Skip to main content

The Relation Between Crystal Structure and Ionic Conductivity in the NASICON Solid Solution System, Na1+xZr2SixP3−x012 (0≤x≤3)

  • Chapter
Materials Characterization for Systems Performance and Reliability

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((PHAE,volume 26))

  • 198 Accesses

Abstract

The NASICON system is a solid solution system that can be represented by the formula Na1+xZr2SixP3−x012, with x between 0 and 3. The word NASICON is an acronym for Na super-ionic conductor and is the name given to a specific composition in the solid solution system, that with x = 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bogusz, F. Krok and W- Jakubowski, “Bulk and Grain Boundary Electrical Conductivities of NASICON,” Solid State Ionics, 2, 171–174, (1981).

    Article  CAS  Google Scholar 

  2. J. P. Boilot, J. P. Salanie, G. Desplanches and D. LePotier, “Phase Transformation in Na1+xSixZr2P3-xO12 Compounds,” Mat. Res. Bull., 14, 1469–1477, (1979).

    Article  CAS  Google Scholar 

  3. C. Delmas, J. C. Viala, R. Olazcuaga, G. LeFlem, P. Hagenmuller, F. Cherkaoui and R. Brochu, “Ionic Conductivities in NASICON-Type Phases Na1+xZr2-xLx(PO4)3 (L = Cr, In, Yb),” Solid State Ionics, 3/4, 209–214, (1981).

    Article  Google Scholar 

  4. J. B. Goodenough, H. Y.-P. Hong and J. A. Kafalas, “Fast Na+-Ion Transport in Skeleton Structures,” Mat. Res. Bull., 11, 203–220, (1976).

    Article  CAS  Google Scholar 

  5. L.-O. Hagman and P. Kierkegaard, “The Crystal Structure of NaMe(stack) (PO4)3; MeIV = Ge, Ti, Zr,” Acta Chem. Scand., 22, 1822–1832, (1968).

    Article  CAS  Google Scholar 

  6. H. Y.-P. Hong, “Crystal Structures and Crystal Chemistry in the System Na1+xZr2SixP3-xO12,” Mat. Res. Bull., 11, 173–182, (1976).

    Article  CAS  Google Scholar 

  7. J. A. Kafalas and R. J. Cava, “Effect of Pressure and Composition on Fast Na+-Ion Transport in the System Na1+xZr2SixP3-x012,” Fast Ion Transport in Solids, (Vashishta, Mundy Shenoy, Editors), Elsevier North Holland, Inc., NY, 419–422, (1979).

    Google Scholar 

  8. L. J. Schioler, “Relation Between Structural Change and Conductivity in the Fast-Ion Conducting NASICON Solid Solution System, Na1+xZr2SixP3-xO12.” ScD. Thesis, MIT, (1983).

    Google Scholar 

  9. D. TranQui, J. J. Capponi, M. Gondrand, M. Saib and J. C. Joubert, “Thermal Expansion of the Framework in NASICON-Type Structure and its Relation to Na+ Mobility,” Solid State Ionics, 3/4, 219–222, (1981a).

    Google Scholar 

  10. D. TranQui, J. J. Capponi, J. C. Joubert and R. D. Shannon, “Crystal Structure and Ionic Conductivity in Na4Zr2Si3O12, ” J. Sol. State Chem, 39, 219–229, (1981b).

    Google Scholar 

  11. U. Von Alpen, M. F. Bell and H. H. Hofer, “Compositional Dependence of the Electrochemical and Structural Parameters in the NASICON System (Na1+xSixZr2P3-xO12), ”Solid State Ionics, 3/4, 215–218, (1981).

    Google Scholar 

  12. B. J. Wuensch, “Principles of Superionic Conduction,” Annual Report, Department of Energy contract #450-7910, July, (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Schioler, L.J., Wuensch, B.J., Prince, E. (1986). The Relation Between Crystal Structure and Ionic Conductivity in the NASICON Solid Solution System, Na1+xZr2SixP3−x012 (0≤x≤3). In: McCauley, J.W., Weiss, V. (eds) Materials Characterization for Systems Performance and Reliability. Sagamore Army Materials Research Conference Proceedings, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2119-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2119-4_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9253-1

  • Online ISBN: 978-1-4613-2119-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics