Association of the Ion Pair End-Groups of Halato Telechelic Polymers in Nonpolar Solvents

  • R. Jerome
  • G. Broze
  • Ph. Teyssie
Part of the Polymer Science and Technology book series (NISS, volume 30)


Halato telechelic polymers (HTP) result from the complete ionization of both ends of telechelic prepolymers. In nonpolar solvents, they form homogeneous gels which upon dilution generally transform into more or less viscous solutions unless they display a phase separation process. In the former case, critical gel concentrations (Cge1) as low as 1.5 g dL-1 are observed. This process is dependent on flie molecular weight of the prepolymer according to the general relationship \({C_{gel}} = k.{{\bar M}_n}^{ - 1/2}\). Solutions of 10 g DL-1 α,ω alkaline earth dicarboxylato polybutadiene \(({{\bar M}_n} = \,4,\,600)\) in xylene exhibit an attractive thermorheological simplicity and obey a deformation mechanism controlled by the stability and the mean size of multiplets formed by the carboxylate end-groups. A secondary relaxation characteristic of these multiplets is clearly evidenced. Furthermore, the shear-thickening character of these solutions is noteworthy. Nature of ion pairs, polarity of the medium, and temperature significantly influence the general behavior of HTP solutions and prove its electrostatic origin. At high concentrations (> 50 g dL-l), the multiplets can possibly aggregate and form periodic structures with a lamellar character, as evidenced by the SAXS spectra of α,ω) — Ba and K dicarboxylatopolybutadienes in toluene.


Propylene Carbonate Nonpolar Solvent Relative Viscosity Alkaline Earth Cation Secondary Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. V. Titow and B. J. Lanham, “Reinforced Thermoplastics,” Applied Science Publ. Ltd, 1975.Google Scholar
  2. 2.
    T. L. Smith, Rubb. Chem. Technol., 51, 225 (1978).Google Scholar
  3. 3.
    A. Noshay and J. E. McGrath, “Block Copolymers - Overview and Critical Survey,” Academic Press, Inc., 1977.Google Scholar
  4. 4.
    D. R. Paul and S. Newman (Eds.), “Polymer Blends,” Academic Press, Inc. vol. 1 and 2, 1978.Google Scholar
  5. 5.
    A. Eisenberg, Contemp. Top. Polym. Sei., 3, 231 (1979).Google Scholar
  6. 6.
    W. J. McKnight and T. R. Earnest, Jr., J. Polym. Sei., Macromol. Rev., 16, 41 (1981).CrossRefGoogle Scholar
  7. 7.
    Yu. N. Panov, Europ. Polym. J., 15, 395 (1979).Google Scholar
  8. 8.
    R. D. Lundberg and H. S. Makowski, J. Polym. Sei., Polym. Phys. Ed., 18, 1821 (1980).CrossRefGoogle Scholar
  9. 9.
    B. Siadat, R. D. Lundberg and R. W. Lenz, Macromolecules, 14, 773 (1981).Google Scholar
  10. 10.
    N. Ise and T. Okubo, Acc. Chem. Res., 13, 303 (1980).Google Scholar
  11. 11.
    G. Broze, R. Jerome and Ph. Teyssie, Macromolecules, 14, 224 (1981).Google Scholar
  12. 12.
    G. Broze, R. Jerome and Ph. Teyssie, Macromolecules, 15, 920 (1982).Google Scholar
  13. 13.
    J. Economy andJ. H. Mason, “Ionic Polymers,” L. Holliday, Ed., Applied Science Publishers, Chap. V, London, 1975.Google Scholar
  14. 14.
    J. C. Danjard, C. Niemerich, and M. Pineri, Rev. Gen. Caoutchouc Plast. (R.G.C.P.), 50, 723 (1973).Google Scholar
  15. 15.
    M. Pineri, C. Meyer, A. M. Levelut and M. Lambert, J. Polym. Sei., Polym. Phys. Ed., 12, 115 (1974).Google Scholar
  16. 16.
    E. P. Otocka, M. Y. Hellman and L. L. Blyler, J. Appl. Phys., 40, 4221 (1969).Google Scholar
  17. 17.
    G. Broze, R. Jerome, Ph. Teyssie and C. Marco, Macromolecules, 16, 996 (1983).Google Scholar
  18. 18.
    P. M. Van Der Velden, B. Rijpkema, C. A. Smolders and A. Bantes, Europ. Polym. J., 13, 37 (1977).Google Scholar
  19. 19.
    G. Broze, P. M. Lefebvre, R. Jerome and Ph. Teyssie, Makromol. Chem., 178, 3171 (1977).Google Scholar
  20. 20.
    D. H. Richards and F. J. Burgers, Polymer, 17, 1020 (1976).Google Scholar
  21. 21.
    J. F. Joanny, Polymer, 21, 71 (1980).Google Scholar
  22. 22.
    G. Broze, R. Jerome and Ph. Teyssie, Macromolecules, 15, 1300 (1982).Google Scholar
  23. 23.
    P. J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, 1953, 621.Google Scholar
  24. 24.
    G. Broze, R. Jerome, Ph. Teyssie and B. Gallot, J. Polym. Sei., Polym. Letters Ed., 19, 415 (1981).Google Scholar
  25. 25.
    J. D. Ferry, !TViscoelastic Properties of Polymers,1994 John Wiley, New York, 1970.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. Jerome
    • 1
  • G. Broze
    • 1
  • Ph. Teyssie
    • 1
  1. 1.Laboratory of Macromolecular Chemistry and Organic CatalysisUniversity of LiegeLiegeBelgium

Personalised recommendations