Skip to main content

Electrical Phenomena in Proteinoid Cells

  • Chapter
Modern Bioelectrochemistry

Abstract

Electrical phenomena in artificial cells are described.The constituent material of the cells, referred to as proteinoid or as thermal protein, have been extensively studied in the context of the origin of life, which led to the finding of excitability as one of the biofunctions. The activities found in proteinoid cells are such as to make them useful models for modern excitable cells as well as for protocells. For example, the proteinoid cells display double membrane, asymmetric permeability, membrane potentials, action potentials, and photoactivity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Harada and S. W. Fox, “Characterizations of Functional Groups of Acidic Thermal Polymers of α-Amino Acids,” BioSystems 7, 222–229 (1975)

    Article  Google Scholar 

  2. T. Nakashima, J. R. Jungck, S. W. Fox, E. Lederer, and B. C. Das, “A Test for Randomness in Peptides Isolated from a Thermal Polyamino Acid,” Int. J. Quant. Chem. Quant. Biol. Symp. 4, 65–72 (1977)

    CAS  Google Scholar 

  3. J.Hartmann, M. C. Brand, and K. Dose, “Formation of Specific Amino Acid Sequences During Thermal Polymerization of Amino Acids,” BioSystems 13, 141–147 (1981)

    Article  CAS  Google Scholar 

  4. D. L. Rohlfing,Thermal Polyamino Acids:Synthesis at Less than 100°C,Science 19368–70(1976)

    Article  CAS  Google Scholar 

  5. P. Neri, G. Antoni, F. Benvenuti, F. Cocola, and G. Gazzei, “Synthesis of Alpha, beta- poly [(2-hydroxy-ethyl)-DL-aspartamide], A New Plasma Expander,” J. Med. Chem. 16, 893–897 (1973)

    Article  CAS  Google Scholar 

  6. K. Harada and S. W. Fox, in The Origins of Prebiological Systems ( S. W. Fox, ed.), Academic, New York (1965), pp. 289–298

    Google Scholar 

  7. A. Vegotsky, “Thermal Copolymers of Amino Acids,”Ph. D. dissertation, Florida State University (1961)

    Google Scholar 

  8. K. Dose and L. Zaki, “Hämoproteinoide mit Peroxidatischer und Katalatischer Activität,” Z. Naturforsch 26b 144–148 (1971)

    CAS  Google Scholar 

  9. S. W. Fox and T. Nakashima, “Fractionation and Characterization of an Amidated Thermal l:l:l-Proteinoid,”Biochim. Biophys. Acta 140, 155–167 (1967)

    CAS  Google Scholar 

  10. A. L. Lehninger, Biochemistry, 2nd ed., Worth and Co., New York (1975)

    Google Scholar 

  11. S. W. Fox, in The Origins of Prebiological Systems ( S. W. Fox, ed.), Academic, New York (1965), pp. 361–372

    Google Scholar 

  12. S. W. Fox, “A Theory of Macromolecular and Cellular Origins,” Nature 205, 328–340 (1965)

    Article  CAS  Google Scholar 

  13. S. W. Fox and K. Dose, Molecular Evolution and the Origin of Life, rev. ed., Dekker, New York (1977)

    Google Scholar 

  14. S. W. Fox and S. Yuyama, “Effects of the Gram Stain on Microspheres from Thermal Polyamino Acids,” J. Bacteriol. 85, 279–283 (1963)

    CAS  Google Scholar 

  15. S. W. Fox, “The Evolutionary Significance of Phase-Separated Microsystems,” Origins Life 7, 49–68 (1976)

    Article  CAS  Google Scholar 

  16. S. Brooke and S. W. Fox “Compartmentalization in Proteinoid in Microspheres,”BioSystems 9, 1–22(1977)

    Article  CAS  Google Scholar 

  17. S. W. Fox, “The Origins of Behavior in Macromolecules and Protocells,”Comp. Biochem. Physiol 67B, 423–436 (1980)

    CAS  Google Scholar 

  18. S. W. Fox, “Metabolic Microspheres,” Naturwissenschaften 67, 378–383 (1980)

    Article  CAS  Google Scholar 

  19. S. W. Fox and T. Nakashima, “The Assembly and Properties of Protobiological Structures: The Beginnings of Cellular Peptide Synthesis,” BioSystems 12, 155–166 (1980)

    Article  CAS  Google Scholar 

  20. T. Nakashima and S. W. Fox, “Formation of Peptides from Amino Acids by Single or Multiple Additions of ATP to Suspensions of Nucleoproteinoid Microparticles,” BioSystems 14, 151–161 (1981)

    Article  CAS  Google Scholar 

  21. S. W. Fox, “Origins of the Protein Synthesis Cycle,” Int. J. Quant. Chem. Quant. Biol. Symp 8, 441–454 (1981)

    Article  CAS  Google Scholar 

  22. J. R. Jungck and S. W. Fox,“Synthesis of Oligonucleotides by Proteinoid Microspheres Acting on ATP,” Naturwissenschaften 60, 425–427

    Google Scholar 

  23. S. W. Fox, T. Nakashima, A. Przybylski, and R. M. Syren“The Updated Experimental Proteinoid Model,” Int. J. Quant. Chem. Quant. Biol. Symp. 9, 195–204 (1982)

    CAS  Google Scholar 

  24. Y. Ishima, A. T. Przybylski, and S. W. Fox, “Electrical Membrane Phenomena in Spherules from Proteinoid and Lecithin,” BioSystems 13, 243–251 (1981)

    Article  CAS  Google Scholar 

  25. A. T. Przybylski, W. P. Stratten, R. M. Syren, and S. W. Fox, “Membrane, Action, and Oscillatory Potentials in Simulated Protocells,” Naturwissenschaften 69, 561–563 (1982)

    Article  CAS  Google Scholar 

  26. T. Takenaka, I. Inoue, Y. Ishima, and H. Horie, “Excitability of Surface Membrane of Protoplasmic Drop Produced from Protoplasm in Nitella,” Proc. Jpn. Acad. 47, 554–557 (1971)

    Google Scholar 

  27. I. Inoue, Y. Ishima, H. Horie, and T. Takenaka, “Properties of an Excitable Membrane Produced on the Surface of a Protoplasmic Drop in Nitella,” Proc. Jpn. Acad. 47, 549–553(1971)

    CAS  Google Scholar 

  28. B. Gomperts, The Plasma Membrane, Academic Press, New York (1977)

    Google Scholar 

  29. J. L. Howland, Cell Physiology, Macmillan, New York (1973)

    Google Scholar 

  30. Y. Ishima and S. W. Fox, Abstract, Third Ann. Mtg. Soc. Neuroscience 17. 10, 172 (1973)

    Google Scholar 

  31. S. W. Fox, R. M. McCauley, P. O’B. Montgomery, T. Fukushima, K. Harada, and C. R. Windsor, in Physical Principles of Biological Membranes (F. Snell, J. Wolken, G. J. Iversen, and J. Lam, eds.), Gordon and Breach, New York (1969), pp. 417–430

    Google Scholar 

  32. S. W. Fox, T. Adachi, W. Stillwell, Y. Ishima, and G. Baumann, in Light Transducing Membranes: Structure, Function, Evolution ( D. W. Deamer, ed.), Academic Press, New York (1978), pp. 61–75

    Google Scholar 

  33. L. Hsu, unpublished data

    Google Scholar 

  34. A. T. Przybylski, in Molecular Evolution and Protobiology ( K. Matsuno, K. Dose, K. Harada, and D. L. Rohlfing, eds.), Plenum Press, New York (1984), pp. 253–266

    Google Scholar 

  35. S. W. Fox and S. Yuyama, “Abiotic Production of Primitive Protein and Formed Microparticles,” Ann. N. Y. Acad. Sci 108, 487–494 (1963)

    Article  CAS  Google Scholar 

  36. R. M. Syren, unpublished data

    Google Scholar 

  37. W. D. Snyder and S. W. Fox, “A Model for the Origin of Stable Protocells in a Primitive Alkaline Ocean,” BioSystems 7, 222–229 (1975)

    Article  CAS  Google Scholar 

  38. H. T. Tien, Bilayer Lipid Membranes, Marcel Dekker, New York (1974)

    Google Scholar 

  39. P. Mueller and D. O. Rudin, “Resting and Action Potentials in Experimental Bimolecular Lipid Membranes,” J. Theoret. Biol 18, 222–258 (1968)

    Google Scholar 

  40. A. Wood and H. G. Hardebeck, “Light Enhanced Decarboxylations by Proteinoids,” in Molecular Evolution (D. L. Rohlfing and A. I. Oparin, eds.), Plenum Press, New York(1972)pp. 233–245

    Google Scholar 

  41. B. Heinz and W. Ried, “The Formation of Chromophores Through Amino Acid Ther-molysis and their Possible Role as Prebiotic Photoreceptors,” BioSystems 14, 33–40 (1981)395

    Google Scholar 

  42. G. H. Beaven and E. R. Holiday, “Ultraviolet Absorption Spectra of Proteins and Amino Acids,” Adv. Protein Chem. 7, 319–386 (1952)

    Article  CAS  Google Scholar 

  43. B. Heinz and W. Ried, “Structure Elucidation of a Chromo Proteinoid,” Abstract C2–17, 7th International Conference on the Origins of Life, Mainz, Germany (July 10–15, 1983 )

    Google Scholar 

  44. S. W. Fox, T. Adachi, and W. Stillwell, in Solar Energy: International Progress (T. N. Veziroglu, ed.), Vol. 2, Pergamon Press, New York (1980), pp. 1056–1074

    Google Scholar 

  45. C. Kempf, R. D. Klausner, J. N. Weinstein, J. Van Renswoude, M. Pincus, and R. Blumenthal,Voltage-Dependent Trans-Bilayer Orientation of Melittin,J. Biol Chem257,2469–2476(1982)

    CAS  Google Scholar 

  46. S. J. Kennedy, R. W. Roeske, A. R. Freeman, A. M. Watanabe, and H. R. Besch, Jr., “Synthetic Peptides Form Ion Channels in Artificial Lipid Bilayer Membranes,” Science 196, 1341–1342 (1977)

    Article  CAS  Google Scholar 

  47. R. J. Bradley, W. O. Romine, M. M. Long, T. Ohnishi, M. A. Jacobs, and D. W. Urry, “Synthetic Peptide K+ Carrier with Ca + + Inhibition,”Arch. Biochem 178, 2, 468 (1977)

    Article  CAS  Google Scholar 

  48. S. Larsson, “Electron Transfer in Biological Systems,” Int. J. Quantum Chem.: Quantum Biol. Symp. 9, 385–397 (1982)

    CAS  Google Scholar 

  49. V. Denner and F. Kaiser,Phase Transition Behavior of a Greater Membrane ModelInt. J. Quantum Chem.: Quantum Biol. Symp 9, 41–57 (1982)

    CAS  Google Scholar 

  50. M. A. Keniry, R. L. Smith, H. S. Gutowsky, and E. Oldfield, in Structure and Dynamics: Nucleic Acids and Proteins ( E. Clementi and R. H. Sarma, eds.), Adenine Press, New York (1983), pp. 435–450

    Google Scholar 

  51. D. W. McLaughlin, in Structure and Dynamics: Nucleic Acids and Proteins ( E. Clementi and R. H. Sarma, eds.), Adenine Press, New York (1983), pp. 55–60

    Google Scholar 

  52. A. C. Scott, in Structure and Dynamics: Nucleic Acids and Proteins ( E. Clementi and R. H. Sarma, eds.), Adenine Press, New York (1983), pp. 389–404.

    Google Scholar 

  53. A. S. Davydov, in Structure and Dynamics: Nucleic Acids and Proteins ( E. Clementi and R. H. Sarma, eds.), Adenine Press, New York (1983), pp. 377–387

    Google Scholar 

  54. M. Levitt, C. Sander, and P. S. Stern,“The Normal Modes of a Protein: Native Bovine Pancreatic Trypsin Inhibitor,” Int. J. Quantum Chem.: Quantum Biol. Symp. 10, 181–199 (1983)

    CAS  Google Scholar 

  55. M. Goodman, A. S. Verdini, N. S. Choi, and Y. Masuda, in Topics in Stereochemistry ( E. L. Eliel and N. L. Allinger, eds.), Wiley-Interscience, New York (1970), Vol. 5, pp. 69–166.

    Chapter  Google Scholar 

  56. A. T. Przybylski“Material Model of the Neuron, ” Abstract Sanibel Symposia (March 1–15, 1984 )

    Google Scholar 

  57. F. L. Carter, Molecular Electronic Devices, Dekker, New York (1982)

    Google Scholar 

  58. W. M. Biernat, “Molecular Storage Unit,” United States Patent 3,119,099 (January 21, 1964 )

    Google Scholar 

  59. F. S. Barnes, “Quantum State Memory,” United States Patent 3,754,988 (August 28, 1973 )

    Google Scholar 

  60. A. Aviram, “Organic Memory Device,” United States Patent 3,833,894 (September 3, 1974 )

    Google Scholar 

  61. C. Levinthal, “System for Storing and Retrieving Information at the Molecular Level,” United States Patent 4,032,901 (June 28, 1977 )

    Google Scholar 

  62. A. T. Przybylski and S. W. Fox, in Solar Power Applications: Alternative Energy Sources IV ( T. N. Veziroglu, ed.), Ann Arbor Science, Ann Arbor, Michigan (1982), Vol. 3, pp. 95–102

    Google Scholar 

  63. A. T. Przybylski, R. M. Syren, and S. W. Fox, in Alternative Energy Sources V. Part B: Solar Applications ( T. N. Veziroglu, ed.), Elsevier Science Publishers B.V., Amsterdam (1983) pp. 367–377

    Google Scholar 

  64. S. W. Fox and S. Brooke, in Microencapsulation (T. Kondo, ed.), Techno Books, Tokyo (1979), pp. 257–290. 396

    Google Scholar 

  65. A. T. Przybylski and S. W. Fox “Excitable Artificial Cells of Proteinoid,” Appl. Biochem. Biotechnol. 10, 301 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Przybylski, A.T., Fox, S.W. (1986). Electrical Phenomena in Proteinoid Cells. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics