Advertisement

Changes of Membrane Currents and Calcium-Dependent Phosphorylation during Associative Learning

  • Daniel L. Alkon

Abstract

Much of what we learn concerns temporal relationships between stimuli or groups of stimuli. How does a system of neurons learn the temporal relationship between distinct sensory stimuli, as occurs, for instance, with Pavlovian conditioning? What are the biophysical and biochemical transformations that actually store the learned temporal relationship?

Keywords

Hair Cell Protein Phosphorylation Associative Learning Pavlovian Conditioning Temporal Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta-Urquidi, J., Alkon, D. L., Connor, J. A., and Neary, J. T., 1983, Intracellular injection of a Ca2+-dependent protein kinase amplifies Ca2+-mediated inactivation of a transient K+ current (IA) in Hermissenda giant neurons, Soc. Neurosci. Abstr. 9: 501.Google Scholar
  2. Acosta-Urquidi, J., Alkon, D. L., and Neary, J. T., 1984, Ca2+-dependent protein kinase injection in a photoreceptor mimics biophysical effects of associative learning, Science 224:1254–1257.PubMedCrossRefGoogle Scholar
  3. Alkon, D. L., 1973, Intersensory interactions in Hermissenda, J. Gen. Physiol. 62:185–202.PubMedCrossRefGoogle Scholar
  4. Alkon, D. L., 1974a, Associative training of Hermissenda, J. Gen. Physiol. 64:70–84.PubMedCrossRefGoogle Scholar
  5. Alkon, D. L., 1974b, Sensory interactions in the nudibranch mollusc Hermissenda crassicornis, Fed. Proc. 33:1083–1090.Google Scholar
  6. Alkon, D. L., 1975, A dual synaptic effect on hair cells in Hermissenda, J. Gen. Physiol. 65:385–397.PubMedCrossRefGoogle Scholar
  7. Alkon, D. L., 1979, Voltage-dependent calcium and potassium ion conductances: A contingency mechanism for an associative learning model, Science 205:810–816.PubMedCrossRefGoogle Scholar
  8. Alkon, D. L., 1980, Membrane depolarization accumulates during acquisition of an associative behavioral change, Science 210:1375–1376.PubMedCrossRefGoogle Scholar
  9. Alkon, D. L., 1983, Learning in a marine snail, Sci. Am. 249:70–84.PubMedCrossRefGoogle Scholar
  10. Alkon, D. L., 1984, Calcium-inactivated potassium currents: A biophysical memory trace, Science 226:1037–1045.PubMedCrossRefGoogle Scholar
  11. Alkon, D. L. and Grossman, Y., 1978, Long-lasting depolarization and hyperpolarization in eye of Hermissenda, J. Neurophysiol. 41:1328–1342.PubMedGoogle Scholar
  12. Alkon, D. L. and Sakakibara, M., 1984, Prolonged inactivation of a Ca2+-dependent K+ current but not Ca2+-current by light-induced elevation of intracellular calcium, Soc. Neurosci. Abstr. 10:10.Google Scholar
  13. Alkon, D. L. and Sakakibara, M., 1984, Prolonged inactivation of a Ca2+-dependent K+ current but not Ca2+-current by light-induced elevation of intracellular calcium, Soc. Neurosci. Abstr. 10:10.Google Scholar
  14. Alkon, D. L., Lederhendler, I., and Shoukimas, J. J., 1982a, Primary changes of membrane currents during retention of associative learning, Science 215:693–695.PubMedCrossRefGoogle Scholar
  15. Alkon, D. L., Shoukimas, J., and Heldman, E., 1982b, Calcium-mediated decrease of a voltage- dependent potassium current, Biophys. J. 40:245–250.PubMedCrossRefGoogle Scholar
  16. Alkon, D. L., Farley, J., Sakakibara, M., and Hay, B., 1984, Voltage-dependent calcium and calcium- activated potassium currents of a molluscan photoreceptor, Biophys. J. 46:605–614.PubMedCrossRefGoogle Scholar
  17. Alkon, D. L., Sakakibara, M., Harrigan, J., Lederhandler, I., and Farley, J., 1985, Reduction of two voltage-dependent K+ currents mediates retention of a learned association, Behav. Neural Biol. (in press).Google Scholar
  18. Alkon, D. L., Kubuta, M., Neary, J. T., Naito, S., Coulter, D., and Rasmussen, H., 1986, C-kinase activation prolongs Ca2+-dependent inactivation of K+ currents, Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  19. Connor, J. A. and Alkon, D. L., 1984, Light- and voltage-dependent increases of calcium ion concentration in molluscan photoreceptors, J. Neurophysiol. 51:745–752.PubMedGoogle Scholar
  20. Crow, T. J. and Alkon, D. L., 1978, Retention of an associative behavioral change in Hermissenda crassicornis, Science 201:1239–1241.PubMedCrossRefGoogle Scholar
  21. Crow, T. J. and Alkon, D. L., 1980, Associative behavioral modification in Hermissenda: Cellular correlates, Science 209:412–414.PubMedCrossRefGoogle Scholar
  22. Disterhoft, J., Coulter, D. A., and Alkon, D. L., 1984, Conditioning causes intrinsic membrane changes of rabbit hippocampal neurons in vitro, Biol. Bull. Abstr. 167:526.Google Scholar
  23. Disterhoft, J. F., Coulter, D. A., and Alkon, D. L., 1985, Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro, Proc. Nat. Acad. Sci. USA (in press).Google Scholar
  24. Eckert, R., and Ewald, D., 1981, Calciums-mediated calcium channel inactivation determined from tail current measurements, Biophys. J. 33:145a.Google Scholar
  25. Eckert, R., and Ewald, D., 1983a, Calcium tail currents in voltage-clamped intact nerve cell bodies of Aplysia californica, J. Physiol. (Lond. ) 245:533–548.Google Scholar
  26. Eckert, R. and Ewald, D., 1983b, Inactivation of calcium conductance characterized by tail current measurements in neurons of Aplysia californica, J. Physiol. (Lond. ) 245:549–565.Google Scholar
  27. Eckert, R., and Lux, H. D., 1977, Calcium-dependent depression of late outward current in snail neurons, Science 197:472–475.PubMedCrossRefGoogle Scholar
  28. Eckert, R. and Tillotson, D., 1978, Potassium activation associated with intraneuronal free calcium, Science 200:437–439.PubMedCrossRefGoogle Scholar
  29. Eckert, R. and Tillotson, D., 1981, Calcium mediated inactivation of the calcium conductance in caseium-loaded giant neurones of Aplysia californica, J. Physiol. (Lond. ) 314:265–280.Google Scholar
  30. Eckert, R., Tillotson, D., and Brehm, P., 1981, Calcium mediated control of calcium and potassium currents, Fed. Proc. 40:2226–2232.PubMedGoogle Scholar
  31. Farley, J., 1985, Contingency learning and causal detection in Hermissenda: Behavioral and cellular mechanisms, Behav. Neurosci. (in press).Google Scholar
  32. Farley, J. and Alkon, D. L., 1982, Associative neural and behavioral change in Hermissenda consequences of nervous system orientation for light- and pairing-specificity, J. Neurophysiol. 48:785–807.PubMedGoogle Scholar
  33. Farley, J., Richards, W. G., Ling, L. J., Liman, E., and Alkon, D. L., 1983, Membrane changes in a single photoreceptor cause associative learning in Hermissenda, Science 221:1201–1203.PubMedCrossRefGoogle Scholar
  34. Farley, J., Sakakibara, M., and Alkon, D. L., 1984, Associative-training correlated changes in ICa-K in Hermissenda Type B photoreceptors, Soc. Neurosci. Abstr. 10:270.Google Scholar
  35. Forman, R., Alkon, D. L., Sakakibara, M., Harrigan, J., Lederhendler, I., and Farley, J., 1984, Changes in IA and Ic but not INa accompany retention of conditioned behavior in Hermissenda, Soc. Neurosci. Abstr. 10:121.Google Scholar
  36. Lederhendler, I., Goh, Y., and Alkon, D. L., 1982, Type B photoreceptor changes predict modification of motorneuron responses to light during retention of Hermissenda associative conditioning, Soc. Neurosci. Abstr. 8:824.Google Scholar
  37. Lederhendler, I., Gart, S., and Alkon, D. L., 1983, Associative learning in Hermissenda crassicornis (Gastropoda): Evidence that light (the CS) takes on characteristics of rotation (the UCS), Biol. Bull. Abstr. 165:528.Google Scholar
  38. Naito, S., Neary, J. T., Sakakibara, M., and Alkon, D. L., 1985, Elevated external potassium causes persistent change of specific protein phosphorylation in Hermissenda nervous sytem, Soc. Neurosci. Abstr. (in press).Google Scholar
  39. Neary, J. T., and Alkon, D. L., 1983, Protein phosphorylation/dephosphorylation and the transient, voltage-dependent potassium conductance in Hermissenda crassicornis, J. Biol. Chem. 258:8979–8983.PubMedGoogle Scholar
  40. Neary, J. T., Crow, T. J., and Alkon, D. L., 1981, Change in a specific phosphoprotein band following associative learning in Hermissenda, Nature 293:658–660.PubMedCrossRefGoogle Scholar
  41. Richards, W., Farley, J., and Alkon, D. L., 1983, Extinction of associative learning in Hermissenda: Behavior and neural correlates, Soc. Neurosci. Abstr. 9:916.Google Scholar
  42. Richards, W. G., Farley, J., and Alkon, D. L., 1984, Extinction of associative learning in Hermissenda: Behavior and neural correlates, Behav. Brain Res. (in press).Google Scholar
  43. Sakakibara, M., Alkon, D. L., Neary, J. T., DeLorenzo, R., Gould, R., and Heldman, E., 1985, Ca2+-mediated reduction of K+ currents is enhanced by injection of IP3 or neuronal Ca2+.calmodulin kinase type II, Soc. Neurosci. Abstr. (in press).Google Scholar
  44. Tabata, M. and Alkon, D. L., 1982, Positive synaptic feedback in the visual system of the nudibranch mollusc Hermissenda crassicornis, J. Neurophysiol. 48:174–191.PubMedGoogle Scholar
  45. Tillotson, D. and Horn, R., 1978, Inactivation without facilitation of calcium conductance in caseium- loaded neurons of Aplysia, Nature 273:312–314.PubMedCrossRefGoogle Scholar
  46. West, A., Barnes, E. S., and Alkon, D. L., 1982, Primary changes of voltage responses during retention of associative learning, J. Neurophysiol. 48:1243–1255.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Daniel L. Alkon
    • 1
  1. 1.Section on Neural Systems, Laboratory of Biophysics, IRP, National Institute of Neurological and Communicative Disorders and StrokeNational Institutes of Health at the Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations