polarization axis εˆ. For this class of processes the quantity of interest is the total cross section σ (or perhaps the isotropic partial cross sections σi. in alternative fragmentation channels i). The next step up in complexity involves two directions, the incident polarization axis and one other direction. For photofragment angular distributions the second axis is of course Kˆ, the escape axis of the separating fragments. Another class of experiments in which just two directions are relevant is the class of alignment and orientation experiments. In these a photon, emitted after the photoeffect has produced an excited fragment state, is observed along some axis Kˆʹ, thereby providing the second direction.


Angular Momentum Angular Distribution Asymmetry Parameter Rotational Alignment Fragmentation Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Starace, “Theory of Atomic photoionization,” in Handbuch der Physik, Vol. 31, W. Mehlhorn, Ed. (Springer, Berlin, 1982 ). pp 1–121.Google Scholar
  2. 2.
    U. Fano and D. Dill, Phys. Rev. A 6, 185 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    D. Dill and U. Fano, Phys. Rev. Lett. 29, 1203 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    D. Dill, unpublished correspondence with R. N. Zare (1977).Google Scholar
  5. 5.
    C. H. Greene and R. N. Zare, Ann. Rev. Phys. Chem. 33, 119 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    C. M. Lee, Phys. Rev. A 10, 1598 (1974).Google Scholar
  7. 7.
    V. L. Jacobs, J. Phys. B 45, 2257 (1972).Google Scholar
  8. 8.
    D. Dill, Phys. Rev. A 7, 1976 (1973).Google Scholar
  9. 9.
    C. H. Greene, Phys. Rev. Lett. 44, 869 (1980).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    U. Fano and C. H. Greene, Phys. Rev. A 22, 1760 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    D. W. Lindle, “Inner-Shell Photoemission from Atoms and Molecules using Synchrotron Radiation”,Doctoral Dissertation, Lawrence Berkeley Laboratory, University of California (1983).Google Scholar
  12. 12.
    D. A. Shirley, P. H. Kobrin, C. M. Truesdale, D. W. Lindle, T. A. Ferrett, P. A. Heimann, U. Becker, H. G. Kerkhoff, and S. H. Southworth, “Gas-Phase Photoemission with Soft X- Rays: Cross Sections and Angular Distributions”, presented at the Brookhaven Conference, Advances in Soft X-Ray Science and Technology, Brookhaven National Laboratory, Upton, New York (1983).Google Scholar
  13. 13.
    J. M. Bizau, F. Wuilleumier, P. Dhez, D. L. Ederer, E. N. Chang, S. Krummacher, and V. Schmidt, Phys. Rev. Lett. 48, 588 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    V. Schmidt, H. Derenbach, and R. Malutzki, J. Phys. B 15, L523 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    P. Morin, M. Y. Adam, I. Nenner, J. Delwiche, M. J. Hubin- Franskin, and P. Lablanquie, Nucl. Instrum. Meth. 208, 761 (1983).CrossRefGoogle Scholar
  16. 16.
    V. L. Jacobs and P. G. Burke, J. Phys. B _5, L67 (1972).Google Scholar
  17. 17.
    P. C. Ojha, J. Phys. B 17, 1807 (1984).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    K. A. Berrington, P. G. Burke, W. C. Fon, and K. T. Taylor, J. Phys. BJ_5, L603 (1982).Google Scholar
  19. 19.
    H. Klar and W. Schlecht, J. Phys. B _9, 1699 (1976).Google Scholar
  20. 20.
    C. H. Greene and A. R. P. Rau, Phys. Rev. Lett. 48, 533 (1982), and J. Phys. B J[6, 99 (1983).Google Scholar
  21. 21.
    U. Fano, J. Phys. B l7 L401 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    U. Fano and J. H. Macek, Rev. Mod. Phys. 45, 553 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    J. Vigué, j. A. Beswick, and M. Broyer, J. Phys. (Paris) 44, 1225 (1983).CrossRefGoogle Scholar
  24. 24.
    J. Cpoper and R. N. Zare, “Photoelectron Angular Distributions”, in Lectures in Theoretical Physics: Atomic Collision Processes, Vol. XI-C, S. Geltman, K. T. Mahanthappa, and W. E. Brittin, Eds. (Gordon and Breach, 1969 ), pp 317–337.Google Scholar
  25. 25.
    C. D. Caldwell and R. N. Zare, Phys. Rev. A 16, 225 (1977).ADSCrossRefGoogle Scholar
  26. 26.
    J. A. Guest, M. A. Halloran, and R. N. Zare, Chem. Phys. Lett. 103, 261 (1984).ADSCrossRefGoogle Scholar
  27. 27.
    W. S. Felps, S. P. McGlynn, and G. L. Findley, J. Mol. Spectry. 86, 71 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Chris H. Greene
    • 1
  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations