A Qualitative, Molecular Model of the Nerve Impulse

Conductive Properties of Unsaturated Lyotropic Liquid Crystals
  • Paavo K. J. Kinnunen
  • Jorma A. Virtanen


An approach to the molecular mechanism of nerve impulse is described. Basically, we propose an electronic conduction band to exist in properly arranged ethylenic double bonds of unsaturated nerve membrane lipids. Electron-electron interaction in the conduction band is brought about by a pair of holes residing on a charge-transfer band of cholesterol and phospholipid carbonyls. Rectification of signal and driving force for propagation is provided by transmembrane ion fluxes which generate a lateral field along the axis of the nerve fiber. Transmembrane ion currents are controlled by Na-channel proteins, which in turn are regulated by a transient phase transition in the membrane lipids. In the latter process a crucial role is played by phosphatidylserine. Under resting potential this lipid in the outer surface of the membrane is deprotonated and in the liquid crystalline state. Following a depolarizing pulse an electrostatically triggered phase transition takes place due to protonation of phosphatidylserine with subsequent phase separation of a crystalline membrane lipid domain and opening of Na channels


Nerve Impulse Acidic Phospholipid Nerve Membrane Liquid Crystalline State Double Bond System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Hodgkin, “The Ionic Basis of Nervous Conduction,” Science 145, 1148–1154 (1964)Google Scholar
  2. 2.
    A. F. Huxley,Excitation and Conduction in Nerve: Quantitative Analysis,Science145 1154–1159 (1964)Google Scholar
  3. 3.
    J. L. Hindmarsh and R. M. Rose, “A Model of the Nerve Impulse Using Two First- Order Differential Equations,” Nature 296, 162–164 (1982)Google Scholar
  4. 4.
    A. L. Hodgkin, The Conduction of the Nervous Impulse, C. C. Thomas, Springfield, MassachusettsGoogle Scholar
  5. 5.
    B. Hille, in Progress in Biophysics and Molecular Biology (J.A.V. Butler and D. Noble, eds.), Vol. 21, Pergamon, New York (1970), pp. 3–34.Google Scholar
  6. 6.
    A. C. Scott, “The Electrophysics of Nerve Fiber,” Rev. Mod. Phys. 47, 487–533 (1975).Google Scholar
  7. 7.
    I. Tasaki, Physiology and Electrochemistry of Nerve Fibers, Academic, New York (1982).Google Scholar
  8. 8.
    D. E. Goldman, “A Molecular Structural Basis for the Excitation Properties of Axons,” Biophys. J. 4, 167–188 (1964).Google Scholar
  9. 9.
    L. Y. Wei, “Role of Surface Dipoles on Axon Membrane,” Science 163, 280–282 (1969).Google Scholar
  10. 10.
    S. P. Almeida, J. D. Bond, and T. C. Ward, “The Dipole Model and Phase Transitions inBiological Membranes,” Biophys. J. 11, 995–1001 (1971).Google Scholar
  11. 11.
    F. W. Cope, in Bioelectrochemistry ( H. Keyzer and F. Gutmann, eds.), Plenum Press, New York (1980), pp. 297–329.Google Scholar
  12. 12.
    F. W. Cope, “Evidence from Activation Energies for Superconductive Tunnelling in Biological Systems at Physiological Temperatures,” Physiol. Chem. Phys. 3, 403–410 (1971).Google Scholar
  13. 13.
    F. W. Cope, “Enhancement by High Electric Fields of Superconduction in Organic and Biological Solids at Room Temperature and a Role in Nerve Conduction,” Physiol. Chem. Phys. 6, 405–410, (1974).Google Scholar
  14. 14.
    R. Henderson and J. H. Wang, “Solubilization of a Specific Tetrodotoxin-Binding Component from Garfish Olfactory Nerve Membrane,” Biochemistry 11, 4565–4569 (1972).Google Scholar
  15. 15.
    W. S. Agnew, S. R. Levinson, J. S. Brabson, and M. A. Raftery, “Purification of the Tetrodotoxin-Binding Component Associated with the Voltage-Sensitive Sodium Chan-nel from Electrophorus electricus Electroplax Membranes,” Proc. Natl. Acad. Sci. USA 75, 2606–2610 (1978).Google Scholar
  16. 16.
    J. A. Talvenheimo, M. M. Tamkun, and W. A. Catterall, “Reconstitution of Neurotoxin- Stimulated Sodium Transport by the Voltage-Sensitive Sodium Channel purified from Rat Brain,” J. Biol. Chem. 257, 11868–11871 (1982).Google Scholar
  17. 17.
    M. Condrescu and R. Villegas, “Ion Selectivity of the Nerve Membrane Sodium Channel Incorporated into Liposomes,” Biochim. Biophys. Acta 688, 660–666 (1982).Google Scholar
  18. 18.
    B. K. Krueger, J. F. Worley, and R. J. French, “Single Sodium Channels from Rat Brain Incorporated into Planar Lipid Bilayer Membranes,” Nature 303, 172–175 (1983).Google Scholar
  19. 19.
    A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve,” J. Physiol. 117, 500–544 (1952).Google Scholar
  20. 20.
    C. M. Armstrong and F. Bezanilla, “Currents Related to Movement of the Gating Par-ticles of the Sodium Channels,” Nature 242, 459–461 (1973).Google Scholar
  21. 21.
    R. Lorente de No, F. Vidal, and L.M.H. Larramendi, “Restoration of Sodium-Deficient Frog Nerve Fibers by Onium Ions,” Nature 179, 737–738 (1957).Google Scholar
  22. 22.
    J. W. Moore, “Temperature and Drug Effects on Squid Axon Membrane Ion Conduc-tances,” Fed. Proc. 17, 113 (1958).Google Scholar
  23. 23.
    I. Tasaki, I. Singer, and A. Watanabe, “Excitation of Internally Perfused Squid Giant Axons in Sodium-Free Media,” Proc. Natl. Acad. Sci. 54, 763–769 (1965).Google Scholar
  24. 24.
    M. Calvin, H. H. Wang, G. Entine, D. Gill, P. Ferruti, M. A. Harpold, and M. P. Klein, “Biradical Spin Labeling for Nerve Membranes,” Proc. Natl. Acad. Sci 63, 1–8 (1969).Google Scholar
  25. 25.
    J. J. Kendig and E. N. Cohen, “Pressure Antagonism to Nerve Conduction Block by Anesthetic Agents,” Anesthesiology 47, 6–10 (1977).Google Scholar
  26. 26.
    C. R. Badger and G. M. Helmkamp, “Modulation of Phospholipid Transfer Protein Activity. Inhibition by Local Anesthetics,” Biochim. Biophys. Acta 692, 33–40 (1982).Google Scholar
  27. 27.
    H. S. Hendrickson and M. C. E. van Dam-Mieras, “Local Anesthetic Inhibition of Pan-creatic Phospholipase A2 Action on Lecithin Monolayers,” J. Lipid Res. 17, 399–405 (1976).Google Scholar
  28. 28.
    M. B. Feinstein and M. Paimre, “Specific Reaction of Local Anesthetics with Phosphodiester Groups,” Biochim. Biophys. Acta 115, 33–45 (1965).Google Scholar
  29. 29.
    J. L. Browning and H. Akutsu, “Local Anesthetics and Divalent Cations Have the Same Effect on the Headgroups of Phosphatidylcholine and Phosphatidylethanolamine,” Biochim. Biophys. Acta 684, 172–178 (1982).Google Scholar
  30. 30.
    Y. Boulanger, S. Schreier, and I.C.P. Smith, “Molecular Details of Anaesthetic-Lipid Interaction as Seen by Deuterium and Phosphorus-31 Nuclear Magnetic Resonance,” Biochemistry 20, 6824–6830 (1981).Google Scholar
  31. 31.
    J. A. Virtanen and P. K. J. Kinnunen, A Qualitative, Molecular Model of the Nerve Impulse. Conductive Properties of Unsaturated Lipids, University of Helsinki Offset Press (1981).Google Scholar
  32. 32.
    F. Huneeus-Cox, H. L. Fernandez, and B. H. Smith, “Effects of Redox and Sulfhydryl Reagents on the Bioelectric Properties of the Giant Axon of the Squid,Biophys. J. 6, 675–689 (1966).Google Scholar
  33. 33.
    J. Reyes and R. Latorre, “Effect of the Anesthetics Benzyl Alcohol and Chloroform on Bilayers Made from Monolayers,” Biophys. J. 28, 259–280 (1979).Google Scholar
  34. 34.
    J. M. Fernándes, F. Bezanilla, and R. E. Taylor, “Effect of Chloroform on Charge Movement in the Nerve Membrane,” Nature 297, 150–152 (1982).Google Scholar
  35. 35.
    J. C. Nelander and A. E. Blaurock, “Disorder in Nerve Myelin: Phasing the Higher Order Reflections by Means of the Diffuse Scatter,” J. Mol. Biol. 118, 497–532 (1978).Google Scholar
  36. 36.
    J. P. Wiks wo, J. P. Barack, and J. A. Freeman, “Magnetic Field of a Nerve Impulse: First Measurements,” Science 208, 53–55 (1980).Google Scholar
  37. 37.
    R. A. Luben, C. D. Cain, M. C.-Y. Chen, D. M. Rosen, and W. R. Adey, “Effects of Electromagnetic Stimuli on Bone and Bone Cells in Vitro: Inhibition of Responses to Parathyroid Hormone by Low-Energy Low-Frequency Fields,” Proc. Natl. Acad. Sei. USA 79, 4180–4184 (1982).Google Scholar
  38. 38.
    N. Zisapel and M. Laudon, “Dopamine Release Induced by Electrical Field Stimulation of Rat Hypothalamus in Vitro. Inhibition by Melatonin,” Biochem. Biophys. Res. Com- mun. 104, 1610–1616 (1982).Google Scholar
  39. 39.
    R. Dixey and G. Rein, “3H-Noradrenaline Release Potentiated in a Clonal Nerve Cell Line by Low-Intensity Pulsed Magnetic Fields,” Nature 296, 253–256 (1982).Google Scholar
  40. 40.
    R. Plonsey, “The Nature of Sources of Bioelectric and Biomagnetic Fields,” Biophys. J. 39, 309–312 (1982).Google Scholar
  41. 41.
    H. Fernández-Moran, “Diffraction of Electrons by Structures Resembling Myelin Lamellae,” Exp. Cell Res. 2, 673–679 (1951).Google Scholar
  42. 42.
    J. H. Matheja, “Electron Diffraction of Membranes,” Biophysik 7, 163–168 (1971).Google Scholar
  43. 43.
    R. S. Khare and R. K. Mishra, “Electron Diffraction Studies on the Effect of Certain Drugs on Brain Cell Membranes,” Stud. Biophys. 38, 205–209 (1973).Google Scholar
  44. 44.
    S. W. Hui, “Electron Diffraction Studies on Membranes,” Biochim. Biophys. Acta 472, 345–371.Google Scholar
  45. 45.
    I. Tasaki, A. Watanabe, R. Sandlin, and L. Camay, “Changes in Fluorescence, Turbidity, and Birefringence Associated with Nerve Excitation,” Proc. Natl. Acad. Sei. USA 61, 883–888 (1968).Google Scholar
  46. 46.
    I. Tasaki, A. Watanabe, and M. Hallett, “Properties of Squid Axon Membrane as Revealed by a Hydrophobic Probe 2-p-toluidinylnaphatalene-6-sulfonate,” Proc. Natl. Acad. Sei. USA 68, 938–941 (1971).Google Scholar
  47. 47.
    I. Tasaki, A. Watanabe, and M. Hallett, “Fluorescence of Squid Axon Membrane Labelled with Hydrophobic Probes,” J. Membrane Biol. 8, 109–132 (1972).Google Scholar
  48. 48.
    I. Tasaki, E. Carbone, K. Siseo, and I. Singer, “Spectral Analysis of Extrinsic Fluorescence of the Nerve Membrane Labeled with Aminonaphatelene Derivatives,” Biochim. Biophys. Acta 323, 220–233 (1973).Google Scholar
  49. 49.
    I. Tasaki, “Energy Transduction in the Nerve Membrane and Studies of Excitation Processes with Extrinsic Fluorescent Probes,” Ann. NY Acad. Sei. 227, 247–267 (1974).Google Scholar
  50. 50.
    L. B. Cohen, B. M. Salzberg, H. J. Davila, W. N. Ross, D. Landowne, A. S. Waggoner, and C. H. Wang, “Changes in Axon Fluorescence During Activity: Molecular Probes of Membrane Potential,” J. Membrane Biol. 19, 1–36 (1974).Google Scholar
  51. 51.
    L. B. Cohen and B. M. Salzberg, “Optical Measurement of Membrane Potential,” Rev. Physiol. Biochem. Pharmacol. 83, 35–88 (1978).Google Scholar
  52. 52.
    A. G. MacDiarmid and A. J. Heeger, in Molecular Electronic Devices ( F. L. Carter, ed.), Marcel Dekker, New York (1983), pp. 259–271.Google Scholar
  53. 53.
    K. C. Kao and W. Hwang, Electrical Transport in Solids, Pergamon Press, New York (1981).Google Scholar
  54. 54.
    K. R. Thulborn, F. E. Treloar, and W. H. Sawyer, “A Microviscosity Barrier in the Lipid Bilayer due to the Presense of Phospholipids Containing Unsaturated Acyl Chains,” Biochem. Biophys. Res. Commun. 81, 42–49 (1978).Google Scholar
  55. 55.
    S. Winstein, “Nonclassical Ions and Homoaromaticity,” Qt. Rev. 23, 141–176 (1969).Google Scholar
  56. 56.
    R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Academic, New York (1970), pp. 101–107.Google Scholar
  57. 57.
    A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity, Pergamon Press, New York (1978).Google Scholar
  58. 58.
    D. Chapman, “Phase Transitions and Fluidity Characteristics of Lipids and Cell Membranes,” Qt. Rev. Biophys. 8, 185–235 (1975).Google Scholar
  59. 59.
    A. G. Lee, “Functional Properties of Biological Membranes: A Physical-Chemical Approach,” Progr. Mol. Biol. Biophys. 29, 5–56 (1975).Google Scholar
  60. 60.
    A. G. Lee, “Lipid Phase Transitions and Phase Diagrams II. Lipid Phase Transitions,” Biochim. Biophys. Acta 472, 237–281 (1977).Google Scholar
  61. 61.
    A. G. Lee, “Lipid Phase Transitions and Phase Diagrams II. Mixtures Involving Lipids,” Biochim. Biophys. Acta 472, 285–344 (1977).Google Scholar
  62. 62.
    J. F. Nagle, “Theory of the Main Lipid Bilayer Phase Transition,” Ann. Rev. Phys. Chem. 31, 157–195 (1980).Google Scholar
  63. 63.
    D. Marsh, “Statistical Mechanics of the Fluidity of Phospholipid Bilayers and Membranes,” J. Membrane Biol. 18, 145–162 (1974).Google Scholar
  64. 64.
    S. Marcelja, “Chain Ordering in Liquid Crystals II. Structure of Bilayer Membranes,” Biochim. Biophys. Acta 367, 165–176 (1974).Google Scholar
  65. 65.
    H. L. Scott, “Some Models for Lipid Bilayer and Biomembrane Phase Transitions,” J. Chem. Phys. 62, 1347–1353 (1975).Google Scholar
  66. 66.
    F. W. Wiegel, “An Exactly Solvable Two-Dimensional Biomembrane Model,” J. Stat. Phys. 13, 515–530 (1975).Google Scholar
  67. 67.
    R. E. Jacobs, B. Hudson, and H. C. Andersen, “A Theory of the Chain Melting Phase Transition of Aqueous Phospholipid Dispersions,” Proc. Natl. Acad. Sei. USA 72, 3993–3997 (1975).Google Scholar
  68. 68.
    H. M. Zacharis, “A Linear Function for the Melting Behaviour of Lipids,” Chem. Phys. Lipids 18, 221–231 (1977).Google Scholar
  69. 69.
    R. G. Priest, “Semiphenological Model for the Lipid Bilayer Phase Transition: Finite Chains in Three Dimensions,” Chem. Phys. 66, 722–725 (1977).Google Scholar
  70. 70.
    M. I. Kanehisa and T. Y. Tsong, Cluster Model of Lipid Phase Transitions with Application to Passive Permeation of Molecules and Structure Relaxations in Lipid Bilayers, J. Am. Chem. Soc. 100, 424–432 (1978).Google Scholar
  71. 71.
    S. Doniach, “Thermodynamic Fluctuations in Phospholipid Bilayers,” J. Chem. Phys. 68, 4912–4916 (1978).Google Scholar
  72. 72.
    S. Marcelja and J. Wolfe, “Properties of Bilayer Membranes in the Phase Transition or Phase Separation Region,” Biochim. Biophys. Acta 557, 24–31 (1979).Google Scholar
  73. 73.
    K. A. Dill and R. S. Cantor, in Physics of Amphiphiles. Micelles, Vesicles and Microemulsions ( V. Degiorgio and M. Corti, eds.), Elsevier, Amsterdam (1985), pp. 376–393.Google Scholar
  74. 74.
    H. Träuble, “Phasenumwandlungen in Lipiden. Mögliche Schaltprozesse in biologischen Membranen,” Naturwissenschaften 58, 277–284 (1971).Google Scholar
  75. 75.
    H. Träuble and H. Eibl, “Electrostatic Effects on Lipid Phase Transitions: Membrane Structure and Ionic Environment,” Proc. Natl. Acad. Sei. USA 71, 214–219 (1974).Google Scholar
  76. 76.
    J. V. Howarth, R. D. Keynes, and J. M. Ritchie, “The Origin of Initial Heat Associated with a Single Impulse in Mammalian Nonmyelinated Nerve Fibers,” J. Physiol. 194, 745–793 (1968).Google Scholar
  77. 77.
    A. Fraser and A. H. Frey, “Electromagnetic Emission at Micron Wavelengths from Active Fibers,” Biophys. J. 8, 731–734 (1968).Google Scholar
  78. 78.
    B. D. Ladbrooke and D. Chapman, “Thermal Analysis of Lipids, Proteins and Biological Membranes. A Review and Summary of Some Recent Studies,” Chem. Phys. Lipids 3, 304–367 (1969).Google Scholar
  79. 79.
    M. H. Sherebrin, B.A.E. MacClement, and A. J. Franko, “Electric Field-Induced Shifts in the Infrared Spectrum of Conducting Nerve Axons,” Biophys. J. 12, 977–989 (1972).Google Scholar
  80. 80.
    D. G. Cameron, J. K. Kauppinen, H. H. Casal, and H. H. Mantsch, “The Thermotropic Behaviour of Diacyl Phosphatidylcholines: A Fourier Transform Infrared Study” (manuscript).Google Scholar
  81. 81.
    D. Georgescauld and H. Dulochier, “Transient Fluorescent Signals from Pyrene Labeled Pike Nerves During Action Potential. Possible Implications for Membrane Fluidity Changes,” Biochem. Biophys. Res. Commun. 85, 1186–1191 (1978).Google Scholar
  82. 82.
    H. J. Pownall and L. C. Smith, “Viscosity of the Hydrocarbon Region of Micelles. Measurement by Excimer Fluorescence,” J. Am. Chem. Soc. 95, 3136–3140 (1973).Google Scholar
  83. 83.
    A. K. Soutar, H. J. Pownall, A. S. Hu, and L. C. Smith, “Phase Transitions in Bilamellar Vesicles. Measurements by Pyrene Excimer Fluorescence and Effect on Transacylation by Lecithin: Cholesterol Acyltransferase,“Biochemistry 13, 2828–2836 (1974).Google Scholar
  84. 84.
    A. L. Hodgkin and A. F. Huxley, “Currents Carried by Sodium and Potassium Ions Through the Membrane of the Giant Axon of Loligo,” J. Physiol 116, 449–472 (1952).Google Scholar
  85. 85.
    D. Papahadjopoulos, K. Jacobson, S. Nir, and T. Isac, “Phase Transitions in Phospholipid Vesicles. Fluorescence Polarization and Permeability Measurements Con-cerning the Effect of Temperature and Cholesterol,” Biochim. Biophys. Acta 311, 330–348 (1973).Google Scholar
  86. 86.
    L. B. Cohen, R. D. Keynes, and B. Hille, “Light Scattering and Birefringence Changes During Nerve Activity,” Nature 218, 438–441 (1968).Google Scholar
  87. M. J. Janiak, D. M. Small, and G. G. Shipley, “Interactions of Cholesterol Esters with Phospholipids: Cholesterol Myristate and Dimyristoyl Lecithin,” J. Lipid Res. 20, 183–199 (1979).Google Scholar
  88. 88.
    P. N. Yi and R. C. MacDonald, “Temperature Dependence of Optical Properties of Aqueous Dispersions of Phosphatidylcholine,” Chem. Phys. Lipids 11, 114–134 (1973).Google Scholar
  89. 89.
    V. F. Antonov, V. V. Petrov, A. A. Molnar, D. A. Predvoditelev, and A. S. Ivanov, “The Appearance of Single-ion Channels in Unmodified Lipid Bilayer Membranes at the Phase Transition Temperature,” Nature 283, 585–586 (1980).Google Scholar
  90. 90.
    P. K. J. Kinnunen, T. Thuren, P. Vainio, and J. A. Virtanen, in Physics of Amphiphiles. Micelles, Vesicles and Microemulsions ( V. Degiorgio and M. Corti, eds.), Elsevier, Amsterdam (1984), pp. 687–701.Google Scholar
  91. 91.
    J. S. O’Brien and G. Rouser, “The Fatty Acid Composition of Brain Sphingolipids: Sphingomyelin, Ceramide, Cerebroside, and Cerebroside Sulfate,” J. Lipid Res. 5, 339–342 (1964).Google Scholar
  92. 92.
    J. S. O’Brien and E. L. Sampson, “Fatty Acid and Fatty Aldehyde Composition of the Major Brain Lipids in Normal Human Gray Matter, White Matter, and Myelin,” J. Lipid Res. 6, 545–551 (1965).Google Scholar
  93. 93.
    D. Chapman, R. M. Williams, and B. D. Ladbrooke, “Physical Studies of Phospholipids. VI. Thermotropic and Lyotropic Mesomorphism of some 1,2-diacyl- phosphatidylcholines (Lecithins),” Chem. Phys. Lipids 1, 445–475 (1971).Google Scholar
  94. 94.
    H. Trauble and D. H. Haynes, “The Volume Change in Lipid Bilayer Lamellae at the Crystalline-Liquid Crystalline Phase Transition,” Chem. Phys. Lipids 7, 324–355 (1971).Google Scholar
  95. 95.
    J. W. Moore, Excitation of the Squid Axon Membrane in Isoosmotic Potassium Chloride, Nature 183, 265–266 (1959).Google Scholar
  96. 96.
    I. Inoue, Y. Kobatake, and I. Tasaki, “Excitability, Instability and Phase Transitions in Squid Axon Membrane Under Internal Perfusion with Dilute Salt Solutions,” Biochim. Biophys. Acta 307, 471–477 (1973).Google Scholar
  97. 97.
    P. Connor, B. S. Mangat, and L. S. Rao, “The Labilization of Lecithin Liposomes by Steroidal Anaesthetics: A Correlation with Anaesthetic Activity,” J. Pharm. Pharmacol. 26, 120P (1974).Google Scholar
  98. 98.
    A. G. Lee, “Model for the Action of Local Anaesthetics,” Nature 262, 545–548 (1976).Google Scholar
  99. 99.
    J. F. Tocanne, P. H. J. Th. Ververgaert, A. J. Verkleij, and L. L. M. van Deenen, “A Monolayer and Freeze-Etching Study of Charged Phospholipids. I. Effects of Ions and pH on the Ionic Properties of Phosphatidylglycerol and Lysylphosphatidylglycerol,” Chem. Phys. Lipids 12, 201–219 (1974).Google Scholar
  100. 100.
    H. Hauser, M. C. Phillips, and M. D. Barratt, “Differences in the Interaction of Inorganic and Organic (Hydrophobic) Cations with Phosphatidylserine Membranes,” Biochim. Biophys. Acta 413, 341–353 (1975).Google Scholar
  101. 101.
    A. M. Cook, E. Low, and M. Ishijimi, “Effect of Phosphatidyl Serine Decarboxylase on Neural Excitation,” Nature 239, 150–151 (1972).Google Scholar
  102. 102.
    R. A. Demel and B. de Kruyff, “The Function of Sterols in MEMBRANES,” Biochim. Biophys. Acta 457, 109–132 (1976).Google Scholar
  103. 103.
    J. E. Bell and C. Hall, in Spectroscopy in Biochemistry ( J. E. Bell, ed.), CRC Press, Boca, Raton, Fla. (1981), Vol. 1, pp. 3 - 36.Google Scholar
  104. 104.
    P. W. M. van Dijck, B. de Kruyff, L. L. M. van Deenen, J. de Gier, and R. A. Demel, “The Preference of Cholesterol for Phosphatidylcholine in Mixed Phosphatidylcholine-Phosphatidylethanolamine Bilayers,” Biochim. Biophys. Acta 455, 576–587 (1976).Google Scholar
  105. 105.
    R. A. Demel, J. W. C. M. Jansen, P. W. M. van Dijck, and L. L. M. van Deenen, “The Preferential Interaction of Cholesterol with Different Classes of Phospholipids,” Biochim. Biophys. Acta 465, 1–10 (1977).Google Scholar
  106. 106.
    W. I. Calhoun and G. G. Shipley, Sphingomyelin-Lecithin Bilayers and Their Interac-tion with Cholesterol,“Biochemistry 18, 1717–1722 (1979).Google Scholar
  107. 107.
    A. Blume, “Thermotropic Behaviour of Phosphatidylethanolamine-Cholesterol and Phosphatidylethanolamine-Phosphatidylcholine-cholesterol Mixtures,” Biochemistry 19, 4908–4913 (1980).Google Scholar
  108. 108.
    D. Chapman, N. F. Owens, and D. A. Walker, “Physical Studies of Phospholipids. II. Monolayer Studies of Some Synthetic 2, 3-diacyl-DL-phosphatidylethanolamines and Phosphatidylcholines Containing Trans Double Bonds,” Biochim. Biophys. Acta 120, 148–155. (1966).Google Scholar
  109. 109.
    J. Tinoco and D. J. Mcintosh, “Interactions Between Cholesterol and Lecithin in Monolayers at an Air-Water Interface,” Chem. Phys. Lipids 4, 72–84 (1970).Google Scholar
  110. 110.
    R. A. Demel, W. S. M. Geurts van Kessel, and L. L. M. van Deenen, “The Properties of Polyunsaturated Lecithins in Monolayers and Liposomes and the Interaction of these Lecithins with Cholesterol,” Biochim. Biophys. Acta 266, 26–40 (1972).Google Scholar
  111. 111.
    H. Brockerhoff, “Model of Interaction of Polar Lipids, Cholesterol, and Proteins in Biological Membranes,” Lipids 9, 645–650 (1974).Google Scholar
  112. 112.
    C.-H. Huang, “Roles of Carbonyl Oxygens at the Bilayer Interface in Phospholipid-Sterol Interaction,” Nature 259, 242–244 (1976).Google Scholar
  113. 113.
    N. Chatteijee and H. Brockerhoff, “Evidence for Stereospecific Phospholipid-Cholesterol Interaction in Lipid Bilayers,” Biochim. Biophys. Acta 511, 116–119 (1978).Google Scholar
  114. 114.
    P. L. Yeagle, W. C. Hutton, C.-H. Huang, and R. B. MArtin, “Headgroup Conformation and Lipid-Cholesterol Association in Phosphatidylcholine Vesicles: A 31P<1H> Nuclear Overhauser Effect Study,” Proc. Natl. Acad. Sci. USA 72, 3477-3481 (1975).Google Scholar
  115. 115.
    P. L. Yeagle and R. B. Martin, “Hydrogen-Bonding of the Ester Carbonyls in Phosphatidylcholine Bilayers,” Bio Biophys. Res. Commun. 69, 775–780 (1976).Google Scholar
  116. 116.
    S. Clejan, R. Bittman, P. W. Deroo, Y. A. Isaacson, and A. F. Rosenthal, “Permability Properties of Sterol-Containing Liposomes from Analogues of Phosphatidylcholine Lacking Acyl Groups, Biochemistry 18, 2118–2125 (1979).Google Scholar
  117. 117.
    F. T. Schwarz and F. Paltauf, “Influence of the Ester Carbonyl Oxygens of Lecithin on the Permeability properties of Mixed Lecithin-Cholesterol Bilayers,” Biochemistry 16, 4335–4339 (1977).Google Scholar
  118. 118.
    E. Bicknell-Brown and K. G. Brown, “Raman Studies of Lipid Interactions at the Bilayer Interface: Phosphatidylcholine-Cholesterol,” Biochem. Biophys. Res. Commun. 94, 638–645 (1980).Google Scholar
  119. 119.
    A. Darke, E. G. Finer, A. G. Flock, and M. C. Phillips, “Nuclear Magnetic Resonance Study of Lecithin-Cholesterol Interactions,” J. Mol. Biol. 63, 265–279 (1972).Google Scholar
  120. 120.
    S. P. Verma and D. F. H. Wallach, “Effects of Cholesterol on the Infrared Dichroism of Phosphatide Multilayers,” Biochim. Biophys. Acta 330, 122–131 (1973).Google Scholar
  121. 121.
    M. Okazaki and I. Hara, “Solubility of Phosphatidylcholine in Choloroform. Formation of Hydrogen Bonding Between Phosphatidylcholine and Chloroform,” Chem. Phys. Lipids 17, 28–37 (1976).Google Scholar
  122. 122.
    G. L. Jendrasiak, “The Interaction of Iodine with Lecithin Micelles,” Chem. Phys. Lipids 4, 85–95 (1970).Google Scholar
  123. 123.
    A. G. Lee, “Interactions Between Phospholipids and Barbiturates,” Biochim. Biophys. Acta 455, 102–108 (1976).Google Scholar
  124. 124.
    B. Rosenberg and H. C. Pant, “The Semiconducting Rectifier Behaviour of a Biomolecular Lipid Membrane,” Chem. Phys. Lipids 4, 203–207 (1970).Google Scholar
  125. 125.
    B. Bhowmik and G. L. Jendrasiak, “Charge Transfer Complexes of Lipids with Iodine,” Nature 215, 842–843 (1967).Google Scholar
  126. 126.
    B. Rosenberg and B. B. Bhowmik, “Donor-Acceptor Complexes and the Semiconductivity of Lipids,” Chem. Phys. Lipids 3, 109–124 (1969).Google Scholar
  127. 127.
    B. Rosenberg and G. L. Jendrasiak, “Semiconductive Properties of Lipids and Their Possible Relationship to Lipid Bilayer Conductivity,” Chem. Phys. Lipids 2, 47–54 (1968).Google Scholar
  128. 128.
    G. L. Jendrasiak, “Effect of Iodine on the Electrical Resistance of Lipid Bilayer Membranes,” Chem. Phys. Lipids 3, 98–101 (1969).Google Scholar
  129. 129.
    L. Y. Wei and B. Y. Woo, “Electronic Conduction in Lipid Films with Metal Contacts,” Biophys. J. 13, 877–889 (1973).Google Scholar
  130. 130.
    G. L. Jendrasiak and J. H. Hasty, “The Electrical Conductivity of Hydrated Phospholipids,” Biochim. Biophys. Acta 348, 45–54 (1974).Google Scholar
  131. 131.
    I. Lundstrom and M. Stenberg, “Charge Injection and Charge Storage in Lipid Multilayers,” Chem. Phys. Lipids 12, 287–302 (1974).Google Scholar
  132. 132.
    G. L. Jendrasiak and J. C. Mendible, “The Effect of Phase Transition on the Hydration and Electrical Conductivity of Phospholipids,” Biochim. Biophys. Acta 424, 133–148 (1976).Google Scholar
  133. 133.
    G. L. Jendrasiak and J. C. Mendible, “The Phospholipid Head-Group Orientation: Effect on Hydration and Electrical Conductivity,” Biochim. Biophys. Acta 424, 149–158 (1976).Google Scholar
  134. 134.
    A. A. Shulyndin, “The Lateral Resistance of Phospholipid Bilayer Membranes of Dif-ferent Structures,” Izv. Akad. Nauk USSR (Ser. Biol., in Russian) 3, 456–459 (1980).Google Scholar
  135. 135.
    A. A. Shulyndin, “The Effect of Cholesterol on the Lateral Resistance of Phospholipid Membranes,” Izv. Akad. Nauk USSR (Ser. Biol., in Russian) 1, 154–156 (1981).Google Scholar
  136. 136.
    D. Papahadjopoulos, S. Nir, and S. Ohki, “Permeability Properties of Phospholipid Membranes: Effect of Cholesterol and Temperature,” Biochim. Biophys. Acta 266, 561–586 (1971).Google Scholar
  137. 137.
    M. M. Shemyakin, Yu. A. Ovchinnikov, V. T. Ivanov, V. K. Antonov, E. I. Vinogradova, A. M. Shkrob, G. G. Malenkov, A. V. Evstratov, I. A. Laine, E. I. Melnik, and I. D. Ryadova, “Cyclodepepsipedtides as Chemical Tools for Studying Ionic Transport Through Membranes,” J. Membrane Biol. 1, 402–430 (1960).Google Scholar
  138. 138.
    R. G. Ashcroft, H. G. L. Coster, and J. R. Smith, “The Molecular Organization of Bimolecular Lipid Membranes. The Dielectric Structure of the Hydrophilic/Hydrophobic Interface,” Biochim. Biophys. Acta 643, 191–204 (1981).Google Scholar
  139. 139.
    R. Pethig, Dielectric and Electronic Properties of Biological Materials, Wiley, New York (1979).Google Scholar
  140. 140.
    A. A. Verveen and L. J. DeFelice, “Membrane Noise,” Prog. Biophys. Molec. Biol. 28, 189–265 (1974).Google Scholar
  141. 141.
    F. Conti, L. J. DeFelice, and E. Wanke, “Potassium and Sodium Ion Current Noise in the Membrane of the Squid Giant Axon,” J. Physiol. 248, 45–82 (1975).Google Scholar
  142. 142.
    F. Conti and E. Wanke, “Channel Noise in Nerve Membranes and Lipid Bilayers,” Quart. Rev. Biophys. 8, 451–506 (1975).Google Scholar
  143. 143.
    B. D. Ladbrooke, R. M. Williams, and D. Chapman, “Studies on Lecithin-Cholesterol-Water Interaction by Differential Scanning Calorimetry and X-Ray Diffraction,” Biochim. Biophys. Acta 150, 333–340 (1968).Google Scholar
  144. 144.
    S. Mabrey, P. L. Mateo, and J. M. Sturtevant, “High Sensitivity Scanning Calorimetric Study of Mixtures of Cholesterol with Dimyristoyl- and Dipalmitoylphosphatidylcholine, Biochemistry 17, 2464–2468 (1978).Google Scholar
  145. 145.
    J. V. Henderson and D. L. Gilbert, “Slowing of Ionic Currents in the Voltage-Clamped Squid Axon by Helium Pressure, Nature 258, 351–352 (1975).Google Scholar
  146. 146.
    H. M. McConnell, B. M. Hoffman, and R. M. Metzger, “Charge Transfer in Molecular Crystals,” Proc. Natl. Acad. Sei. USA 53, 46–50 (1965).Google Scholar
  147. 147.
    P. O. Makarov and M. V. Krasovitskaya, “Investigation of the Molecular Mechanism of Neurodynamics by the Method of Cytospectrophotometry,” Biofizika 15, 492–496 (1970).Google Scholar
  148. 148.
    J. M. Fox, B. Neumke, W. Nonner, and R. Stämpfli, “Block of Gating Currents by Ultraviolet Radiation in the Membrane of Myelinated Nerve,” Pflugers Arch. 364, 143–145 (1976).Google Scholar
  149. 149.
    M. K. Jain, F. Ramirez, T. M. McCaffrey, P. V. Ioannou, J. F. Marecek, and J. Leunissen-Bijvelt, “Phosphatidylcholesterol Bilayers. A Model for Phospholipid- Cholesterol Interaction,” Biophys. Biochim. Acta 600, 678–688 (1980).Google Scholar
  150. 150.
    P. J. Strebel and Z. G. Soos, “Theory of Charge Transfer in Aromatic Donor-Acceptor Crystals,” J. Chem. Phys. 53, 4077–4090 (1970).Google Scholar
  151. 151.
    W. A. Little, “Possibility of Synthetizing an Organic Superconductor,” Phys. Rev. 134, 1416–1424 (1964).Google Scholar
  152. 152.
    W. A. Little, “The Exciton Mechanism in Superconductivity,” J. Polymer Sci. (Part C) 29, 17–26 (1970).Google Scholar
  153. 153.
    V. L. Ginzburg, “The Problem of High Temperature Superconductivity,” Contemp. Phys. 9, 355–374 (1968).Google Scholar
  154. 154.
    V. L. Ginzburg, “The Problem of High-Temperature Superconductivity. II,” Sov. Phys. Usp. 13, 335–352 (1970).Google Scholar
  155. 155.
    V. L. Ginzburg, “High Temperature Superconductivity,” J. Polymer Sci. (Part C) 29, 3–16 (1970).Google Scholar
  156. 156.
    V. L. Ginsburg and D. A. Kirzhnits, “On the Problem of High Temperature Supercon-ductivity,” Phys. Rep. (Sec. C) 4, 343–356 (1972).Google Scholar
  157. 157.
    V. L. Ginzburg and D. A. Kirzhnits, eds., High Temperature Superconductivity, Plenum Press, New York (1982).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Paavo K. J. Kinnunen
    • 1
  • Jorma A. Virtanen
    • 1
  1. 1.Department of Medical Chemistry and Department of ChemistryUniversity of HelsinkiHelsinki 17Finland

Personalised recommendations