Skip to main content

Electrochemistry of Drug Interactions and Incompatibilities

  • Chapter
Modern Bioelectrochemistry

Abstract

Molecular associations involving drugs are of considerable pharmacological importance. Incompatibilities and the binding of “active” drugs to “inert” formulation components are characterized by such associations and may result in rendering otherwise carefully planned therapeutic regimens ineffective. The “large cation—large anion” incompatibility is considered. Association between two drugs or a drug and tissue component in vivo may greatly modify the distribution and therefore the therapeutic effect of the drug. In spite of complications caused by tissue binding and metabolic modification the therapeutic interaction between some pairs of drugs is suitable for study by physicochemical in vitro techniques. Further details with respect to the interactions of the anticoagulant heparin are given. The study of the mechanism of drug action is greatly assisted by the in vitro study of simplified model systems. The chlorpromazine/iodine system is discussed. Electrochemical techniques, such as conductimetric titration, voltammetry, and potentiometry, are indicated when there is a decrease (as in cation—anion association) or increase (as in the dissociation of a charge transfer complex) in the concentration of charge carriers. Other physicochemical techniques are complementary with these electrochemical techniques. Biological and clinical studies are essential before deciding the practical therapeutic significance of an interaction demonstrated by physicochemical means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Thomas, “Drug Interactions,” in Drugs/Actions and Uses. Selected Review Articles, No. 1, New Ethicals, Sydney (1969).

    Google Scholar 

  2. A. Melville and C. Johnson, Cured to Death. The Effects of Prescription Drugs, Angus and Robertson, London (1982).

    Google Scholar 

  3. W. H. W. Inman, ed., Monitoring for Drug Safety, MTP Press, Lancaster (1980).

    Google Scholar 

  4. E. Martin, ed., Hazards of Medication, Lippincott, New York (1971).

    Google Scholar 

  5. Australian Pharmaceutical Handbook and Formulary, 13th edition, The Pharmaceutical Society of Australia, Canberra (1983).

    Google Scholar 

  6. Martindale, The Extra-Pharmacopoeia, 28th edition, Pharmaceutical Press, London (1982).

    Google Scholar 

  7. Japan Atomic Energy Research Institute, Sustained Release Drug Complexes, Chemical Abstracts, 97, 44339z (1982) from Jpn. Kokai Tokyo Koho JP, 82 56, 421 (CI. A61K9/00), 5 April 1982, Appl. 80/132, 670, 24 September 1980; 4 pp.

    Google Scholar 

  8. A. Albert, Selective Toxicity, 4th Ed., Methuen, London (1968).

    Google Scholar 

  9. E. Chargaff and K. B. Olsen, “Studies on the Chemistry of Blood Coagulation VI. Studies on the Action of Heparin and Other Anticoagulants. The Influence of Protamine on the Anticoagulant Effect in Vivo,” J. Biol. Chem. 122, 153–167 (1937).

    CAS  Google Scholar 

  10. A. Ur, “Changes in the Electrical Impedance of Blood During Coagulation,” Nature 226, 269–270 (1970).

    Article  CAS  Google Scholar 

  11. A. Szent-Györgyi, Introduction to a Submolecular Biology, Academic, New York (1960).

    Google Scholar 

  12. A. Szent-Györgyi, Bioelectronics, Academic, New York (1968).

    Google Scholar 

  13. A. Szent-Györgyi, The Living State and Cancer, Marcel Dekker, New York (1978).

    Google Scholar 

  14. M. L. Cowger, R. E. Labbe, and M. Sewell, Arch. Biochem. Biophys. 101, 96 (1963).

    Article  CAS  Google Scholar 

  15. J. P. Farges and F. Gutmann, “Charge-Transfer Complexes in Electrochemistry,” in Modern Aspects of Electrochemistry, No. 12 ( J. O’M. Bockris and B. E. Conway, eds.), Plenum Press, New York (1977), pp. 267–314.

    Google Scholar 

  16. C. Tamara, Bull. Chem. Soc. Jpn 46, 2388 (1973).

    Article  Google Scholar 

  17. G. H. Nancollas, “Thermodynamics of Ion Association in Aqueous Solution,” Quart. Rev. 14, 402–426 (1960).

    Article  CAS  Google Scholar 

  18. C. W. Davies, Ion Association, Butterworths, London (1962).

    Google Scholar 

  19. 19.R. M. Diamond, “The Aqueous Solution Behaviour of Large Univalent Ions. A New Type of Ion Pairing,” J. Phys. Chem. 67, 2513–2517 (1963).

    Article  CAS  Google Scholar 

  20. T. Higuchi, A. Michaelis, and J. H. Rytting, “Role of Solvating Agents in Promoting Ion Pair Extraction,” Anal. Chem. 43 (2), 287–289 (1971).

    Article  CAS  Google Scholar 

  21. H. Frieser, “Relevance of Solubility Parameter in Ion Association Extraction Systems,” Anal. Chem. 41 (10), 1354 (1969).

    Article  Google Scholar 

  22. M. Szwarc, “Ions and Ion Pairs,” Acc. Chem. Res. 2, 87–96 (1969).

    Article  CAS  Google Scholar 

  23. P. Mukerjee, K. J. Mysels, and P. Kanauan, “Counterion Specificity in the Formation of Ionic Micelles—Size, Hydration, Hydrophobic Bonding Effects,” J. Phys. Chem. 71, 4166–4175 (1967).

    Article  CAS  Google Scholar 

  24. N. A. Gibson and D. C. Weatherburn, “The Distribution of Salts and Large Cations Between Water and Organic Solvents,” Anal. Chim. Acta 58, 159–165 (1972).

    Article  CAS  Google Scholar 

  25. F. Gutmann and L. E. Lyons, Organic Semiconductors, 2nd Ed., revised by F. Gutmann and H. Keyzer, Krieger, Malabar, Florida (1983).

    Google Scholar 

  26. F. Gutmann and H. Keyzer, “Conductivity Titrations of Charge-Transfer Complexes in Solution—II,” Electrochim. Acta 11, 555–568, 1163–1169 (1966).

    CAS  Google Scholar 

  27. P. Job, C. R. Acad. Sei. (Paris) 180, 928 (1925).

    CAS  Google Scholar 

  28. F. Gutmann and H. Keyzer, “Charge-Transfer Complexes of Chlorpromazine in Solution: A Conductimetric Study,” Electrochim. Acta 12, 1255–1262 (1967).

    Article  CAS  Google Scholar 

  29. F. Gutmann and H. Keyzer, Electrochim. Acta 13, 693 (1968).

    Article  CAS  Google Scholar 

  30. F. Gutmann, “Conductimetric Titrations of Charge Transfer Complexes in Solution: A Review,” J. Sci. Indus. Res. 26, 19–28 (1967).

    CAS  Google Scholar 

  31. M. A. Slifkin, Charge Transfer Interactions in Biomolecules, Academic, London (1971), pp. 42, 47.

    Google Scholar 

  32. G. M. Eckert, J. P. Farges, and F. Gutmann, “Exploratory Studies of Some Drug Charge Transfer Interactions,” J. Biol. Phys. 6, 161–175 (1978).

    Article  Google Scholar 

  33. M. E. Starzak, J. Biol. Phys. 2, 57 (1974); M. D. Ryan and G. S. Wilson, Anal. Chem. 47, 885–890 (1975); P. Groll and F. Grass, Electrochim. Acta 16, 31 (1971).

    Article  Google Scholar 

  34. C. Boitre, “Membrane System for Determining the Interactions Between Biologically Active Substances and Living Microorganisms”,Boll. Lab. Chim. Prov. 22 (6), 1013–1023 (1971).

    Google Scholar 

  35. R. Foster and C. A. Fyfe, “Electron-Donor-Acceptor Formation by Compounds of Biological Interest II,” Biochim. Biophys. Acta 112, 490–495 (1966).

    Article  CAS  Google Scholar 

  36. I. Blei, “Complex Formation Between Chlorpromazine and Adenosine Triphosphate,” Arch. Biochem. Biophys. 109, 321–324 (1965).

    Article  CAS  Google Scholar 

  37. L. S. C. Wan, “Interaction of Salicyclic Acid with Quaternar Ammonium Compounds,” J. Pharm. Sci. 57, 1903–1906 (1968).

    Article  CAS  Google Scholar 

  38. R. A. Bennett and H. O. Hooper, J. Chem. Phys. 47, 4855 (1967).

    Article  CAS  Google Scholar 

  39. R. Sahai, V. Singh, and M. Chudhan, “Dielectric Studies of Molecular Complexes of DDT with Some Compounds of Biological Interest,” Monatsh. Chem. 112 (10), 1129) 1981 ).

    Google Scholar 

  40. R. Sahia, V. Singh, and R. K. Verma, “Role of Dielectric Constant on Stoichiometry of Some Iodine Molecular Complexes and Their Transformation into Ion Pairs,” Indian J. Chem. Sec. A 20A (10), 1017 (1981).

    Google Scholar 

  41. 41.G. Briegleb, Elektron Donator Akzeptor Komplexe, Springer, Berlin (1961).

    Google Scholar 

  42. G. M. Eckert, F. Gutmann, and M. Kabos, “The Electrochemical Interactions of Heparin and the Aminoglycoside Antibiotics,” J. Biol. Phys. 10, 51–63 (1982).

    Article  CAS  Google Scholar 

  43. W. A. Harris, “The Interaction of Neomycin and Other Aminoglycosides with Pectin and Amaranth,” Australian J. Pharm. 52 (1971).

    Google Scholar 

  44. A. Gallus and G. Engel, Heparin, The Society of Hospital Pharmacists of Australia (1978).

    Google Scholar 

  45. F. H. Gross and W. H. W. Inman (eds.), Drug Monitoring, Academic, London (1977).

    Google Scholar 

  46. G. Domagk, “Eine neue Klasse von Desinfectionsmittel,” Deutsche Medizinische Wochenschrift 61, 829–832 (1935).

    Article  CAS  Google Scholar 

  47. Z. Baker, R. W. Harrison, and B. F. Miller, “Inhibition by Phospholipids of the Action of Synthetic Detergents on Bacteria,” J. Exp. Med. 74, 621–637 (1941).

    Article  CAS  Google Scholar 

  48. I. Michaels, “The Use of Inhibitory Agents in Investigations of Antibacterial Activity,” Pharm. J. (1950), 263–264, 302–303.

    Google Scholar 

  49. C. A. Lawrence, “Inactivation of the Germicidal Action of Quaternary Ammonium Com-pounds,” J. Am. Pharm. Assoc. Sei. Ed. 37, 57–61 (1948).

    Article  CAS  Google Scholar 

  50. W. Nixon and M. W. Cheetham, “Surface Active Agents. A Note on Some Visual Incom-patibilities,” Pharm. J. (1950), 46.

    Google Scholar 

  51. E. I. Valko and A. S. DuBois, “The Antibacterial Action of Surface Active Cations,” J. Bacteriol. 47, 15–25 (1943).

    Google Scholar 

  52. A. Albert, S. D. Rubbo, R. J. Goldacre, M. E. Davey, and J. D. Stone, “The Influence of Chemical Constitution of Antibacterial Activity. Part II: A General Survey of the Acridine Series,” J. Exp. Pathol. 26, 160–192 (1945).

    CAS  Google Scholar 

  53. H. E. R. Barker, “Cationic-Anionic Incompatibility and Ointments Containing Cation Active Antiseptics,” Austral. J. Pharm. (1948), 801–807.

    Google Scholar 

  54. The Pharmaceutical Society of Australia, The Australian Pharmaceutical Formulary, 8th ed., (1955).

    Google Scholar 

  55. D. H. Rodgers, “Conductimetric Study of the Interaction of Hexylresorcinol and Amaranth with Quaternary Ammonium Compounds,” J. Pharm. Sei. 54, 459–460 (1965).

    Article  CAS  Google Scholar 

  56. W. A. Harris, “A Preliminary Conductimetric Study of Some Cation-Anion Interactions,” Austral. J. Pharm. (1968), S87–S90.

    Google Scholar 

  57. G. M. Eckert and C. Griffiths, “Some Difficulties Associated with the Dispensing of Surface Active Agents,” Austral. J. Pharm. (1952), 839–840.

    Google Scholar 

  58. P. P. DeLuca and H. B. Kosternabauder, “Interaction of Preservatives with Macromolecules IV. Binding of Quaternary Ammonium Compounds by Non-Ionic Agents,” J. Am. Pharm. Assoc. Sei. Ed. 49 (7), 430–437 (1960).

    Google Scholar 

  59. Proceedings of the 3rd NIMH Sponsored Conference on Phenothiazines and Related Drugs (I. S. Forrest, C. J. Carr, and E. Usdin, eds.), Raven Press, New York (1974).

    Google Scholar 

  60. Proceedings of the 4th NIMH Sponsored Conference on Phenothiazines and Related Drugs, Zurich, 1979, Elsevier, Holland (1980).

    Google Scholar 

  61. F. Goodman and C. Gilman, The Pharmacological Basis of Therapeutics, Fifth Edition, MacMillan, New York (1975).

    Google Scholar 

  62. C. Boitre, M. Marchetti, C. Del Vecchio, G. Lionetti, and A. Memoli, “A Physicochemical Model for the Mechanism of Action of Antihistamines and Cortisol,” J. Med. Chem. 12 (5), 832–836 (1969).

    Article  Google Scholar 

  63. F. Gutmann and H. Keyzer, “Study of Phenothiazine and Chlorpromazine-Iodine Complexes,” J. Chem. Phys. 46 (5), 1968–1974 (1967).

    Article  Google Scholar 

  64. A. Brau, J. P. Farges, and F. Gutmann, “Electrochemical Studies of Phenothiazine- Iodine Charge-Transfer Complexes,” Electrochim. Acta 17, 1803–1811 (1972).

    Article  CAS  Google Scholar 

  65. F. Gutmann and H. Keyzer, “Charge Transfer Complexes of Thiazine Derivatives and Their Possible Physiological Significance,” Agressologie 9, 27–35 (1968).

    CAS  Google Scholar 

  66. I. S. Forrest, F. Gutmann, and H. Keyzer, “In Vitro Interaction of Chlorpromazine and Melanin,” Agressologie 7, 147–156 (1966).

    CAS  Google Scholar 

  67. F. Gutmann, L. C. Smith, and M. A. Slifkin, “Charge Transfer Interactions of Chlorpromazine with Neutral Transmitters,” in The Phenothiazines and Structurally Related Drugs ( I. S. Forrest, C. J. Car, and E. Usdin, eds.), Raven Press, New York (1974).

    Google Scholar 

  68. S. Lukiewicz, K. Reszka, and Z. Matuszak, Bioelectrochem. Bioenerg. 7 (1), 153–165 (1980).

    Article  CAS  Google Scholar 

  69. R. Capeletti and T. R. Crippa, “Electret State and Hydrated Structure of Melanin,” Bioelectrochem. Bioenerg. 8 (5), 555 (1981).

    Article  Google Scholar 

  70. F. W. Cope, “Inversion of Emulsions of Aggregated Electrons as a Possible Mechanism for Electrical Switching in Wet Melanin and in Amorphous Semiconductors. A Manifestation of Cooperative Electron Interaction,” Physiol. Chem. Phys. 9 (6), 543 (1977).

    CAS  Google Scholar 

  71. F. W. Cope, “Critical Exponent Analysis of Activation Energies of Nonlinear Arrhenius Plots as a Test for Cooperative Interactions in Amorphous Semiconductors and in Biological Systems,” Physiol. Chem. Phys. 9(4, 5), 329, 443 (1977).

    CAS  Google Scholar 

  72. F. M. Forrest, I. S. Forrest, and Roisin, “Biochemical and Post-Mortem Studies on a Patient Treated with Chlorpromazine,” Agressologie 4 (3), 259–265 (1963).

    CAS  Google Scholar 

  73. I. S. Forrest, F. M. Forrest, and M. Berger, “Free Radicals as Metabolites of Drugs Derived from Phenothiazines,” Biochim. Biophys. Acta 29, 441–442 (1958).

    Article  CAS  Google Scholar 

  74. A. M. Potts, “The Reaction of Uveal Pigment in Vitro with Polycyclic Compounds,” Invest. Ophthal. 3, 405–416 (1964).

    CAS  Google Scholar 

  75. A. C. Greiner and G. A. Nicolson, “Pigmentation in Viscera Associated with Prolonged Chlorpromazine Therapy,” Can. Med. Ass. J. 91, 627–635 (1964).

    CAS  Google Scholar 

  76. A. C. Greiner and K. Berry, “Skin Pigmentation and Corneal and Lens Opacities with Prolonged Chlorpromazine Therapy,” Can. Med. Ass. J. 90, 363–365 (1964).

    Google Scholar 

  77. M. Piatelli and R. A. Nicoulaus, “The Structures of Melanins and Melanogenesis I,” Tetrahedron 15, 66–75 (1961).

    Article  Google Scholar 

  78. A. Bolt, private communication.

    Google Scholar 

  79. I. A. Menon, “A Qualitative Study of the Melanin for Blue and Brown Human Eyes,” Exp. Eye Res. 34 (4), 531 (1982).

    Article  CAS  Google Scholar 

  80. I. A. Menon, “ A Qualitative Study of the Melanin for Blue and Brown Human Eyes,” Exp. Eyes res. 34(4), 531 (1982).

    Article  CAS  Google Scholar 

  81. H. Keyzer, C. Lowe, W. Plumtree, and F. Gutmann, Phenothiazines and Structurally Related Drugs, Proceedings 4th International Phenothiazine Conference, Zurich, 1979. Elsevier, Amsterdam (1980).

    Google Scholar 

  82. M. Zarach-Krutysza, “Susceptibility of Albino and Black Mice to Some Drugs with Affinity to Melanins,” Acta Pol. Pharm. 38 (4), 513 (1981).

    CAS  Google Scholar 

  83. H. Tjaelve, M. Nilsson, and B. Larsson, “Studies on the Binding of Chlorpromazine and Chloroquine to Melanin ‘in vivo’,” Biochem. Pharmacol. 30 (13), 1845 (1981).

    Article  CAS  Google Scholar 

  84. B. Larsson and H. Tjaelve, “Studies on the Mechanism of Binding to Melanin,” Biochem. Pharmacol. 28 (7), 1181 (1979).

    Article  CAS  Google Scholar 

  85. M. Barza, A. Kane, and J. Baum, “Marked Differences Between Pigmented and Albino Rabbits: The Concentration of Melanin in Iris and Choroid Retina,” J.Inf. Dis. 139 (2), 203 (1979).

    Article  CAS  Google Scholar 

  86. M. M. Salazar, “The Significance of the Interpretation of Drugs with Melanin,” Diss. Abst. Int. B. 37 (8), 3908 (1977).

    Google Scholar 

  87. J. Klatersky and M. J. Staquet (eds.), Combination Antibiotic Therapy in the Com-promised Host, Raven Press, New York (1982).

    Google Scholar 

  88. L. J. Riff and G. G. Jackson, “Laboratory and Clinical Conditions for Gentamicin Inactivation by Carbenicillin,” Ann. Int. Med. 130, 887–891 (1972).

    Article  CAS  Google Scholar 

  89. M. Mork-Hansen and K. Kaaber, “Nephrotoxicity in Combined Cephalothin and Gen-tamicin Therapy,” Acta. Med. Scand. 201, 463–467 (1977).

    Article  Google Scholar 

  90. L. B. Jaques, “Heparin and Related Polyelectrolytes,” in Polyelectrolytes and Their Applications ( A. Rembaum and E. Selegny, eds.), Reidel, Dordrecht (1975), pp. 146–161.

    Google Scholar 

  91. A. Rembaum, personal communication.

    Google Scholar 

  92. T. F. Dougherty and D. A. Dolowitz, “Physiologie Actions of Heparin not Related to Blood Clotting,” in Chemical Dynamics, Papers in honor of Henry Eyring ( J. O. Hirschfelder and D. Henderson, eds.), Wiley, Interscience, New York (1971).

    Google Scholar 

  93. G. M. Eckert and F. Gutmann, “The Electrochemistry of Some Drug Interactions,” Elec- troanal. Chem. Interfacial. Electrochem. 62, 267–272 (1975).

    Article  CAS  Google Scholar 

  94. J. M. Menter, R. E. Hurst, and S. S. West, “Photochemistry of Heparin-Acridine Orange Complexes in Solution: Photochemical Changes Occurring in the Dye and Polymer on Fluorescence Fading,” Photochem. Photobiol. 29, 473–78 (1979).

    Article  CAS  Google Scholar 

  95. C. M. Kunin, “Binding of Antibiotics to Tissue Homogenates,” J. Infect. Dis. 121, 55–64 (1970).

    Article  CAS  Google Scholar 

  96. T. Deguchi, A. Ishii, and M. Tanaka, “Binding of Aminoglycoside Antibiotics to Acidic Mucopolysaccharides,” J. Antibiotics XXXI, 150–155 (1978).

    Google Scholar 

  97. G. B. Appel and H. C. Neu, “The Nephrotoxicity of Antimicrobial Agents. Parts I, II and III,” New Engl. J. Med. 296, 663–670, 722–728, 784–787 (1977).

    Article  CAS  Google Scholar 

  98. G. J. Janz and S. S. Danyluk, Electrolytes (B. Pearse, ed.), Pergamon Press, Oxford (1962), p. 255.

    Google Scholar 

  99. P. C. Farrell, M. F. O’Rourke, and E. Turnbull, “Precise Anticoagulation During Coronary Care Management,” Abstract, Am. Soc. Artif. Int. Org. 8, 71 (1979).

    Google Scholar 

  100. A. S. MacNalty (ed.), The British Medical Dictionary, The Caxton Publishing Co., London (1961).

    Google Scholar 

  101. G. S. Hartley, “The Effect of Long-Chain Salts on Indicators: The Valence-Type of Indicators and the Protein Error,” Trans. Faraday Soc. 30, 444 (1934).

    Article  CAS  Google Scholar 

  102. N. W. Tschoegl, “Analysis of Water Soluble Synthetic Soaps,” Rev. Pure Appl. Chem. 4 (3), 171–206 (1954).

    CAS  Google Scholar 

  103. E. L. Colichman, “Photocolorimetric Method for Determination of Quaternary Ammonium Salts,” Anal. Chem. 19, 430 (1947).

    Article  CAS  Google Scholar 

  104. C. W. Ballard, J. Isaacs, and P. G. W. Scott, “The Photometric Determination of Quaternary Ammonium Salts and of Certain Amines by Compound Formation with Indicators,” J. Pharm. Pharmac. 6, 971 (1954).

    Article  CAS  Google Scholar 

  105. M. R. J. Salton and A. E. Alexander, “Estimation of Soaps and Ionised Detergents,” Research 2, 247 (1949).

    CAS  Google Scholar 

  106. E. L. Colichman, “Spectral Study of Long Chain Quaternary Ammonium Salts in Bromophenol Blue Solutions,” J. Am. Chem. Soc. 73, 3385 (1951).

    Article  CAS  Google Scholar 

  107. E. L. Colichman, “Conductance of Long Chain Quaternary Salts in Bromophenolate Blue Solutions,” J. Am. Chem. Soc. 72, 1834 (1950).

    Article  CAS  Google Scholar 

  108. P. Mukerjee, “Use of Ionic Dyes in the Analysis of Ionic Surfactants and Other Ionic Organic Compounds,” Analyt. Chem. 28, 870–873 (1956).

    Article  CAS  Google Scholar 

  109. H. B. Klevens, “Analysis of Colloidal Electrolytes by Dye Titration,” Analyt. Chem. 22 (9), 1142–1145 (1950).

    Article  Google Scholar 

  110. S. E. Sheppard and A. L. Geddes, “Effect of Solvents Upon the Absorption Spectra of Dyes. V. Water as Solvent: Quantitative Examination of the Dimerization Hypothesis,” J. Am. Chem. Soc. 69, 2003–2009 (1944).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Eckert, G.M., Gutmann, F., Keyzer, H. (1986). Electrochemistry of Drug Interactions and Incompatibilities. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics