Skip to main content

Elementary Analysis of Chemical Electric Field Effects in Biological Macromolecules

II. Kinetic Aspects of Electro-Optic and Conductometric Relaxations

  • Chapter
Modern Bioelectrochemistry

Abstract

Electric field effects in macromolecular organizations such as proteins, nucleic acids, and membranes frequently involve both chemical-conformational changes and physical-orientational displacements of molecular subgroups. Electro-optic techniques in conjunction with relaxation kinetics in high electric fields provide a tool for the investigation of the complex processes encountered in bioelectric phenomena on the level of macromolecules, membrane fragments, and other cellular units. Whereas Part I covers the thermodynamics of electric field effects, this part deals with practical and theoretical aspects of kinetics and mechanisms in aqueous solutions of macromolecules and membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Neumann, Chapter 4 in this volume, Modern Bioelectrochemistry (F. Gutmann and H. Keyzer, eds.) Plenum Press, New York (1985).

    Google Scholar 

  2. E. Neumann and K. Rosenheck, J. Membrane Biol. 10, 279–290 (1972).

    Article  CAS  Google Scholar 

  3. E. Neumann, G. Gerisch, and K. Opatz, Naturwissenschaften 67, 414–415 (1980).

    Article  Google Scholar 

  4. E. Neumann, M. Schaefer-Ridder, Y. Wang, and H. P. Hofschneider, The EMBO J. 1, 841–845 (1982).

    CAS  Google Scholar 

  5. I. Sugar and E. Neumann, Biophys. Chem. 19, 211–225 (1984).

    Article  CAS  Google Scholar 

  6. L. Onsager, J. Chem. Phys. 2, 599–615 (1934).

    Article  CAS  Google Scholar 

  7. E. Neumann, K. Tsuji, and D. Schallreuter, in Biological Structures and Coupled Flows ( A. Oplatka and M. Balaban, eds.), pp. 135–138, Academic, New York (1983).

    Google Scholar 

  8. D. Schallreuter, Ph.D. thesis, Konstanz and Martinsried (1982).

    Google Scholar 

  9. E. Neumann, in Topics of Bioelectrochemistry and Bioenergetics (G. Milazzo, ed.), Vol. 4, pp. 113–160, Wiley, New York (1981).

    Google Scholar 

  10. E. Neumann, in Ions in Macromolecular and Biological Systems ( D. H. Everett and B. Vincent, eds.), pp. 170–191, Scientechnica, Bristol (1978).

    Google Scholar 

  11. U. Schödel, R. Schögl, and M. Eigen, Z. Phys. Chem. N.F. 15, 350–362 (1958).

    Article  Google Scholar 

  12. K. F. Wissbrun and A. Patterson, Jr., J. Polymer Sci. 33, 235–249 (1958).

    Article  CAS  Google Scholar 

  13. G. S. Manning, Biophys. Chem. 9, 189–192 (1977).

    Google Scholar 

  14. G. Schwarz, J. Phys. Chem. 71, 4021–4030 (1967).

    Article  CAS  Google Scholar 

  15. L. C. M. DeMaeyer, Methods Enzymol. 16, 80–118 (1969).

    Google Scholar 

  16. L. C. M. DeMaeyer and A. Persoons, Tech. Chem. (N.Y.) 6 (2), 211–235 (1973).

    Google Scholar 

  17. C. J. F. Böttcher, O. C. Van Belle, P. Bordewijk, and A. Rip, Theory of Electric Polarization, Elsevier, Amsterdam (1973), Vol. 1.

    Google Scholar 

  18. M. Eigen and L. C. M. DeMaeyer, in Techniques of Organic Chemistry (S. L. Friess, E. S. Lewis, and A. Weissberger, eds.), Wiley, New York (1963), Vol. 8(2), pp. 895–1054.

    Google Scholar 

  19. K. Bergmann, M. Eigen, and L. C. M. DeMaeyer, Ber. Bunsenges. Phys. Chem. 67, 819–826 (1963).

    CAS  Google Scholar 

  20. A. Peterlin and H. A. Stuart, Z. Phys. 112, 1–19 (1938).

    Google Scholar 

  21. L. Onsager, J. Am. Chem. Soc. 58. 1486–1493 (1936).

    Article  CAS  Google Scholar 

  22. W. Kuhn, H. Dürkop, and H. Martin, Z. Phys. Chem. B 45, 121–155 (1939).

    Google Scholar 

  23. A. Peterlin and H. A. Stuart, Z. Phys. 112, 129–147 (1939).

    Article  CAS  Google Scholar 

  24. C. T. O’Konski, K. Yoshioka, and W. H. Orttung, J. Phys. Chem. 63, 1558–1565 (1959).

    Article  Google Scholar 

  25. L. C. M. DeMaeyer, M. Eigen, and J. Suarez, J. Am. Chem. Soc. 90, 3157–3161 (1968).

    Article  CAS  Google Scholar 

  26. L. Hellemans and L. C. M. DeMaeyer, J. Chem. Phys. 63, 3490–3498 (1975).

    Article  CAS  Google Scholar 

  27. H. Fröhlich, Theory of Dielectrics, Clarendon, Oxford (1958).

    Google Scholar 

  28. E. H. Grant, R. J. Sheppard, and G. P. South, Dielectric Behaviour of Biological Molecules in Solution, Clarendon, Oxford (1978).

    Google Scholar 

  29. K. Yoshioka and K. Takakusaki, Sci. Pap. Coll. Gen. Educ., University of Tokyo 31, 111–124 (1981).

    Google Scholar 

  30. K. Tsuji and E. Neumann, Biophys. Chem. 17, 153–163 (1983).

    Article  CAS  Google Scholar 

  31. E. Neumann and A. Katchalsky, Proc. Natl. Acad. Sci. USA 69, 993–997 (1972).

    Article  CAS  Google Scholar 

  32. D. Nachmansohn and E. Neumann, Chemical and Molecular Basis of Nerve Activity, Rev., Academic, New York (1975).

    Google Scholar 

  33. E. Neumann, Angew. Chem. Intern. Ed. 12, 356–369 (1973).

    Article  CAS  Google Scholar 

  34. R. Winkler-Oswatitsch and M. Eigen, Angew. Chem. Int. Ed. 18, 20–49 (1979).

    Article  Google Scholar 

  35. E. Neumann and H. W. Chang, Proc. Natl. Acad. Sci. USA 73, 399«998 (1976).

    Google Scholar 

  36. H. J. Nolte and E. Neumann, Biophys. Chem. 10, 253–260 (1979).

    Article  CAS  Google Scholar 

  37. M. Eigen and L. C. M. DeMaeyer, Tech. Chem. (N.Y.) 6 (2), 63–146 (1973).

    Google Scholar 

  38. T. M. Jovin, in Biochemical Fluorescence: Concepts ( R. F. Chen and H. Edelhoch, eds.), Marcel Dekker, New York (1976), pp. 305–374.

    Google Scholar 

  39. M. Tricot and C. Houssier, in Poly electrolytes ( K. C. Frisch, D. Klempner, and A. V. Patsis, eds.), pp. 43–90, Technomic, Westport (1976).

    Google Scholar 

  40. E. Fredericq and C. Houssier, Electric Dichroism and Electric Birefringence, Clarendon, Oxford (1973).

    Google Scholar 

  41. A. Revzin and E. Neumann, Biophys. Chem. 2, 144–150 (1974).

    Article  CAS  Google Scholar 

  42. M. Dourlent, J. F. Hogrel, and C. Helene, J. Am. Chem. Soc. 96, 3398–3406 (1974).

    Article  CAS  Google Scholar 

  43. K. Tsuji and E. Neumann, Int. J. Biol. Macromol. 3, 231–242 (1981).

    Article  CAS  Google Scholar 

  44. C. T. O’Konski and A. J. Haltner, J. Am. Chem. Soc. 79, 5634–5649 (1957).

    Article  Google Scholar 

  45. I. Tinoco and K. Yamaoka, J. Phys. Chem. 63, 423–427 (1959).

    Article  CAS  Google Scholar 

  46. S. P. Stoylov, Adv. Coll. Interf Sci. 3, 45–110 (1971).

    Article  Google Scholar 

  47. A. Katchalsky and R. Spangler, Quart. Rev. Biophys. 1, 127–175 (1968).

    Article  CAS  Google Scholar 

  48. A. Katchalsky and E. Neumann, Int. J. Neurosci. 3, 175–182 (1972).

    Article  CAS  Google Scholar 

  49. M. Pollak and R. Rein, J. theoret. Biol 19, 333–336 (1968).

    Article  CAS  Google Scholar 

  50. A. Peterlin, Z. Phys. 111, 232–236 (1938).

    Article  CAS  Google Scholar 

  51. K. Nishinari and K. Yoshioka; Kolloid Z. Z. Polymere 240, 831–836 (1970).

    Article  CAS  Google Scholar 

  52. S. Diekmann, W. Hillen, M. Jung, R. D. Wells, and D. Pörschke, Biophys. Chem. 15, 157–167 (1982).

    Article  CAS  Google Scholar 

  53. S. Diekmann, W. Hillen, B. Morgeneyer, R. D. Wells, and D. Pörschke, Biophys. Chem. 15, 263–270 (1982).

    Article  CAS  Google Scholar 

  54. S. Diekmann and D. Pörschke. Biophys. Chem. 16, 261–267 (1982).

    Article  CAS  Google Scholar 

  55. D. C. Rau and E. Charney, Biophys. Chem. 17, 35–50 (1983).

    Article  CAS  Google Scholar 

  56. D. Pörschke, H.-J. Meier, and J. Ronnenberg, Biophys. Chem. 20, 225–235 (1984).

    Article  Google Scholar 

  57. D. Pörschke, W. Hillen, and M. Takahashi, EMBO J. 3(12), 2873–2878 (1984).

    Google Scholar 

  58. Z. A. Schelly and R. D. Astumian, J. Phys. Chem. 88 (6), 1152–1156 (1984).

    Article  CAS  Google Scholar 

  59. P. Gräber, U. Junesch, and G. H. Schatz, Ber. Bunsenges. Phys. Chem. 88, 599–608 (1984).

    Google Scholar 

  60. E. H. Serpersu and T. Y. Tsong, J. Biol. Chem. 259 (11), 7155–7162 (1984).

    CAS  Google Scholar 

  61. R. Korenstein, D. Somjen, H. Fischler, and I. Binderman, Biochim. Biophys. Acta 803, 302–307 (1984).

    Article  CAS  Google Scholar 

  62. H. Berg, E. Bauer, D. Berg, W. Förster, M. Hamann, H.-E. Jacob, A. Kurischko, P. Mühlig, and H. Weber, Stud. Biophys. 94, 93–96 (1983).

    Google Scholar 

  63. E. Neumann, Bioelectrochem. Bioenerg. 13, 219–223 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Neumann, E. (1986). Elementary Analysis of Chemical Electric Field Effects in Biological Macromolecules. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics