Advertisement

The Origin of Cellular Electrical Potentials

  • Gilbert N. Ling

Abstract

A brief history of colloid chemistry and membrane theory is given, with particular attention to the work by Bernstein, Hodgkin, Huxley, and Katz. Available energy is discussed in terms of the energy required to operate a Na+ pump. The association-induction (AI) hypothesis is explored in the context of cell K+ and cell water, in vitro and in vivo testing. A subsidiary of the AI hypothesis, the surface adsorption theory of cell potential, is discussed with respect to model studies, living cells, and cellular resting potentials involving cooperative interaction among surface anionic sites.

Keywords

Anionic Site Cell Water Frog Muscle Membrane Theory Dielectric Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Page and N. I. Adams, Principles of Electricity, van Nostrand, New York (1931).Google Scholar
  2. 2.
    K. E. Rothschuh, History of Physiology (G. Risse, transl.), p. 150, Robert E. Kreiger Publishing, Huntington, New York (1973).Google Scholar
  3. 3.
    R. H. Murray, Science and Scientists in the Nineteenth Century, Shelden, London (1925).CrossRefGoogle Scholar
  4. 4.
    B. Barber, Science 134, 596 (1961).CrossRefGoogle Scholar
  5. 5.
    T. Graham, Phil. Trans. R. Soc. London 151, 183 (1861).CrossRefGoogle Scholar
  6. 6.
    M. Traube, Arch. Anat. Physiol. Wiss. Med. 87, 128 (1867).Google Scholar
  7. 7.
    A. Findlay, Osmotic Pressure, 2nd ed., Longmans Green, London (1919).Google Scholar
  8. 8.
    W. Pfeffer, Osmotishe Untersuchungen: Studien zur Zell-Mechanik, 2nd ed., Engelmann, Leipzig (1921).Google Scholar
  9. 9.
    W. Ostwald, Z. Phys. Chem. 6, 71 (1890).Google Scholar
  10. 10.
    J. Bernstein, Pflügers Arch. ges. Physiol. 92, 521 (1902).CrossRefGoogle Scholar
  11. 11.
    J. Bernstein, Elektrobiologie, F. Vieweg und Sohn, Braunschweig (1912).Google Scholar
  12. 12.
    E. Overton, Vierteiljahrschr. Naturforsch, ges. Zürich 44, 88 (1899).Google Scholar
  13. 13.
    R. Collander, in Plant Physiology ( F. C. Steward, ed.), Academic Press, New York (1959), Vol. 2, p. 3.Google Scholar
  14. 14.
    R. Collander and H. Bärlund, Acta. Bot. Fenn. 11, 1 (1933).Google Scholar
  15. 15.
    R. Mond and H. Netter, Pflügers Arch. 224, 702 (1930).CrossRefGoogle Scholar
  16. 16.
    P. J. Boyle and E. J. Conway, J. Physiol. 100, 1 (1941).Google Scholar
  17. 17.
    R. S. Lillie, Protoplasmic Action and Nervous Action, University of Chicago Press, Chicago (1923).Google Scholar
  18. 18.
    K. S. Cole and H. J. Curtis, J. Gen. Physiol. 22, 649 (1939).CrossRefGoogle Scholar
  19. 19.
    J. S. Burden-Sanderson and F. Gotch, J. Physiol. 12, 5 (1891).Google Scholar
  20. 20.
    A. L. Hodgkin and A. F. Huxley, J. Physiol. (London) 104, 76 (1945).Google Scholar
  21. 21.
    A. L. Hodgkin and B. Katz, J. Physiol. (London) 108, 37 (1949).Google Scholar
  22. 22.
    D. E. J. Goldman, J. Gen. Physiol. 27, 37 (1943).CrossRefGoogle Scholar
  23. 23.
    G. N. Ling, Physiol. Chem. Phys. 14, 47 (1982).Google Scholar
  24. 24.
    G. N. Ling, in Structure and Function in Excitable Cells ( D. C. Chang, I. Tasaki, W. J. Adelman, Jr., and H. R. Leuchtag, eds.), Plenum Press, New York (1983), p. 365.Google Scholar
  25. 25.
    G. N. Ling, In Search of the Physical Basis of Life, Plenum Press, New York (1984).Google Scholar
  26. 26.
    B. Katz, Nerve, Muscle, and Synapse, McGraw-Hill, New York (1966).Google Scholar
  27. 27.
    A. L. Hodgkin and A. F. Huxley, J. Physiol. 116, 449 (1952a).Google Scholar
  28. 28.
    A. L. Hodgkin and A. F. Huxley, J. Physiol. 116, 473 (1952b).Google Scholar
  29. 29.
    A. L. Hodgkin and A. F. Huxley, J. Physiol. 116, 497 (1952c).Google Scholar
  30. 30.
    A. L. Hodgkin and A. F. Huxley, J. Physiol. 116, 500 (1952c).Google Scholar
  31. 31.
    D. R. Hoagland, P. L. Hibbard, and A. R. Davis, J. Gen. Physiol. 10, 121 (1926).CrossRefGoogle Scholar
  32. 32.
    F. C. Steward, Protoplasma 15, 29 (1932).CrossRefGoogle Scholar
  33. 33.
    A. M. Brues, L. G. Wesson, and W. E. Cohn, Anat. Rec. 94, 451 (1946).Google Scholar
  34. 34.
    W. Negendank and C. Shaller, J. Cell Physiol. 103, 87 (1980).CrossRefGoogle Scholar
  35. 35.
    H. Lundegàrdh and H. Burström, Biochem. Z. 277, 223 (1935).Google Scholar
  36. 36.
    J. Harris, J. Biol. Chem. 141, 570 (1941).Google Scholar
  37. 37.
    G. T. Scott and H. R. Hayward, Biochim. Biophys. Acta 12, 401 (1953).CrossRefGoogle Scholar
  38. 38.
    G. N. Ling, in Phosphorous Metabolism (W. D. McElroy and B. Glass, eds.), Vol. II, p. 748, Johns Hopkins U. P., Baltimore (1952).Google Scholar
  39. 39.
    G. N. Ling, A Physical Theory of the Living State: The Association-Induction Hypothesis, Blaisdell, Waltham, Massachusetts (1962).Google Scholar
  40. 40.
    G. N. Ling, C. Miller, and M. M. Ochsenfeld, Ann. N. Y. Acad. Sci. 204, 6 (1973).CrossRefGoogle Scholar
  41. 41.
    R. D. Keynes and G. W. Maisel, Proc. R. Soc. London Ser. B 142, 383 (1954).CrossRefGoogle Scholar
  42. 42.
    D. J. Conway, R. P. Kernan, and J. A. Zadunaisky, J. Physiol. 155, 263 (1961).Google Scholar
  43. 43.
    G. N. Ling and M. M. Ochsenfeld, Physiol. Chem. Phys. 8, 389 (1976).Google Scholar
  44. 44.
    H. Levi and H. H. Ussing, Acta Physiol Scand. 16, 232 (1948).CrossRefGoogle Scholar
  45. 45.
    G. N. Ling, Physiol Chem. Phys. 12, 215 (1980).Google Scholar
  46. 46.
    G. N. Ling, C. L. Walton, and M. M. Ochsenfeld, Cell Physiol 106, 385 (1981).CrossRefGoogle Scholar
  47. 47.
    G. N. Ling, C. Walton, and M. R. Ling, J. Cell. Physiol 101, 261 (1979).CrossRefGoogle Scholar
  48. 48.
    A. L. Lehninger, The Mitochondria, Benjamin, Menlo Park (1964).Google Scholar
  49. 49.
    G. N. Ling and M. M. Ochsenfeld, Physiol Chem. Phys. Med. NMR 15, 127 (1983).Google Scholar
  50. 50.
    G. N. Ling, Physiol Chem. Phys. 12, 383 (1980).Google Scholar
  51. 51.
    G. N. Ling, Physiol Chem. Phys. Med. NMR 15, 155 (1983).Google Scholar
  52. 52.
    G. N. Ling and Z. L. Zhang, Physiol Chem. Phys. Med. NMR 15, 391 (1983).Google Scholar
  53. 53.
    G. N. Ling and R. C. Murphy, Physiol Chem. Phys. Med. NMR 15, 137 (1983).Google Scholar
  54. 54.
    G. N. Ling and M. M. Ochsenfeld, J. Gen. Physiol 49, 819 (1966).CrossRefGoogle Scholar
  55. 55.
    A. J. Hodge and F. O. Schmidt, Proc. Natl Acad. Sci. USA 46, 186 (1960).CrossRefGoogle Scholar
  56. 56.
    G. N. Ling, Physiol Chem. Phys. 9, 319 (1977).Google Scholar
  57. 57.
    L. Edelmann, Histochem. 67, 233 (1980).CrossRefGoogle Scholar
  58. 58.
    L. Edelmann, Physiol Chem. Phys. 9, 313 (1977).Google Scholar
  59. 59.
    L. Edelmann, Microsc. Acta Suppl. 2, 166 (1978).Google Scholar
  60. 60.
    C. Trombitas and A. Tigyi-Sebes, Acta Physiol Acad. Sci. Hung. 14, 271 (1979).Google Scholar
  61. 61.
    I. Edelmann, Physiol Chem. and Phys. 12, 509 (1980).Google Scholar
  62. 62.
    A. V. Somlyo, H. Gonzales-Serratos, H. Shuman, G. McClellan, and A. P. Somlyo, J. Cell. Biol. 90, 577 (1981).CrossRefGoogle Scholar
  63. 63.
    M. Sjöström and L. E. Thornell, J. Microsc. 103, 101 (1975).CrossRefGoogle Scholar
  64. 64.
    L. Edelmann, Physiol Chem. Phys. 15, 337 (1983).Google Scholar
  65. 65.
    P. Y. Chou and G. D. Fasman, Biochem. 13, 211 (1974).CrossRefGoogle Scholar
  66. 66.
    G. N. Ling and W. Negendank, Physiol Chem. Phys. 2, 15 (1970).Google Scholar
  67. 67.
    G. N. Ling, Intern. J. Neuroscience 1, 129 (1970).CrossRefGoogle Scholar
  68. 68.
    G. Masszi, Z. Szijarto, and P. Grof, Acta Biochim. Biophys. Acad. Sci. Hung. 11, 129 (1976).Google Scholar
  69. 69.
    J. S. Clegg, S. Szwarnowski, Z. E. R. McClean, P. J. Scheppard, and E. H. Grant, Biochim. Biophys. Acta 721, 458 (1982).CrossRefGoogle Scholar
  70. 70.
    U. Kaatze, O. Gottman, R. Podbleiski, R. Pottel, and U. Terveer, J. Phys. Chem. 82, 112 (1978).CrossRefGoogle Scholar
  71. 71.
    E. C. Trantham, H. E. Rorschach, J. S. Clegg, C. F. Hazlewood, R. M. Nicklow, and N. Wakabayashi, Biophys. J. 45, 927 (1984).CrossRefGoogle Scholar
  72. 72.
    H. E. Rorschach, in Water and Ions in Biological Systems ( V. Vasilescu, ed.), Plenum Press, New York (in preparation, 1985 ).Google Scholar
  73. 73.
    F. N. Ling, Biophys. J. 13, 807 (1973).CrossRefGoogle Scholar
  74. 74.
    G. N. Ling, Fed. Proc. 14, 93 (1955).Google Scholar
  75. 75.
    H. N. Ling, Fed Proc. 18, 371 (1959).Google Scholar
  76. 76.
    G. N. Ling, J. Gen. Physiol 43, 149 (1960).CrossRefGoogle Scholar
  77. 77.
    G. N. Ling, in Glass Electrodes for Hydrogen and Other Cations (G. Eisenman, ed.), Mar-cel Dekker, New York (1967), Chap. 10, p. 284.Google Scholar
  78. 78.
    G. N. Ling and G. Bohr, Biophys. J. 10, 519 (1970).CrossRefGoogle Scholar
  79. 79.
    L. Edelmann, Ann. N. Y. Acad. Sci. 204, 534 (1973).CrossRefGoogle Scholar
  80. 80.
    G. N. Ling, Physiol. Chem. Phys. 11, 59 (1979).Google Scholar
  81. 81.
    C. L. Maloff, S. P. Scordillis, C. Reynolds, and H. Tedeschi, J. Cell. Biol. 78, 199 (1978).CrossRefGoogle Scholar
  82. 82.
    G. N. Ling, Proc. 19th Internat. Physio. Congr., p. 566, Montreal, Canada (1953).Google Scholar
  83. 83.
    R. Villegas, M. Blei, and G. M. Villegas, J. Gen. Physiol. 48, 41 (1965).CrossRefGoogle Scholar
  84. 84.
    G. N. Ling and M. M. Ochsenfeld, Biophys. J. 5, I II (1965).CrossRefGoogle Scholar
  85. 85.
    B. Hille, Fed. Proc. 34, 1318 (1975).Google Scholar
  86. 86.
    I. M. Stillman, D. L. Gilbert, and R. L. Lipicky, Biophys. J. 11, 55a (1971).CrossRefGoogle Scholar
  87. 87.
    H. Drouin and R. The, Pflugers Arch. Ges. Physiol. 313, 80 (1969).CrossRefGoogle Scholar
  88. 88.
    F. Hucho and W. Scheibler, Mol. Cell. Biochem. 18, 151 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Gilbert N. Ling
    • 1
  1. 1.Department of Molecular BiologyPennsylvania HospitalPhiladelphiaUSA

Personalised recommendations