Advertisement

Thallium(III) Salts as Oxidants in Organic Synthesis

  • Alexander Mckillop
  • Edward C. Taylor

Abstract

Only thallium and indium of the group IIIB elements are known to exist as the monovalent ions under normal conditions. By contrast with indium(I) salts, however, which are very readily oxidized to the trivalent state and the chemistry of which is not at all well developed, thallium(I) salts are stable. Indeed, it has been accurately stated that “… for thallium the TlI–TlIII relationship is a dominant feature of the chemistry.”1 This is certainly true with respect to the utility of Tl(III) as an oxidant in organic chemistry. The reduction potential E o for Tl3+ + 2e → Tl+ in aqueous solution under standard conditions is + 1.25 V, 2 but clearly more powerfully oxidizing Tl(III) species can be obtained by variation in the anion associated with the metal and by appropriate choice of reaction conditions. In the terms of the organic chemists, the thermodynamically favorable reduction of Tl(III) to T1(I) is one of the most important “driving forces” in thallium(III)-mediated oxidations.

Keywords

Radical Cation Excellent Yield Oxidative Coupling Dimethyl Acetal Boron Trifluoride Etherate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., p. 260, Wiley-Interscience, New York, 1972.Google Scholar
  2. 2.
    W. M. Latimer, Oxidation Potentials, 2nd ed., Prentice-Hall, Englewood ClifFs, New Jersey, 1961.Google Scholar
  3. 3.
    I. H. Elson and J. K. Kochi, /Am. Chem. Soc. 95, 5060–5062 (1973).Google Scholar
  4. 4.
    A. McKillop, A. G. Turrell, and E. C. Taylor, J. Org. Chem. 42, 764–765 (1977).Google Scholar
  5. 5.
    A. McKillop and E. C. Taylor, Comprehensive Organometallic Chemistry, E. W. Abel, Ed., Vol. 5, pp. 507–560. Pergamon, Oxford. 1982.Google Scholar
  6. 6.
    A. McKillop, A. G. Turrell, D. W. Young, and E. C. Taylor, J. Am. Chem. Soc. 102, 6504–6512 (1980).Google Scholar
  7. 7.
    See, e.g., S. M. Kupchan. A. J. Liepa, V. Kameswaren, and R. F. Bryan, J. Am. Chem. Soc. 95, 6861–6863 (1973);Google Scholar
  8. 8.
    R. D. Damon, R. H. Schlessinger, and J. F. Blount, J. Org. Chem. 41, 3772–3773 (1976).Google Scholar
  9. 9.
    E. G Taylor, J. G. Andrade, G. J. H. Rail, and A. McKillop, J. Am. Chem. Soc. 102, 6513–6519 (1980).Google Scholar
  10. 10.
    R. B. Herbert, J. Chem. Soc. Chem. Commun. 1978, 794–795.Google Scholar
  11. 11.
    A. S. Kende and D. P. Curran, J. Am. Chem. Soc. 101, 1857–1864 (1979).Google Scholar
  12. 12.
    R. C. Cambie, M. G. Dunlop, P. S. Rutledge, and P. D. Woodgate, Synth. Commun. 10. 827–831 (1980).Google Scholar
  13. 13.
    E. McDonald and R. D. Wylie, J. Chem. Soc. Perkin Trans. 1 1980, 1104–1108.Google Scholar
  14. 14.
    E. C. Taylor, J. G. Andrade, G. J. H. Rail, I. J. Turchi, K. Steliou, G. E. Jagdmann, Jr., and A. McKillop, J. Am. Chem. Soc. 103, 6856–6863 (1981).Google Scholar
  15. 15.
    A. S. Kende and P. S. Rutledge, Synth. Commun. 8, 245–250 (1978).Google Scholar
  16. 16.
    A. McKillop, H. M. L. Davies, and E. C. Taylor, unpublished results.Google Scholar
  17. 17.
    A. McKillop, J. F. Hansen, and E. C. Taylor, unpublished results.Google Scholar
  18. 18.
    E. C. Taylor. J. G. Andrade, G. J. H. Rail, and A. McKillop, Tetrahedron Lett. 1978, 3623–3626.Google Scholar
  19. 19.
    E. C. Taylor, J. G. Andrade. G. J. H. Rail. K. Steliou, G. E. Jagdmann, Jr., and A. McKillop, J. Org. Chem. 46, 3078–3081 (1981).Google Scholar
  20. 20.
    A. Pelter, R. S. Ward, D. J. Watson, P. Collins, and I. T. Kay, Tetrahedron Lett. 1979, 2275–2278.Google Scholar
  21. 21.
    K. M. Smith, J. Chem. Soc. Chem. Commun. 1971, 540–541.Google Scholar
  22. 22.
    S. W. McCombie and K. M. Smith, Tetrahedron Lett. 1972, 2463–2464.Google Scholar
  23. 23.
    G. H. Barnett, M. F. Hudson, S. W. McCombie, and K. M. Smith, J. Chem. Soc. Perkin Trans. I 1973, 691–696.Google Scholar
  24. 24.
    G. H. Barnett, B. Evans, and K. M. Smith, Tetrahedron 31, 2711–2717 (1975).Google Scholar
  25. 25.
    B. Evans and K. M. Smith, Tetrahedron 33, 629–633 (1977).Google Scholar
  26. 26.
    B. Evans. K. M. Smith, and J. A. S. Cavaleiro. J. Chem. Soc. Perkin Trans. I 1978, 768–773.Google Scholar
  27. 27.
    J. A. S. Cavaleiro and K. M. Smith, J. Chem. Soc. Perkin Trans. I 1973, 2149–2155.Google Scholar
  28. 28.
    F. Eivazi, M. F. Hudson, and K. M. Smith. Tetrahedron Lett. 1976, 3837–3840.Google Scholar
  29. 29.
    F. Eivazi, M. F Hudson, and K. M. Smith. Tetrahedron 33. 2959–2964 (1977).Google Scholar
  30. 30.
    A. McKillop, J. D. Hunt, F. Kienzle, E. Bigham, and E. C. Taylor, J. Am. Chem. Soc. 95, 3635–3640 (1973).Google Scholar
  31. 31.
    E. C Taylor. R. L. Robey, K.-T. Liu, B. Favre, H. T. Bozimo, R. A. Conley, C.-S. Chiang, A. McKillop, and M. E. Ford. J. Am. Chem. Soc. 98, 3037–3038 (1976).Google Scholar
  32. 32.
    A. McKillop and E. C. Taylor. Endeavour 35. 88–93 (1976).Google Scholar
  33. 33.
    E. C. Taylor, C-S. Chiang, A. McKillop, and J. F. White, J. Am. Chem. Soc. 98, 6750–6752 (1976).Google Scholar
  34. 34.
    P. Abley, J. E. Byrd, and J. Halpern, J. Am. Chem. Soc. 95, 2591–2596 (1973).Google Scholar
  35. 35.
    H. Sekizaki, M. Ito, and S. Inoue, Bull. Chem. Soc. Jpn. 51. 2439–2440 (1978).Google Scholar
  36. 36.
    E. J. Corey and T. Ravindranathan, Tetrahedron Lett. 1971, 4753–4756.Google Scholar
  37. 37.
    E. J. Corey and B. B. Snider, J. Org. Chem. 39, 256–258 (1974).Google Scholar
  38. 38.
    W. Holick. E. F. Jenny, and K. Heusler, Tetrahedron Lett. 1973, 3421–3424.Google Scholar
  39. 39.
    D. Farcasiu, P. v. R. Schleyer, and D. B. Ledlie, J. Org. Chem. 38, 3455–3459 (1973).Google Scholar
  40. 40.
    A. J. Irwin and J. B. Jones, J. Am. Chem. Soc. 98, 8476–8482 (1976).Google Scholar
  41. 41.
    A. McKillop and E. C. Taylor, Advances in Organometallic Chemistry, F. G. A. Stone and R. West, Eds., Vol. II, pp. 147–207, Academic, New York, 1973.Google Scholar
  42. 42.
    H.-J. Kabbe, Liebigs Ann. Chem. 656, 204–221 (1962).Google Scholar
  43. 43.
    R. Criegee, Angew. Chem. 70, 173–179 (1958).Google Scholar
  44. 44.
    R. J. Ouelette, G. Kordosky, C. Levin, and S. Williams, J. Org. Chem. 34, 4104–4108 (1969).Google Scholar
  45. 45.
    L. Nadon, M. Tarda, M. Zador, and S. Fliszar, Can. J. Chem. 51, 2366–2374 (1973).Google Scholar
  46. 46.
    G. W. Kenner, S. W. McCombie, and K. M. Smith, J Chem. Soc. Chem. Commun. 1972, 1347–1348.Google Scholar
  47. 47.
    G. W. Kenner, S. W. McCombie, and K. M. Smith, Liebigs Ann. Chem. 1973, 1329–1338.Google Scholar
  48. 48.
    G. W. Kenner, J. Martin, E. Quirke, and K. M. Smith, Tetrahedron 32, 2753–2756 (1976).Google Scholar
  49. 49.
    E. C. Taylor, C.-S. Chiang, and A. McKillop, Tetrahedron Lett. 1977, 1827–1830.Google Scholar
  50. 50.
    K. Sindelar, B. Kakac, J. Metysova, and M. Protiva, Farmaco Ed. Sc. 28, 256–261 (1973); Chem. Abstr. 78, 1477672(1973).Google Scholar
  51. 51.
    J. O. Jilek, K. Sindelar, J. Pomykacek, O. Horesovsky, K. Pelz, E. Svatek, B. Kakac, J. Holubek, J. Metysova, and M. Protiva, Coll. Czech. Chem. Commun. 38, 115–131 (1973).Google Scholar
  52. 52.
    K. Sindelar, B. Kakac, E. Svatek, J. Holubek, M. Rajsner, J. Metysova, and M. Protiva, Coll. Czech. Chem. Commun. 39, 333–354 (1974).Google Scholar
  53. 53.
    V. Simonidesz, Z. Gombos-Visky, G. Kovacs, E. Baitz-Gacs, and L. Radics, J. Am. Chem. Soc. 100, 6756–6757 (1978).Google Scholar
  54. 54.
    V. Simonidesz, A. Behr-Papp, J. Ivanics, G. Kovacs, E. Baitz-Gacs, and L. Radics, J. Chem. Soc. Perkin Trans. I 1980, 2572–2580.Google Scholar
  55. 55.
    Y. Yamada, A. Shibata, K. Iguchi, and H. Sanjoh, Tetrahedron Lett. 1977, 2407–2408.Google Scholar
  56. 56.
    M. Anteunis and A. De Smet, Synthesis 1974, 868.Google Scholar
  57. 57.
    W. Renold, G. Ohloff, and T. Norm, Helv. Chim. Acta 62, 985–993 (1979).Google Scholar
  58. 58.
    R. Baudouy, F. Delbecq, and J. Gore, Tetrahedron 36, 189–195 (1980).Google Scholar
  59. 59.
    F. J. McQuillin and D. G. Parker, J. Chem. Soc. Perkin Trans. I 1975, 2092–2096.Google Scholar
  60. 60.
    J. R. Collier and A. S. Porter, J. Chem. Soc. Chem. Commun. 1972, 618–619.Google Scholar
  61. 61.
    A. Lethbndge, R. O. C. Norman, and C B. Thomas, J. Chem. Soc. Perkin Trans. I 1975, 2465–2471.Google Scholar
  62. 62.
    J. E. Byrd and J. Halpern, J. Am. Chem. Soc. 95, 2586–2591 (1973).Google Scholar
  63. 63.
    S. Uemura, H. Miyoshi, A. Toshimitsu, and M. Okane, Bull. Chem. Soc. Jpn. 49, 3285–3286 (1976).Google Scholar
  64. 64.
    K. Ichikawa, S. Uemura, and T. Sugita, Tetrahedron 22, 407–413 (1966).Google Scholar
  65. 65.
    A. J. Pearson, J. Chem. Soc. Chem. Commun. 1980, 488–489.Google Scholar
  66. 66.
    Y. Yamada, H. Sanjoh, and K. Iguchi, Tetrahedron Lett. 1979, 423–424.Google Scholar
  67. 67.
    Y. Yamada, H. Sanjoh, and K. Iguchi, Tetrahedron Lett. 1979, 1323–1326.Google Scholar
  68. 68.
    Y. Yamada, H. Sanjoh, and K. Iguchi, J. Chem. Soc. Chem. Commun. 1976, 997–998.Google Scholar
  69. 69.
    T. Kaiya, N. Shirai, Y. Sakakibara, and Y. Iitaka. Tetrahedron Lett. 1979, 4297–298.Google Scholar
  70. 70.
    R. M. Moriarty and H. Gopal, Tetrahedron Lett. 1972, 347–350.Google Scholar
  71. 71.
    A. McKillop, M. E. Ford, and E. C. Taylor, J. Org. Chem. 39, 2434–2435 (1974).Google Scholar
  72. 72.
    P. F. Barron, D. Doddrell, and W. Kitching, J. Organomet. Chem. 132, 351–358 (1977).Google Scholar
  73. 73.
    S. Uemura, H. Miyoshi, M. Okano, I. Morishima, and T. Inubushi, J. Organomet. Chem. 165, 9–19 (1979).Google Scholar
  74. 74.
    V. G. Aranda, J. Barluenga, and F. Aznar, Synthesis 1974, 504–505.Google Scholar
  75. 75.
    T. G. Back, O. E. Edwards, and G. A. MacAlpine, Tetrahedron Lett. 1977, 2651–2654.Google Scholar
  76. 76.
    A. McKillop, B. P. Swann. M. E. Ford, and E. C Taylor, J. Am. Chem. Soc. 95, 3641–3645 (1973).Google Scholar
  77. 77.
    A. Lupi, M. Marta, G. Lintas, and G. B. M. Bettolo, Gazz. Chim. Ital. 110, 625–628 (1980).Google Scholar
  78. 78.
    W. D. Ollis. K. L. Ormand. and I. O. Sutherland, J. Chem. Soc. Chem. Commun. 1968, 1237–1238.Google Scholar
  79. 79.
    W. D. Ollis, K. L. Ormand, and I. O. Sutherland, J. Chem. Soc. (C) 1970, 119–124 and 125–128.Google Scholar
  80. 80.
    S. Antus, A. Gottsegen, M. Nogradi, and A. Gergely, Chem. Ber. 112, 3879–3885 (1979).Google Scholar
  81. 81.
    L. Farkas, A. Gottsegen, M. Nogradi, and S. Antus. J. Chem. Soc. Chem. Commun. 1972, 825–826.Google Scholar
  82. 82.
    F. R. van Heerden, E. V. Brandt, and D. G. Roux. J. Chem. Soc. Perkin Trans. I 1978. 137–145.Google Scholar
  83. 83.
    S. Antus, L. Farkas. M. Nogradi, and P. Sonar, J. Chem. Soc. Chem. Commun. 1974, 799.Google Scholar
  84. 84.
    L. Farkas and A. Wolfner, Acta Chim. Acad. Sci. Hung. 88, 173–176 (1976).Google Scholar
  85. 85.
    Z. Kardos-Barlogh, L. Farkas, and A. Wolfner, Acta Chim. Acad. Sci. Hung. 94, 75–77 (1977).Google Scholar
  86. 86.
    T. G. Fourie, D. Ferreira, and D. G. Roux. J. Chem. Soc. Perkin Trans. I 1977. 125–133.Google Scholar
  87. 87.
    A. Levai and L. Balogh, Pharmazie 30, 747 (1975).Google Scholar
  88. 88.
    S. Antus and M. Nogradi, Acta Chim. Acad. Sci. Hung. 100, 179–182 (1979).Google Scholar
  89. 89.
    A. Braga de Oliveira, G. G. de Oliveira, L. de O. Pimenta, M. I. L. M. Madruga, J. E. de P. Reis, and O. R. Gottlieb, Rev. Latinoam. Quim. 10, 122–125 (1979); Chem. Abstr. 92, 94184n (1980).Google Scholar
  90. 90.
    S. Antus, L. Farkas, and A. Gottsegen, Acta Chim. Acad. Sci. Hung. 102, 205–209 (1979).Google Scholar
  91. 91.
    S. Antus, F. Boross, L. Farkas, and M. Nogradi, Flavonoids Bioflavonoids, Proc. Hung. Bioflavonoid Symp., 5th 1977, pp. 171–180; Chem. Abstr. 89, 60029p (1978).Google Scholar
  92. 92.
    S. Antus. L. Farkas, M. Nogradi, and F. Boross, J. Chem. Soc. Perkin Trans. I 1977, 948–953.Google Scholar
  93. 93.
    S. Antus and M. Nogradi, Chem. Ber. 112. 480–483 (1979).Google Scholar
  94. 94.
    L. Farkas, A. Gottsegen, M Nogradi, and S. Antus, J. Chem. Soc. Perkin Trans. I 1974, 305–312.Google Scholar
  95. 95.
    M. E. Oberholzer, G. J. H. Rail, and D. G. Roux, J. Chem. Soc. Perkin Trans. I 1977, 423–426.Google Scholar
  96. 96.
    S. Antus, L. Farkas, A. Gottsegen, Z. Kardos-Balogh, and M. Nogradi, Chem. Ber. 109, 3811–3816 (1976).Google Scholar
  97. 97.
    F. R. van Heerden, E. V. Brandt, and D. G. Roux, J. Chem. Soc. Perkin Trans. 1 1980, 2463–2469.Google Scholar
  98. 98.
    S. Antus, E. Baitz-Gacs, F. Boross, M. Nogradi, and A. Solyam, Liebigs Ann. Chem. 1980, 1271–1282.Google Scholar
  99. 99.
    S. Antus, F. Boross, M. Kajtar-Peredy, L. Radics, and M. Nogradi, Liebigs Ann. Chem. 1980, 1283–1295.Google Scholar
  100. 100.
    E. C. Taylor, R. A. Conley, D. K. Johnson, and A. McKillop, J. Org. Chem. 42, 4167–4169 (1977).Google Scholar
  101. 101.
    E. C. Taylor, R. A. Conley, D. K. Johnson, A. McKillop, and M. E. Ford, J. Org. Chem. 45, 3433–3436 (1980).Google Scholar
  102. 102.
    A. McKillop, M. E. Ford, and E. C. Taylor, unpublished results.Google Scholar
  103. 103.
    A. McKillop, B. P. Swann, and E. C. Taylor, J. Am. Chem. Soc. 93, 4919 (1971).Google Scholar
  104. 104.
    A. McKillop, B. P. Swann, and E. C. Taylor, J. Am. Chem. Soc. 95, 3340–3343 (1973).Google Scholar
  105. 105.
    S. Narasimhan, P. Krishnan, and N. Venkatasubramanian. Indian J. Chem. Sec. B 16B, 79–81 (1978).Google Scholar
  106. 106.
    P. V. Subramanian, R. Paul, and V. Subrahmanyan, Indian J. Chem. 11. 1074 (1973).Google Scholar
  107. 107.
    N. Malaitong and G Thebtaranonth, Chem. Lett. 1980, 305–306.Google Scholar
  108. 108.
    G. W. Kenner, J. Rimmer, K. M. Smith, and J. F. Unsworth, J. Chem. Soc. Chem. Commun. 1973, 43–44.Google Scholar
  109. 109.
    A. Tahara, M. Shimagaki, M. Itoh, Y. Harigaya, and M. Onda, Chem. Lett. 1974, 651–654.Google Scholar
  110. 110.
    A. Valasinas and B. Frydman, J. Org. Chem. 41, 2991–2994 (1976).Google Scholar
  111. 111.
    K. H. Baggaley. R. Fears, R. M. Hindley, B. Morgan, E. Murrell, and D. E. Thome, J. Med. Chem. 20, 1388–1393 (1977).Google Scholar
  112. 112.
    G. W. Kenner, J. Rimmer, K. M. Smith, and J. F. Unsworth, J. Chem. Soc. Perkin Trans. I 1977, 332–240.Google Scholar
  113. 113.
    P. C. Belanger, C. S. Rooney, F. M. Robinson, and L. H. Sarett, J. Org. Chem. 43. 906–909 (1978).Google Scholar
  114. 114.
    D. J. Cram, R. C. Helgeson, S. C. Peacock, L. J. Kaplan, L. A. Domeier, P. Moreau, K. Koga, J. M. Mayer, Y. Chao, M. G. Siegel, D. H. Hoffman, and G. D. Y. Sogah, J. Org. Chem. 43, 1930–1946 (1978).Google Scholar
  115. 115.
    T. I. Gray, A. Pelter, and R. S. Ward. Tetrahedron 35, 2539–2543 (1979).Google Scholar
  116. 116.
    J. C. Vallejos and Y. Christidis, French Demande 2, 387, 978. November 17, 1978; Chem. Abstr. 91, 157160 (1979).Google Scholar
  117. 117.
    J. A. Walker, U.S. Patent No. 4. 135, 051, January 16, 1979.Google Scholar
  118. 118.
    J. A. Walker and M. D. Pillai. Tetrahedron Lett. 1977, 3707–3710.Google Scholar
  119. 119.
    S. Kudo, H. Nishino, and T. Naraoka, Japan Kokai No. 77, 105, 146, September 3, 1977; Chem. Abstr. 88, 50517(1978).Google Scholar
  120. 120.
    T. Bruzzese, M. Cambieri, and R. Ferrari, German Ofien. No. 2, 614, 306, October 21, 1976; Chem. Abstr. 86, 55167 (1977).Google Scholar
  121. 121.
    UK Patent Application No. 2, 019, 393, April (1978).Google Scholar
  122. 122.
    E. C. Taylor, R. A. Conley. A. H. Katz, and A. McKillop. unpublished results.Google Scholar
  123. 123.
    A. McKillop, D. W. Young, M. Edwards, R. P. Hug, and E. C. Taylor, J. Org. Chem. 43, 3773–3774 (1978).Google Scholar
  124. 124.
    D. J. Rawiinson and G. Sosnovsky, Synthesis 1973, 567–603.Google Scholar
  125. 125.
    M. E. Kuehne and T. J. Giacobbe, J. Org. Chem. 33. 3359–3369 (1968).Google Scholar
  126. 126.
    F. Corbani, B. Rindone, and C. Scolastico, Tetrahedron 29, 3253–3257 (1973).Google Scholar
  127. 127.
    K. Sato. H. Adachi, T. Iwaki, and M. Ohashi. J. Chem. Soc. Perkin Trans. 1 1979, 1806–1810.Google Scholar
  128. 128.
    A. Romeo and G. Ortar, Tetrahedron 28. 5337–5339 (1972).Google Scholar
  129. 129.
    J. Salaun. B. Gamier, and J. M. Conia, Tetrahedron 30. 1423–1426 (1974).Google Scholar
  130. 130.
    A. J. Irwin and J. B. Jones, J. Org. Chem. 42, 2176–2177 (1977).Google Scholar
  131. 131.
    E. Mincione, P. Barraco, and M. L. Forcellese, Gazz. Chim. Ital. 110, 515–517 (1980).Google Scholar
  132. 132.
    G. Ortar and A. Romeo, J. Chem. Soc. Perkin Trans. I 1976, 111–114.Google Scholar
  133. 133.
    E. Fujita and M. Ochiai, J. Chem. Soc. Perkin Trans. I 1977, 1182–1186.Google Scholar
  134. 134.
    E. Fujita and M. Ochiai, Can. J. Chem. 56, 246–248 (1978).Google Scholar
  135. 135.
    A. M. Maione, A. Romeo. S. Cerrini, W. Fedeli, and F. Mazza, Tetrahedron 37, 1407–1413 (1981).Google Scholar
  136. 136.
    A. McKillop, J. D. Hunt, and E. C. Taylor, J. Org. Chem. 37. 3381–3382 (1972).Google Scholar
  137. 137.
    S. Uemura, H. Miyoshi, M. Okano, and K. Ichikawa. J. Chem. Soc. Perkin Trans. I 1981, 991–994.Google Scholar
  138. 138.
    A. McKillop, O. H. Oldenziel, B. P. Swann, E. C. Taylor, and R. L. Robey, J. Am. Chem. Soc. 95, 1296–1301 (1973).Google Scholar
  139. 139.
    E. C Taylor, R. L. Robey, and A. McKillop, Angew. Chem. Int. Ed. Engl. 11, 48 (1972).Google Scholar
  140. 140.
    E. C. Taylor, I. J. Turchi, and A. McKillop, unpublished results.Google Scholar
  141. 141.
    R. H. Wiley and P. Wiley, Pyrazolones. Pyrazolidones and Derivatives, A. Weissberger, Ed., pp. 104–105, Wiley-Interscience, New York. 1964.Google Scholar
  142. 142.
    E. C. Taylor, R. L. Robey, and A. McKillop, J. Org. Chem. 37, 2797 (1972).Google Scholar
  143. 143.
    E. C. Bigham, Ph. D. thesis, Princeton University, 1973.Google Scholar
  144. 144.
    E. C. Taylor, 23rd National Organic Chemistry Symposium. ACS, Tallahassee, Florida, pp. 51–71, 1973.Google Scholar
  145. 145.
    A. Silveira, Jr., M. Angelastro, R. Israel, F. Totino, and P. Williamsen, J. Org. Chem. 45, 3522–3523 (1980).Google Scholar
  146. 146.
    A. McKillop, J. D. Hunt. R. D. Naylor, and E. C. Taylor, J. Am. Chem. Soc. 93, 4918–4919 (1971).Google Scholar
  147. 147.
    R. N. Butler, G. J. Morris, and A. M. O′Donohue, J. Chem. Res. (S) 1981, 61.Google Scholar
  148. 148.
    G. Klopman, J. Am. Chem. Soc. 90, 223–234 (1968).Google Scholar
  149. 149.
    S. Uemura, S. Tanaka, and M. Okano, Bull Chem. Soc. Jpn. 50, 220–221 (1977).Google Scholar
  150. 150.
    A. J. Hall and D. P. N. Satchell, J. Chem. Soc. Perkin Trans. II 1977, 1366–1370.Google Scholar
  151. 151.
    G. Patel and R. S. Satchell, J. Chem. Soc. Perkin Trans. II 1980, 1403–1405.Google Scholar
  152. 152.
    S. Masamune, S. Kamata, and W. Schilling, J. Am. Chem. Soc. 97, 3515–3516 (1975).Google Scholar
  153. 153.
    Y. Nagao, M. Ochiai, K. Kaneko, A. Maeda, K. Watanabe, and E. Fujita, Tetrahedron Lett. 1977, 1345–1348.Google Scholar
  154. 154.
    N. Nagao. K. Kaneko. M. Ochiai, and E. Fujita, J. Chem. Soc. Chem. Commun. 1976, 202–203.Google Scholar
  155. 155.
    Y. Nagao, K. Kaneko, and E. Fujita, Tetrahedron Lett. 1978, 4115–4116.Google Scholar
  156. 156.
    Y. Nagao, K. Kaneko, K. Kawabata, and E. Fujita, Tetrahedron Lett. 1978, 5021–5024.Google Scholar
  157. 157.
    T. Harayama, H. Cho, and Y. Inubushi, Tetrahedron Lett. 1977, 3273–3276.Google Scholar
  158. 158.
    T. Harayama, H. Cho, and Y. Inubushi, Chem. Pharm. Bull. 26, 1201–1214 (1978).Google Scholar
  159. 159.
    E. Fujita, Y. Nagao, and K. Kaneko, Chem. Pharm. Bull. 26, 3743–3751 (1978).Google Scholar
  160. 160.
    R. A. J. Smith and D. J. Hannah, Synth. Commun. 9, 301–311 (1979).Google Scholar
  161. 161.
    Y. Nagao, K. Seno, and E. Fujita, Tetrahedron Lett. 1979, 3167–3168.Google Scholar
  162. 162.
    D. P. N. Satchell and T. J. Weil, J. Chem. Soc. Perkin Trans. II 1980, 1191–1200.Google Scholar
  163. 163.
    T.-L. Ho and C. M. Wong, Can. J. Chem. 50, 3740–3741 (1972).Google Scholar
  164. 164.
    D. G. Hewitt. J. Chem. Soc. (C) 1971, 1750–1757.Google Scholar
  165. 165.
    N. N. Mel′nikov and G. P. Gracheva, J. Gen. Chem. (U.S.S.R.) 7, 467–469 (1937); Chem. Abstr. 43107 (1937).Google Scholar
  166. 166.
    A. McKillop, B. P. Swann, and E. C. Taylor, Tetrahedron 26, 4031–4039 (1970).Google Scholar
  167. 167.
    A. McKillop, D. H. Perry, M. Edwards, S. Antus, L. Farkas, M. Nogradi, and E. C. Taylor, J. Org. Chem. 41, 282–287(1976).Google Scholar
  168. 168.
    H.-J. Kabbe, Justus Liebigs Ann. Chem. 656, 204–221 (1962).Google Scholar
  169. 169.
    K. Maruyama and T. Kozuka. Bull. Chem. Soc. Jpn. 51, 3586–3589 (1978).Google Scholar
  170. 170.
    E. Hecker and R. Lattrell, Justus Liebigs Ann. Chem. 662, 48–66 (1963).Google Scholar
  171. 171.
    M. M. Coombs and M. B. Jones, Chem. Ind. 1972, 169.Google Scholar
  172. 172.
    Y. Yamada, K. Hosaka, H. Sanjoh, and M. Suzuki, J. Chem. Soc. Chem. Commun. 1974, 661–662.Google Scholar
  173. 173.
    Y. Yamada and K. Hosaka. Synthesis 1977, 53–54.Google Scholar
  174. 174.
    Y. Yamada, K. Hosaka, T. Sawahata, Y. Watanabe, and K. Iguchi, Tetrahedron Lett. 1977, 2675–2676.Google Scholar
  175. 175.
    D. A. Evans, P. A. Cain, and R. Y. Wong, J. Am. Chem. Soc. 99, 7083–7085 (1977).Google Scholar
  176. 176.
    D. J. Hart, P. A. Cain, and D. A. Evans, J. Am. Chem. Soc. 100. 1548–1557 (1978).Google Scholar
  177. 177.
    D. A. Evans, D. J. Hart, and P. M. Koelsch. J. Am. Chem. Soc. 100. 4593–4594 (1978).Google Scholar
  178. 178.
    T. W. Hart and F. Scheinmann. Tetrahedron Lett. 1980. 2295–2296.Google Scholar
  179. 179.
    D. J. Crouse and D. M. S. Wheeler. Tetrahedron Lett. 1979. 4797–4798.Google Scholar
  180. 180.
    T. M. Zydowsky, C. E. Totten, D. M. Piatak, M. J. Gasik, and J. Stankovic, J. Chem. Soc. Perkin Trans. I 1980. 1679–1682.Google Scholar
  181. 181.
    D. J. Crouse. M. M. Wheeler. M. Goemann. P. S. Tobin. S. K. Basu, and D. M. S. Wheeler. J. Org. Chem. 46, 1814–1817 (1981).Google Scholar
  182. G. Buchi, P.-S. Chu. A. Hoppmann, C.-P. Mak, and A. Pearce, J. Org. Chem. 43, 3983–3985 (1978).Google Scholar
  183. 182.
    M. A. Schwartz, B. F. Rose, and B. Vishnuvajjala, J. Am. Chem. Soc. 95, 612–613 (1973).Google Scholar
  184. 183.
    M. A. Schwartz, B. F. Rose, R. A. Holton, S. W. Scott, and B. Vishnuvajjala, J. Am. Chem. Soc. 99. 2571–2578 (1977).Google Scholar
  185. 184.
    U. Palmquist, A. Nilsson, V. D. Parker, and A. Ronlan, J. Am. Chem. Soc. 98, 2571–2580 (1976).Google Scholar
  186. 185.
    M. A. Schwartz and I. S. Mami, J. Am. Chem. Soc. 97, 1239–1240 (1975).Google Scholar
  187. 186.
    M. A. Schwartz and R. A. Wallace, Tetrahedron Lett. 1979, 3257–3260.Google Scholar
  188. 187.
    S. Yameda, K. Tomioka, and K. Koga, Tetrahedron Lett. 1976, 57–60.Google Scholar
  189. 188.
    S. M. Kupchan and A. J. Liepa, J. Am. Chem. Soc. 95, 4062–4064 (1973).Google Scholar
  190. 189.
    A. S. Kende, L. S. Liebeskind, J. F. Mills, P. S. Rutledge, and D. P. Curran, J. Am. Chem. Soc. 99, 7082–7083 (1977).Google Scholar
  191. 190.
    A. S. Kende and P. S. Rutledge, Synth. Commun. 8, 245–250 (1978).Google Scholar
  192. 191.
    D. A. Whiting and A. F. Wood, Tetrahedron Lett. 1978, 2335–2338.Google Scholar
  193. 192.
    A. McKillop, J. D. Hunt, M. J. Zelesko, J. S. Fowler, E. C. Taylor, G. McGillivray, and F. Kienzle. J. Am. Chem. Soc. 93, 4841 (1971).Google Scholar
  194. 193.
    E. C. Taylor, R. L. Robey, D. K. Johnson, and A. McKillop, Org. Synth. 55, 73 (1976).Google Scholar
  195. 194.
    H. Heydlauf, Eur. J. Pharmacol. 6, 340 (1969).Google Scholar
  196. 195.
    A. G. Turrell, Ph. D. thesis. University of East Anglia (1978), p. 139.Google Scholar
  197. 196.
    W. Baker. J. W. Barton, J. F. W. McOmie, R. J. Penneck, and M. L. Watts, J. Chem. Soc. 1961. 3986.Google Scholar
  198. 197.
    J. G. Andrade, Ph. D. thesis, Princeton University (1978), p. 134.Google Scholar
  199. 198.
    C. D. Huflbrd and J. M. Morgan, J. Org. Chem. 41, 375 (1976).Google Scholar
  200. 199.
    L. H. Briggs, D. A. Peak, and J. L. D. Woolloxall, J. Proc. R. Soc. N.S.W. 69, 61 (1935).Google Scholar
  201. 200.
    Y. Kumada, H. Naganawa, T. Takeuchi, H. Umezawa, K. Yamashita, and K. Watanabe, J. Antibiot. 31, 105 (1978).Google Scholar
  202. 201.
    R. Bonnett and M. J. Dimsdale, Tetrahedron Lett. 1968, 731.Google Scholar
  203. 202.
    G. Wittig and U. Schoellkopf, Org. Synth. 40, 66 (1960).Google Scholar
  204. 203.
    R. Greenwald, M. Chaykovsky, and E. J. Corey, J. Org. Chem. 28, 1128 (1963).Google Scholar
  205. 204.
    O. Diels and K. Alder, Justus Liebigs Ann. Chem. 470, 62 (1929).Google Scholar
  206. 205.
    H. L. Goering and G. N. Fickes, J. Am. Chem. Soc. 90, 2862 (1968).Google Scholar
  207. 206.
    C.-S. Chiang, Ph. D. thesis, Princeton University (1977), p. 126.Google Scholar
  208. 207.
    L. Farkas, A. Gottsegen, M. Nogradi, and S. Antus, J. Chem. Soc. Perkin Trans I 1974, 305.Google Scholar
  209. 208.
    M. E. Ford, Ph. D. thesis. University of East Anglia (1973), p. 67.Google Scholar
  210. 209.
    A. McKillop, J. D. Hunt, E. C Taylor, and F. Kienzle, Tetrahedron Lett. 1970. 5275.Google Scholar
  211. 210.
    J. D. Hunt, Ph. D. thesis. University of East Anglia (1971), p. 76.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alexander Mckillop
    • 1
  • Edward C. Taylor
    • 2
  1. 1.School of Chemical SciencesUniversity of East AngliaNorwichEngland
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations