Hippocampal Pyramidal Cells: Ionic Conductance and Synaptic Interactions

  • R. K. S. Wong
  • R. E. Numann
  • R. Miles
  • R. D. Traub

Abstract

The burst firing pattern of the hippocampal pyramidal cells was first described by Kandel and Spencer in their intracellular studies using the in vivo cat preparation (Kandel and Spencer, 1961). Subsequently, the ionic basis for action potential generation in the hippocampal pyramidal cells has been extensively studied in the hippocampal slice. Data derived from the in vitro preparation also demonstrated that the bursting pattern provided a basis for the generation of synchronized population oscillation in the hippocampus. In this chapter we describe the membrane conductance system of the pyramidal cells that allows burst generation. In addition, we summarize the way synaptic interaction can occur between these bursting cells to bring about population synchrony.

Keywords

Noradrenaline Acetylcholine Papain Tetrodotoxin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alger, B. E. and Nicoll, R. A., 1980, Epileptiform burst afterhyperpolarization: calcium-dependent potassium potential in hippocampal pyramidal cells studied in vitro, Science 210: 1122–1124.PubMedCrossRefGoogle Scholar
  2. Alger, B. E. and Nicoll, R. A., 1982, Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro, J. Physiol. (London) 328: 105–123.Google Scholar
  3. Andersen, P., Eccles, J. D., and Loyning, Y., 1963, Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses, Nature 198: 540–542.PubMedCrossRefGoogle Scholar
  4. Brown, D. A. and Griffith, W. H., 1983a, Calcium activated outward current in voltage-clamped hippocampal neurones of the guinea-pig, J. Physiol. (London) 337: 287–301.Google Scholar
  5. Brown, D. A. and Griffith, W. H., 1983b, Persistent slow inward calcium current in voltage-clamped hippocampal neurones of the guinea-pig, J. Physiol. (London) 337: 303–320.Google Scholar
  6. Cole, A. E. and Nicoll, R. A., 1983, Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells, Science 221: 1299–1301.PubMedCrossRefGoogle Scholar
  7. Gustafsson, B., Galvan, M., Grafe, P., and Wigstrom, H., 1982, A transient outward current in a mammalian central neurone blocked by 4-aminopyridine, Nature 299: 252–254.PubMedCrossRefGoogle Scholar
  8. Halliwell, J. V. and Adams, P. R., 1982, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71–92.PubMedCrossRefGoogle Scholar
  9. Hotson, J. R. and Prince, D. A., 1980, A calcium activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43: 409–419.PubMedGoogle Scholar
  10. Johnston, D., Hablitz, J. J., and Wilson, W. A., 1980, Voltage-clamp discloses slow inward current in hippocampal burst firing neurons, Nature 286: 391–393.PubMedCrossRefGoogle Scholar
  11. Kandel, E. R. and Spencer, W. A., 1961, Electrophysiology of hippocampal neurons. II. Afterpotentials and repetitive firing, J. Neurophysiol. 24: 243–259.PubMedGoogle Scholar
  12. Madison, D. V. and Nicoll, R. A., 1982, Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus, Nature 299: 636–638.PubMedCrossRefGoogle Scholar
  13. Miles, R. and Wong, R. K. S., 1983, Single neurones can influence synchronized population discharge in the CA3 region of the guinea pig hippocampus, Nature 306: 371–373.PubMedCrossRefGoogle Scholar
  14. Miles, R. and Wong, R. K. S., 1984, Unitary inhibitory synaptic potentials in the guinea pig hippocampus in vitro, J. Physiol. (London) 356: 97–113.Google Scholar
  15. Numann, R. E. and Wong, R. K. S., 1984, Voltage-clamp study on GAB A response desensitization in single pyramidal cells dissociated from the hippocampus of adult guinea-pigs, Neurosci. Lett. 47: 289–294.PubMedCrossRefGoogle Scholar
  16. Schwartzkroin, P. A. and Prince, D. A., 1980, Changes in excitatory and inhibitory potentials leading to epileptogenic activity, Brain Res. 183: 61–76.PubMedCrossRefGoogle Scholar
  17. Schwartzkroin, P. A. and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurons, Brain Res. 135: 157–161.PubMedCrossRefGoogle Scholar
  18. Traub, R. D. and Wong, R. K. S., 1982, Cellular mechanism of neuronal synchronization in epilepsy, Science 216: 745–747.PubMedCrossRefGoogle Scholar
  19. Traub, R. D. and Wong, R. K. S., 1983, Synchronized burst discharge in disinhibited hippocampal slice. II. Model of cellular mechanism, J. Neurophysiol. 49: 442–458.PubMedGoogle Scholar
  20. Wong, R. K. S. and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159: 385–390.PubMedCrossRefGoogle Scholar
  21. Wong, R. K. S. and Prince, D. A., 1979, Dendritic mechanism underlying penicillin-induced epileptiform activity, Science 204: 1228–1231.PubMedCrossRefGoogle Scholar
  22. Wong, R. K. S. and Traub, R. D., 1983, Synchronized burst discharge in the disinhibited hippocampal slice. I. Initiation in the CA2-CA3 region, J. Neurophysiol. 48: 938–951.Google Scholar
  23. Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Natl. Acad. Sci. U.S.A. 76: 986–990.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. K. S. Wong
    • 1
  • R. E. Numann
    • 1
  • R. Miles
    • 1
  • R. D. Traub
    • 2
    • 3
  1. 1.Department of Physiology and BiophysicsUniversity of Texas Medical BranchGalvestonUSA
  2. 2.IBM T. J. Watson Research CenterYorktown HeightsUSA
  3. 3.Neurological InstituteNew YorkUSA

Personalised recommendations