Skip to main content

A Qualitative, Molecular Model of the Nerve Impulse

Conductive Properties of Unsaturated Lyotropic Liquid Crystals

  • Chapter
Modern Bioelectrochemistry

Abstract

An approach to the molecular mechanism of nerve impulse is described. Basically, we propose an electronic conduction band to exist in properly arranged ethylenic double bonds of unsaturated nerve membrane lipids. Electron-electron interaction in the conduction band is brought about by a pair of holes residing on a charge-transfer band of cholesterol and phospholipid carbonyls. Rectification of signal and driving force for propagation is provided by transmembrane ion fluxes which generate a lateral field along the axis of the nerve fiber. Transmembrane ion currents are controlled by Na-channel proteins, which in turn are regulated by a transient phase transition in the membrane lipids. In the latter process a crucial role is played by phosphatidylserine. Under resting potential this lipid in the outer surface of the membrane is deprotonated and in the liquid crystalline state. Following a depolarizing pulse an electrostatically triggered phase transition takes place due to protonation of phosphatidylserine with subsequent phase separation of a crystalline membrane lipid domain and opening of Na channels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Hodgkin, “The Ionic Basis of Nervous Conduction,” Science 145, 1148–1154 (1964)

    CAS  Google Scholar 

  2. A. F. Huxley,Excitation and Conduction in Nerve: Quantitative Analysis,Science145 1154–1159 (1964)

    CAS  Google Scholar 

  3. J. L. Hindmarsh and R. M. Rose, “A Model of the Nerve Impulse Using Two First- Order Differential Equations,” Nature 296, 162–164 (1982)

    CAS  Google Scholar 

  4. A. L. Hodgkin, The Conduction of the Nervous Impulse, C. C. Thomas, Springfield, Massachusetts

    Google Scholar 

  5. B. Hille, in Progress in Biophysics and Molecular Biology (J.A.V. Butler and D. Noble, eds.), Vol. 21, Pergamon, New York (1970), pp. 3–34.

    Google Scholar 

  6. A. C. Scott, “The Electrophysics of Nerve Fiber,” Rev. Mod. Phys. 47, 487–533 (1975).

    Google Scholar 

  7. I. Tasaki, Physiology and Electrochemistry of Nerve Fibers, Academic, New York (1982).

    Google Scholar 

  8. D. E. Goldman, “A Molecular Structural Basis for the Excitation Properties of Axons,” Biophys. J. 4, 167–188 (1964).

    CAS  Google Scholar 

  9. L. Y. Wei, “Role of Surface Dipoles on Axon Membrane,” Science 163, 280–282 (1969).

    CAS  Google Scholar 

  10. S. P. Almeida, J. D. Bond, and T. C. Ward, “The Dipole Model and Phase Transitions inBiological Membranes,” Biophys. J. 11, 995–1001 (1971).

    CAS  Google Scholar 

  11. F. W. Cope, in Bioelectrochemistry ( H. Keyzer and F. Gutmann, eds.), Plenum Press, New York (1980), pp. 297–329.

    Google Scholar 

  12. F. W. Cope, “Evidence from Activation Energies for Superconductive Tunnelling in Biological Systems at Physiological Temperatures,” Physiol. Chem. Phys. 3, 403–410 (1971).

    CAS  Google Scholar 

  13. F. W. Cope, “Enhancement by High Electric Fields of Superconduction in Organic and Biological Solids at Room Temperature and a Role in Nerve Conduction,” Physiol. Chem. Phys. 6, 405–410, (1974).

    CAS  Google Scholar 

  14. R. Henderson and J. H. Wang, “Solubilization of a Specific Tetrodotoxin-Binding Component from Garfish Olfactory Nerve Membrane,” Biochemistry 11, 4565–4569 (1972).

    CAS  Google Scholar 

  15. W. S. Agnew, S. R. Levinson, J. S. Brabson, and M. A. Raftery, “Purification of the Tetrodotoxin-Binding Component Associated with the Voltage-Sensitive Sodium Chan-nel from Electrophorus electricus Electroplax Membranes,” Proc. Natl. Acad. Sci. USA 75, 2606–2610 (1978).

    CAS  Google Scholar 

  16. J. A. Talvenheimo, M. M. Tamkun, and W. A. Catterall, “Reconstitution of Neurotoxin- Stimulated Sodium Transport by the Voltage-Sensitive Sodium Channel purified from Rat Brain,” J. Biol. Chem. 257, 11868–11871 (1982).

    CAS  Google Scholar 

  17. M. Condrescu and R. Villegas, “Ion Selectivity of the Nerve Membrane Sodium Channel Incorporated into Liposomes,” Biochim. Biophys. Acta 688, 660–666 (1982).

    CAS  Google Scholar 

  18. B. K. Krueger, J. F. Worley, and R. J. French, “Single Sodium Channels from Rat Brain Incorporated into Planar Lipid Bilayer Membranes,” Nature 303, 172–175 (1983).

    CAS  Google Scholar 

  19. A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve,” J. Physiol. 117, 500–544 (1952).

    CAS  Google Scholar 

  20. C. M. Armstrong and F. Bezanilla, “Currents Related to Movement of the Gating Par-ticles of the Sodium Channels,” Nature 242, 459–461 (1973).

    CAS  Google Scholar 

  21. R. Lorente de No, F. Vidal, and L.M.H. Larramendi, “Restoration of Sodium-Deficient Frog Nerve Fibers by Onium Ions,” Nature 179, 737–738 (1957).

    Google Scholar 

  22. J. W. Moore, “Temperature and Drug Effects on Squid Axon Membrane Ion Conduc-tances,” Fed. Proc. 17, 113 (1958).

    Google Scholar 

  23. I. Tasaki, I. Singer, and A. Watanabe, “Excitation of Internally Perfused Squid Giant Axons in Sodium-Free Media,” Proc. Natl. Acad. Sci. 54, 763–769 (1965).

    CAS  Google Scholar 

  24. M. Calvin, H. H. Wang, G. Entine, D. Gill, P. Ferruti, M. A. Harpold, and M. P. Klein, “Biradical Spin Labeling for Nerve Membranes,” Proc. Natl. Acad. Sci 63, 1–8 (1969).

    CAS  Google Scholar 

  25. J. J. Kendig and E. N. Cohen, “Pressure Antagonism to Nerve Conduction Block by Anesthetic Agents,” Anesthesiology 47, 6–10 (1977).

    CAS  Google Scholar 

  26. C. R. Badger and G. M. Helmkamp, “Modulation of Phospholipid Transfer Protein Activity. Inhibition by Local Anesthetics,” Biochim. Biophys. Acta 692, 33–40 (1982).

    CAS  Google Scholar 

  27. H. S. Hendrickson and M. C. E. van Dam-Mieras, “Local Anesthetic Inhibition of Pan-creatic Phospholipase A2 Action on Lecithin Monolayers,” J. Lipid Res. 17, 399–405 (1976).

    CAS  Google Scholar 

  28. M. B. Feinstein and M. Paimre, “Specific Reaction of Local Anesthetics with Phosphodiester Groups,” Biochim. Biophys. Acta 115, 33–45 (1965).

    Google Scholar 

  29. J. L. Browning and H. Akutsu, “Local Anesthetics and Divalent Cations Have the Same Effect on the Headgroups of Phosphatidylcholine and Phosphatidylethanolamine,” Biochim. Biophys. Acta 684, 172–178 (1982).

    CAS  Google Scholar 

  30. Y. Boulanger, S. Schreier, and I.C.P. Smith, “Molecular Details of Anaesthetic-Lipid Interaction as Seen by Deuterium and Phosphorus-31 Nuclear Magnetic Resonance,” Biochemistry 20, 6824–6830 (1981).

    CAS  Google Scholar 

  31. J. A. Virtanen and P. K. J. Kinnunen, A Qualitative, Molecular Model of the Nerve Impulse. Conductive Properties of Unsaturated Lipids, University of Helsinki Offset Press (1981).

    Google Scholar 

  32. F. Huneeus-Cox, H. L. Fernandez, and B. H. Smith, “Effects of Redox and Sulfhydryl Reagents on the Bioelectric Properties of the Giant Axon of the Squid,Biophys. J. 6, 675–689 (1966).

    CAS  Google Scholar 

  33. J. Reyes and R. Latorre, “Effect of the Anesthetics Benzyl Alcohol and Chloroform on Bilayers Made from Monolayers,” Biophys. J. 28, 259–280 (1979).

    CAS  Google Scholar 

  34. J. M. Fernándes, F. Bezanilla, and R. E. Taylor, “Effect of Chloroform on Charge Movement in the Nerve Membrane,” Nature 297, 150–152 (1982).

    Google Scholar 

  35. J. C. Nelander and A. E. Blaurock, “Disorder in Nerve Myelin: Phasing the Higher Order Reflections by Means of the Diffuse Scatter,” J. Mol. Biol. 118, 497–532 (1978).

    CAS  Google Scholar 

  36. J. P. Wiks wo, J. P. Barack, and J. A. Freeman, “Magnetic Field of a Nerve Impulse: First Measurements,” Science 208, 53–55 (1980).

    CAS  Google Scholar 

  37. R. A. Luben, C. D. Cain, M. C.-Y. Chen, D. M. Rosen, and W. R. Adey, “Effects of Electromagnetic Stimuli on Bone and Bone Cells in Vitro: Inhibition of Responses to Parathyroid Hormone by Low-Energy Low-Frequency Fields,” Proc. Natl. Acad. Sei. USA 79, 4180–4184 (1982).

    CAS  Google Scholar 

  38. N. Zisapel and M. Laudon, “Dopamine Release Induced by Electrical Field Stimulation of Rat Hypothalamus in Vitro. Inhibition by Melatonin,” Biochem. Biophys. Res. Com- mun. 104, 1610–1616 (1982).

    CAS  Google Scholar 

  39. R. Dixey and G. Rein, “3H-Noradrenaline Release Potentiated in a Clonal Nerve Cell Line by Low-Intensity Pulsed Magnetic Fields,” Nature 296, 253–256 (1982).

    CAS  Google Scholar 

  40. R. Plonsey, “The Nature of Sources of Bioelectric and Biomagnetic Fields,” Biophys. J. 39, 309–312 (1982).

    CAS  Google Scholar 

  41. H. Fernández-Moran, “Diffraction of Electrons by Structures Resembling Myelin Lamellae,” Exp. Cell Res. 2, 673–679 (1951).

    Google Scholar 

  42. J. H. Matheja, “Electron Diffraction of Membranes,” Biophysik 7, 163–168 (1971).

    CAS  Google Scholar 

  43. R. S. Khare and R. K. Mishra, “Electron Diffraction Studies on the Effect of Certain Drugs on Brain Cell Membranes,” Stud. Biophys. 38, 205–209 (1973).

    CAS  Google Scholar 

  44. S. W. Hui, “Electron Diffraction Studies on Membranes,” Biochim. Biophys. Acta 472, 345–371.

    Google Scholar 

  45. I. Tasaki, A. Watanabe, R. Sandlin, and L. Camay, “Changes in Fluorescence, Turbidity, and Birefringence Associated with Nerve Excitation,” Proc. Natl. Acad. Sei. USA 61, 883–888 (1968).

    CAS  Google Scholar 

  46. I. Tasaki, A. Watanabe, and M. Hallett, “Properties of Squid Axon Membrane as Revealed by a Hydrophobic Probe 2-p-toluidinylnaphatalene-6-sulfonate,” Proc. Natl. Acad. Sei. USA 68, 938–941 (1971).

    CAS  Google Scholar 

  47. I. Tasaki, A. Watanabe, and M. Hallett, “Fluorescence of Squid Axon Membrane Labelled with Hydrophobic Probes,” J. Membrane Biol. 8, 109–132 (1972).

    CAS  Google Scholar 

  48. I. Tasaki, E. Carbone, K. Siseo, and I. Singer, “Spectral Analysis of Extrinsic Fluorescence of the Nerve Membrane Labeled with Aminonaphatelene Derivatives,” Biochim. Biophys. Acta 323, 220–233 (1973).

    CAS  Google Scholar 

  49. I. Tasaki, “Energy Transduction in the Nerve Membrane and Studies of Excitation Processes with Extrinsic Fluorescent Probes,” Ann. NY Acad. Sei. 227, 247–267 (1974).

    CAS  Google Scholar 

  50. L. B. Cohen, B. M. Salzberg, H. J. Davila, W. N. Ross, D. Landowne, A. S. Waggoner, and C. H. Wang, “Changes in Axon Fluorescence During Activity: Molecular Probes of Membrane Potential,” J. Membrane Biol. 19, 1–36 (1974).

    CAS  Google Scholar 

  51. L. B. Cohen and B. M. Salzberg, “Optical Measurement of Membrane Potential,” Rev. Physiol. Biochem. Pharmacol. 83, 35–88 (1978).

    CAS  Google Scholar 

  52. A. G. MacDiarmid and A. J. Heeger, in Molecular Electronic Devices ( F. L. Carter, ed.), Marcel Dekker, New York (1983), pp. 259–271.

    Google Scholar 

  53. K. C. Kao and W. Hwang, Electrical Transport in Solids, Pergamon Press, New York (1981).

    Google Scholar 

  54. K. R. Thulborn, F. E. Treloar, and W. H. Sawyer, “A Microviscosity Barrier in the Lipid Bilayer due to the Presense of Phospholipids Containing Unsaturated Acyl Chains,” Biochem. Biophys. Res. Commun. 81, 42–49 (1978).

    CAS  Google Scholar 

  55. S. Winstein, “Nonclassical Ions and Homoaromaticity,” Qt. Rev. 23, 141–176 (1969).

    CAS  Google Scholar 

  56. R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Academic, New York (1970), pp. 101–107.

    Google Scholar 

  57. A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity, Pergamon Press, New York (1978).

    Google Scholar 

  58. D. Chapman, “Phase Transitions and Fluidity Characteristics of Lipids and Cell Membranes,” Qt. Rev. Biophys. 8, 185–235 (1975).

    CAS  Google Scholar 

  59. A. G. Lee, “Functional Properties of Biological Membranes: A Physical-Chemical Approach,” Progr. Mol. Biol. Biophys. 29, 5–56 (1975).

    CAS  Google Scholar 

  60. A. G. Lee, “Lipid Phase Transitions and Phase Diagrams II. Lipid Phase Transitions,” Biochim. Biophys. Acta 472, 237–281 (1977).

    CAS  Google Scholar 

  61. A. G. Lee, “Lipid Phase Transitions and Phase Diagrams II. Mixtures Involving Lipids,” Biochim. Biophys. Acta 472, 285–344 (1977).

    CAS  Google Scholar 

  62. J. F. Nagle, “Theory of the Main Lipid Bilayer Phase Transition,” Ann. Rev. Phys. Chem. 31, 157–195 (1980).

    CAS  Google Scholar 

  63. D. Marsh, “Statistical Mechanics of the Fluidity of Phospholipid Bilayers and Membranes,” J. Membrane Biol. 18, 145–162 (1974).

    CAS  Google Scholar 

  64. S. Marcelja, “Chain Ordering in Liquid Crystals II. Structure of Bilayer Membranes,” Biochim. Biophys. Acta 367, 165–176 (1974).

    CAS  Google Scholar 

  65. H. L. Scott, “Some Models for Lipid Bilayer and Biomembrane Phase Transitions,” J. Chem. Phys. 62, 1347–1353 (1975).

    CAS  Google Scholar 

  66. F. W. Wiegel, “An Exactly Solvable Two-Dimensional Biomembrane Model,” J. Stat. Phys. 13, 515–530 (1975).

    Google Scholar 

  67. R. E. Jacobs, B. Hudson, and H. C. Andersen, “A Theory of the Chain Melting Phase Transition of Aqueous Phospholipid Dispersions,” Proc. Natl. Acad. Sei. USA 72, 3993–3997 (1975).

    CAS  Google Scholar 

  68. H. M. Zacharis, “A Linear Function for the Melting Behaviour of Lipids,” Chem. Phys. Lipids 18, 221–231 (1977).

    CAS  Google Scholar 

  69. R. G. Priest, “Semiphenological Model for the Lipid Bilayer Phase Transition: Finite Chains in Three Dimensions,” Chem. Phys. 66, 722–725 (1977).

    CAS  Google Scholar 

  70. M. I. Kanehisa and T. Y. Tsong, Cluster Model of Lipid Phase Transitions with Application to Passive Permeation of Molecules and Structure Relaxations in Lipid Bilayers, J. Am. Chem. Soc. 100, 424–432 (1978).

    CAS  Google Scholar 

  71. S. Doniach, “Thermodynamic Fluctuations in Phospholipid Bilayers,” J. Chem. Phys. 68, 4912–4916 (1978).

    CAS  Google Scholar 

  72. S. Marcelja and J. Wolfe, “Properties of Bilayer Membranes in the Phase Transition or Phase Separation Region,” Biochim. Biophys. Acta 557, 24–31 (1979).

    CAS  Google Scholar 

  73. K. A. Dill and R. S. Cantor, in Physics of Amphiphiles. Micelles, Vesicles and Microemulsions ( V. Degiorgio and M. Corti, eds.), Elsevier, Amsterdam (1985), pp. 376–393.

    Google Scholar 

  74. H. Träuble, “Phasenumwandlungen in Lipiden. Mögliche Schaltprozesse in biologischen Membranen,” Naturwissenschaften 58, 277–284 (1971).

    Google Scholar 

  75. H. Träuble and H. Eibl, “Electrostatic Effects on Lipid Phase Transitions: Membrane Structure and Ionic Environment,” Proc. Natl. Acad. Sei. USA 71, 214–219 (1974).

    Google Scholar 

  76. J. V. Howarth, R. D. Keynes, and J. M. Ritchie, “The Origin of Initial Heat Associated with a Single Impulse in Mammalian Nonmyelinated Nerve Fibers,” J. Physiol. 194, 745–793 (1968).

    CAS  Google Scholar 

  77. A. Fraser and A. H. Frey, “Electromagnetic Emission at Micron Wavelengths from Active Fibers,” Biophys. J. 8, 731–734 (1968).

    CAS  Google Scholar 

  78. B. D. Ladbrooke and D. Chapman, “Thermal Analysis of Lipids, Proteins and Biological Membranes. A Review and Summary of Some Recent Studies,” Chem. Phys. Lipids 3, 304–367 (1969).

    CAS  Google Scholar 

  79. M. H. Sherebrin, B.A.E. MacClement, and A. J. Franko, “Electric Field-Induced Shifts in the Infrared Spectrum of Conducting Nerve Axons,” Biophys. J. 12, 977–989 (1972).

    CAS  Google Scholar 

  80. D. G. Cameron, J. K. Kauppinen, H. H. Casal, and H. H. Mantsch, “The Thermotropic Behaviour of Diacyl Phosphatidylcholines: A Fourier Transform Infrared Study” (manuscript).

    Google Scholar 

  81. D. Georgescauld and H. Dulochier, “Transient Fluorescent Signals from Pyrene Labeled Pike Nerves During Action Potential. Possible Implications for Membrane Fluidity Changes,” Biochem. Biophys. Res. Commun. 85, 1186–1191 (1978).

    CAS  Google Scholar 

  82. H. J. Pownall and L. C. Smith, “Viscosity of the Hydrocarbon Region of Micelles. Measurement by Excimer Fluorescence,” J. Am. Chem. Soc. 95, 3136–3140 (1973).

    CAS  Google Scholar 

  83. A. K. Soutar, H. J. Pownall, A. S. Hu, and L. C. Smith, “Phase Transitions in Bilamellar Vesicles. Measurements by Pyrene Excimer Fluorescence and Effect on Transacylation by Lecithin: Cholesterol Acyltransferase,“Biochemistry 13, 2828–2836 (1974).

    CAS  Google Scholar 

  84. A. L. Hodgkin and A. F. Huxley, “Currents Carried by Sodium and Potassium Ions Through the Membrane of the Giant Axon of Loligo,” J. Physiol 116, 449–472 (1952).

    CAS  Google Scholar 

  85. D. Papahadjopoulos, K. Jacobson, S. Nir, and T. Isac, “Phase Transitions in Phospholipid Vesicles. Fluorescence Polarization and Permeability Measurements Con-cerning the Effect of Temperature and Cholesterol,” Biochim. Biophys. Acta 311, 330–348 (1973).

    CAS  Google Scholar 

  86. L. B. Cohen, R. D. Keynes, and B. Hille, “Light Scattering and Birefringence Changes During Nerve Activity,” Nature 218, 438–441 (1968).

    CAS  Google Scholar 

  87. M. J. Janiak, D. M. Small, and G. G. Shipley, “Interactions of Cholesterol Esters with Phospholipids: Cholesterol Myristate and Dimyristoyl Lecithin,” J. Lipid Res. 20, 183–199 (1979).

    CAS  Google Scholar 

  88. P. N. Yi and R. C. MacDonald, “Temperature Dependence of Optical Properties of Aqueous Dispersions of Phosphatidylcholine,” Chem. Phys. Lipids 11, 114–134 (1973).

    Google Scholar 

  89. V. F. Antonov, V. V. Petrov, A. A. Molnar, D. A. Predvoditelev, and A. S. Ivanov, “The Appearance of Single-ion Channels in Unmodified Lipid Bilayer Membranes at the Phase Transition Temperature,” Nature 283, 585–586 (1980).

    CAS  Google Scholar 

  90. P. K. J. Kinnunen, T. Thuren, P. Vainio, and J. A. Virtanen, in Physics of Amphiphiles. Micelles, Vesicles and Microemulsions ( V. Degiorgio and M. Corti, eds.), Elsevier, Amsterdam (1984), pp. 687–701.

    Google Scholar 

  91. J. S. O’Brien and G. Rouser, “The Fatty Acid Composition of Brain Sphingolipids: Sphingomyelin, Ceramide, Cerebroside, and Cerebroside Sulfate,” J. Lipid Res. 5, 339–342 (1964).

    Google Scholar 

  92. J. S. O’Brien and E. L. Sampson, “Fatty Acid and Fatty Aldehyde Composition of the Major Brain Lipids in Normal Human Gray Matter, White Matter, and Myelin,” J. Lipid Res. 6, 545–551 (1965).

    Google Scholar 

  93. D. Chapman, R. M. Williams, and B. D. Ladbrooke, “Physical Studies of Phospholipids. VI. Thermotropic and Lyotropic Mesomorphism of some 1,2-diacyl- phosphatidylcholines (Lecithins),” Chem. Phys. Lipids 1, 445–475 (1971).

    Google Scholar 

  94. H. Trauble and D. H. Haynes, “The Volume Change in Lipid Bilayer Lamellae at the Crystalline-Liquid Crystalline Phase Transition,” Chem. Phys. Lipids 7, 324–355 (1971).

    Google Scholar 

  95. J. W. Moore, Excitation of the Squid Axon Membrane in Isoosmotic Potassium Chloride, Nature 183, 265–266 (1959).

    CAS  Google Scholar 

  96. I. Inoue, Y. Kobatake, and I. Tasaki, “Excitability, Instability and Phase Transitions in Squid Axon Membrane Under Internal Perfusion with Dilute Salt Solutions,” Biochim. Biophys. Acta 307, 471–477 (1973).

    CAS  Google Scholar 

  97. P. Connor, B. S. Mangat, and L. S. Rao, “The Labilization of Lecithin Liposomes by Steroidal Anaesthetics: A Correlation with Anaesthetic Activity,” J. Pharm. Pharmacol. 26, 120P (1974).

    Google Scholar 

  98. A. G. Lee, “Model for the Action of Local Anaesthetics,” Nature 262, 545–548 (1976).

    CAS  Google Scholar 

  99. J. F. Tocanne, P. H. J. Th. Ververgaert, A. J. Verkleij, and L. L. M. van Deenen, “A Monolayer and Freeze-Etching Study of Charged Phospholipids. I. Effects of Ions and pH on the Ionic Properties of Phosphatidylglycerol and Lysylphosphatidylglycerol,” Chem. Phys. Lipids 12, 201–219 (1974).

    CAS  Google Scholar 

  100. H. Hauser, M. C. Phillips, and M. D. Barratt, “Differences in the Interaction of Inorganic and Organic (Hydrophobic) Cations with Phosphatidylserine Membranes,” Biochim. Biophys. Acta 413, 341–353 (1975).

    CAS  Google Scholar 

  101. A. M. Cook, E. Low, and M. Ishijimi, “Effect of Phosphatidyl Serine Decarboxylase on Neural Excitation,” Nature 239, 150–151 (1972).

    CAS  Google Scholar 

  102. R. A. Demel and B. de Kruyff, “The Function of Sterols in MEMBRANES,” Biochim. Biophys. Acta 457, 109–132 (1976).

    CAS  Google Scholar 

  103. J. E. Bell and C. Hall, in Spectroscopy in Biochemistry ( J. E. Bell, ed.), CRC Press, Boca, Raton, Fla. (1981), Vol. 1, pp. 3 - 36.

    Google Scholar 

  104. P. W. M. van Dijck, B. de Kruyff, L. L. M. van Deenen, J. de Gier, and R. A. Demel, “The Preference of Cholesterol for Phosphatidylcholine in Mixed Phosphatidylcholine-Phosphatidylethanolamine Bilayers,” Biochim. Biophys. Acta 455, 576–587 (1976).

    Google Scholar 

  105. R. A. Demel, J. W. C. M. Jansen, P. W. M. van Dijck, and L. L. M. van Deenen, “The Preferential Interaction of Cholesterol with Different Classes of Phospholipids,” Biochim. Biophys. Acta 465, 1–10 (1977).

    CAS  Google Scholar 

  106. W. I. Calhoun and G. G. Shipley, Sphingomyelin-Lecithin Bilayers and Their Interac-tion with Cholesterol,“Biochemistry 18, 1717–1722 (1979).

    Google Scholar 

  107. A. Blume, “Thermotropic Behaviour of Phosphatidylethanolamine-Cholesterol and Phosphatidylethanolamine-Phosphatidylcholine-cholesterol Mixtures,” Biochemistry 19, 4908–4913 (1980).

    CAS  Google Scholar 

  108. D. Chapman, N. F. Owens, and D. A. Walker, “Physical Studies of Phospholipids. II. Monolayer Studies of Some Synthetic 2, 3-diacyl-DL-phosphatidylethanolamines and Phosphatidylcholines Containing Trans Double Bonds,” Biochim. Biophys. Acta 120, 148–155. (1966).

    CAS  Google Scholar 

  109. J. Tinoco and D. J. Mcintosh, “Interactions Between Cholesterol and Lecithin in Monolayers at an Air-Water Interface,” Chem. Phys. Lipids 4, 72–84 (1970).

    CAS  Google Scholar 

  110. R. A. Demel, W. S. M. Geurts van Kessel, and L. L. M. van Deenen, “The Properties of Polyunsaturated Lecithins in Monolayers and Liposomes and the Interaction of these Lecithins with Cholesterol,” Biochim. Biophys. Acta 266, 26–40 (1972).

    CAS  Google Scholar 

  111. H. Brockerhoff, “Model of Interaction of Polar Lipids, Cholesterol, and Proteins in Biological Membranes,” Lipids 9, 645–650 (1974).

    CAS  Google Scholar 

  112. C.-H. Huang, “Roles of Carbonyl Oxygens at the Bilayer Interface in Phospholipid-Sterol Interaction,” Nature 259, 242–244 (1976).

    CAS  Google Scholar 

  113. N. Chatteijee and H. Brockerhoff, “Evidence for Stereospecific Phospholipid-Cholesterol Interaction in Lipid Bilayers,” Biochim. Biophys. Acta 511, 116–119 (1978).

    Google Scholar 

  114. P. L. Yeagle, W. C. Hutton, C.-H. Huang, and R. B. MArtin, “Headgroup Conformation and Lipid-Cholesterol Association in Phosphatidylcholine Vesicles: A 31P<1H> Nuclear Overhauser Effect Study,” Proc. Natl. Acad. Sci. USA 72, 3477-3481 (1975).

    Google Scholar 

  115. P. L. Yeagle and R. B. Martin, “Hydrogen-Bonding of the Ester Carbonyls in Phosphatidylcholine Bilayers,” Bio Biophys. Res. Commun. 69, 775–780 (1976).

    CAS  Google Scholar 

  116. S. Clejan, R. Bittman, P. W. Deroo, Y. A. Isaacson, and A. F. Rosenthal, “Permability Properties of Sterol-Containing Liposomes from Analogues of Phosphatidylcholine Lacking Acyl Groups, Biochemistry 18, 2118–2125 (1979).

    CAS  Google Scholar 

  117. F. T. Schwarz and F. Paltauf, “Influence of the Ester Carbonyl Oxygens of Lecithin on the Permeability properties of Mixed Lecithin-Cholesterol Bilayers,” Biochemistry 16, 4335–4339 (1977).

    CAS  Google Scholar 

  118. E. Bicknell-Brown and K. G. Brown, “Raman Studies of Lipid Interactions at the Bilayer Interface: Phosphatidylcholine-Cholesterol,” Biochem. Biophys. Res. Commun. 94, 638–645 (1980).

    CAS  Google Scholar 

  119. A. Darke, E. G. Finer, A. G. Flock, and M. C. Phillips, “Nuclear Magnetic Resonance Study of Lecithin-Cholesterol Interactions,” J. Mol. Biol. 63, 265–279 (1972).

    CAS  Google Scholar 

  120. S. P. Verma and D. F. H. Wallach, “Effects of Cholesterol on the Infrared Dichroism of Phosphatide Multilayers,” Biochim. Biophys. Acta 330, 122–131 (1973).

    CAS  Google Scholar 

  121. M. Okazaki and I. Hara, “Solubility of Phosphatidylcholine in Choloroform. Formation of Hydrogen Bonding Between Phosphatidylcholine and Chloroform,” Chem. Phys. Lipids 17, 28–37 (1976).

    CAS  Google Scholar 

  122. G. L. Jendrasiak, “The Interaction of Iodine with Lecithin Micelles,” Chem. Phys. Lipids 4, 85–95 (1970).

    CAS  Google Scholar 

  123. A. G. Lee, “Interactions Between Phospholipids and Barbiturates,” Biochim. Biophys. Acta 455, 102–108 (1976).

    CAS  Google Scholar 

  124. B. Rosenberg and H. C. Pant, “The Semiconducting Rectifier Behaviour of a Biomolecular Lipid Membrane,” Chem. Phys. Lipids 4, 203–207 (1970).

    CAS  Google Scholar 

  125. B. Bhowmik and G. L. Jendrasiak, “Charge Transfer Complexes of Lipids with Iodine,” Nature 215, 842–843 (1967).

    CAS  Google Scholar 

  126. B. Rosenberg and B. B. Bhowmik, “Donor-Acceptor Complexes and the Semiconductivity of Lipids,” Chem. Phys. Lipids 3, 109–124 (1969).

    CAS  Google Scholar 

  127. B. Rosenberg and G. L. Jendrasiak, “Semiconductive Properties of Lipids and Their Possible Relationship to Lipid Bilayer Conductivity,” Chem. Phys. Lipids 2, 47–54 (1968).

    CAS  Google Scholar 

  128. G. L. Jendrasiak, “Effect of Iodine on the Electrical Resistance of Lipid Bilayer Membranes,” Chem. Phys. Lipids 3, 98–101 (1969).

    CAS  Google Scholar 

  129. L. Y. Wei and B. Y. Woo, “Electronic Conduction in Lipid Films with Metal Contacts,” Biophys. J. 13, 877–889 (1973).

    CAS  Google Scholar 

  130. G. L. Jendrasiak and J. H. Hasty, “The Electrical Conductivity of Hydrated Phospholipids,” Biochim. Biophys. Acta 348, 45–54 (1974).

    CAS  Google Scholar 

  131. I. Lundstrom and M. Stenberg, “Charge Injection and Charge Storage in Lipid Multilayers,” Chem. Phys. Lipids 12, 287–302 (1974).

    CAS  Google Scholar 

  132. G. L. Jendrasiak and J. C. Mendible, “The Effect of Phase Transition on the Hydration and Electrical Conductivity of Phospholipids,” Biochim. Biophys. Acta 424, 133–148 (1976).

    CAS  Google Scholar 

  133. G. L. Jendrasiak and J. C. Mendible, “The Phospholipid Head-Group Orientation: Effect on Hydration and Electrical Conductivity,” Biochim. Biophys. Acta 424, 149–158 (1976).

    CAS  Google Scholar 

  134. A. A. Shulyndin, “The Lateral Resistance of Phospholipid Bilayer Membranes of Dif-ferent Structures,” Izv. Akad. Nauk USSR (Ser. Biol., in Russian) 3, 456–459 (1980).

    Google Scholar 

  135. A. A. Shulyndin, “The Effect of Cholesterol on the Lateral Resistance of Phospholipid Membranes,” Izv. Akad. Nauk USSR (Ser. Biol., in Russian) 1, 154–156 (1981).

    Google Scholar 

  136. D. Papahadjopoulos, S. Nir, and S. Ohki, “Permeability Properties of Phospholipid Membranes: Effect of Cholesterol and Temperature,” Biochim. Biophys. Acta 266, 561–586 (1971).

    Google Scholar 

  137. M. M. Shemyakin, Yu. A. Ovchinnikov, V. T. Ivanov, V. K. Antonov, E. I. Vinogradova, A. M. Shkrob, G. G. Malenkov, A. V. Evstratov, I. A. Laine, E. I. Melnik, and I. D. Ryadova, “Cyclodepepsipedtides as Chemical Tools for Studying Ionic Transport Through Membranes,” J. Membrane Biol. 1, 402–430 (1960).

    Google Scholar 

  138. R. G. Ashcroft, H. G. L. Coster, and J. R. Smith, “The Molecular Organization of Bimolecular Lipid Membranes. The Dielectric Structure of the Hydrophilic/Hydrophobic Interface,” Biochim. Biophys. Acta 643, 191–204 (1981).

    CAS  Google Scholar 

  139. R. Pethig, Dielectric and Electronic Properties of Biological Materials, Wiley, New York (1979).

    Google Scholar 

  140. A. A. Verveen and L. J. DeFelice, “Membrane Noise,” Prog. Biophys. Molec. Biol. 28, 189–265 (1974).

    CAS  Google Scholar 

  141. F. Conti, L. J. DeFelice, and E. Wanke, “Potassium and Sodium Ion Current Noise in the Membrane of the Squid Giant Axon,” J. Physiol. 248, 45–82 (1975).

    CAS  Google Scholar 

  142. F. Conti and E. Wanke, “Channel Noise in Nerve Membranes and Lipid Bilayers,” Quart. Rev. Biophys. 8, 451–506 (1975).

    CAS  Google Scholar 

  143. B. D. Ladbrooke, R. M. Williams, and D. Chapman, “Studies on Lecithin-Cholesterol-Water Interaction by Differential Scanning Calorimetry and X-Ray Diffraction,” Biochim. Biophys. Acta 150, 333–340 (1968).

    CAS  Google Scholar 

  144. S. Mabrey, P. L. Mateo, and J. M. Sturtevant, “High Sensitivity Scanning Calorimetric Study of Mixtures of Cholesterol with Dimyristoyl- and Dipalmitoylphosphatidylcholine, Biochemistry 17, 2464–2468 (1978).

    CAS  Google Scholar 

  145. J. V. Henderson and D. L. Gilbert, “Slowing of Ionic Currents in the Voltage-Clamped Squid Axon by Helium Pressure, Nature 258, 351–352 (1975).

    Google Scholar 

  146. H. M. McConnell, B. M. Hoffman, and R. M. Metzger, “Charge Transfer in Molecular Crystals,” Proc. Natl. Acad. Sei. USA 53, 46–50 (1965).

    CAS  Google Scholar 

  147. P. O. Makarov and M. V. Krasovitskaya, “Investigation of the Molecular Mechanism of Neurodynamics by the Method of Cytospectrophotometry,” Biofizika 15, 492–496 (1970).

    CAS  Google Scholar 

  148. J. M. Fox, B. Neumke, W. Nonner, and R. Stämpfli, “Block of Gating Currents by Ultraviolet Radiation in the Membrane of Myelinated Nerve,” Pflugers Arch. 364, 143–145 (1976).

    CAS  Google Scholar 

  149. M. K. Jain, F. Ramirez, T. M. McCaffrey, P. V. Ioannou, J. F. Marecek, and J. Leunissen-Bijvelt, “Phosphatidylcholesterol Bilayers. A Model for Phospholipid- Cholesterol Interaction,” Biophys. Biochim. Acta 600, 678–688 (1980).

    CAS  Google Scholar 

  150. P. J. Strebel and Z. G. Soos, “Theory of Charge Transfer in Aromatic Donor-Acceptor Crystals,” J. Chem. Phys. 53, 4077–4090 (1970).

    CAS  Google Scholar 

  151. W. A. Little, “Possibility of Synthetizing an Organic Superconductor,” Phys. Rev. 134, 1416–1424 (1964).

    Google Scholar 

  152. W. A. Little, “The Exciton Mechanism in Superconductivity,” J. Polymer Sci. (Part C) 29, 17–26 (1970).

    Google Scholar 

  153. V. L. Ginzburg, “The Problem of High Temperature Superconductivity,” Contemp. Phys. 9, 355–374 (1968).

    Google Scholar 

  154. V. L. Ginzburg, “The Problem of High-Temperature Superconductivity. II,” Sov. Phys. Usp. 13, 335–352 (1970).

    Google Scholar 

  155. V. L. Ginzburg, “High Temperature Superconductivity,” J. Polymer Sci. (Part C) 29, 3–16 (1970).

    Google Scholar 

  156. V. L. Ginsburg and D. A. Kirzhnits, “On the Problem of High Temperature Supercon-ductivity,” Phys. Rep. (Sec. C) 4, 343–356 (1972).

    Google Scholar 

  157. V. L. Ginzburg and D. A. Kirzhnits, eds., High Temperature Superconductivity, Plenum Press, New York (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kinnunen, P.K.J., Virtanen, J.A. (1986). A Qualitative, Molecular Model of the Nerve Impulse. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics