Human Growth pp 377-390 | Cite as

Immunity Development

  • Anthony R. Hayward


The development of immunity occurs during two separate phases. The first takes place during fetal life, in the absence of exogenous antigen stimulus. It is characterized by the production of immune cells (phagocytes and lymphocytes) with surface receptors for a range of potentially antigenic structures. This seems likley to be a highly regulated process in that mechanisms must exist even during fetal life to eliminate any newly produced cells that might react with accessible self-components. The second phase of immunity development is characterized by adaptation in response to antigen stimulus, which starts at birth and continues throughout life. Adaptation produces long-lasting changes in specific immune responses but only transient changes in nonspecific immunity mechanisms such as phagocytes, the complement system, lysozyme, transferrin, and C-reactive protein. Thus, the number of phagocytes and the serum level of C-reactive protein increase during the course of an immune response, but neither undergoes any permanent qualitative change. Specific immune responses are mediated by antibodies and by specifically sensitized lymphocytes whose response is amplified by immunological stimuli. Normal newborn infants have experienced little if any immunological stimulus during intrauterine life, so their specific immune responses to viruses and bacteria are poorly developed compared with those of adults. By contrast, the nonspecific effector mechanisms of newborn infants are relatively mature by the time of birth because their development is less dependent on antigen stimulus.


Newborn Infant Human Fetus Fetal Life Specific Immune Response Maternal Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abo, T., Cooper, M. D., and Balch, C. M., 1982, Postnatal expansion of the natural killer and killer cell population in humans identified by the monoclonal HNK-1 antibody, J. Exp. Med. 155: 321–326.CrossRefGoogle Scholar
  2. Accolla, R. S., Gearhart, P. J., Sigal, N. H., Cancro, M. P., and Klinman, N. R., 1977, Idiotype-specific neonatal suppression of phosphorylcholine responsive B cells, Eur. J. Immunol. 7: 876–881.CrossRefGoogle Scholar
  3. Adinolfi, M., 1981, Ontogeny of complement, lysozyme and lactoferrin in man, in: Immunological Aspects of Infection in the Fetus and Newborn ( H. P. Lambert and C. B. S. Wood, eds.), pp. 19–47, Academic Press, London.Google Scholar
  4. Alford, C. A., 1965, Studies on antibody in congenital rubella infections, Am. J. Dis. Child. 110: 455–463.Google Scholar
  5. Al-Hadithy, H:, Addison, I. E., Goldstone, A. H., Cawley, J. C., and Shar, J. C., 1981, Defective neutrophil function in low birth weight premature infants, J. Clin. Pathol. 34: 366–370.Google Scholar
  6. Andersson, U., Bird, A. G., and Britton, S., 1980, Cellular mechanisms of restricted immunoglobulin formation in the human neonate, Eur. Immunol. 10: 888–894.CrossRefGoogle Scholar
  7. Andersson, U., Bird, A. G., Britton, S., and Palacios, R., 1981, Humoral and cellular immunity in humans studied at the cell level from birth to two years of age, Immunol. Rev. 54: 5–38.CrossRefGoogle Scholar
  8. Argyris, B. F., 1968, Role of macrophages in immunological maturation, J. Exp. Med. 128: 459–467.CrossRefGoogle Scholar
  9. Asantila, T., Vahala, J., and Toivanen, P., 1974, Genera-tion of functional diversity of T cell receptors, Immunogenetics 1: 407–411.CrossRefGoogle Scholar
  10. Asma, G. E. M., van den Bergh, R., and Vossen, J. M., 1983, ULc of monoclonal antibodies in a study of the development of T lymphocytes in the human fetus. Clin. Exp. Immunol. 53: 429–436.Google Scholar
  11. Baker, C. J., and Kasper, D. L., 1976, Correlation of maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection, N. Engl. J. Med. 294: 753–756.CrossRefGoogle Scholar
  12. Barin, F., Goudeau, A., Denis, F., Yvonnet, B., Chiron, J. P., Coursage, KP., and Diopmar, I., 1982, Immune response in neonates to hepatitis b vaccine, Lancet 1: 251–253.CrossRefGoogle Scholar
  13. Berman, J. D., and Johnson, W. D., 1978, Monocyte function in human neonates, Infect. Immun. 19: 898–902.Google Scholar
  14. Billingham, R. E., Brent, L., and Medawar, P. B., 1984, Quantitative studies on tissue transplantation immunology: II. The origin, strength and duration of actively and adoptively acquired immunity, Proc. R. Soc. London Ser. B. 143: 58–80.CrossRefGoogle Scholar
  15. Blaese, R. M., and Lawrence, E. C., 1977, Development of macrophage function and the expression of immunocompetence, in: Development of Host Defenses (M. D. Cooper and D. H. Dayton, eds.), pp., Raven Press, New York.Google Scholar
  16. Blaese, R. M., Poplack, D. G., and Muchmore, A. V., 1979, The mononuclear phagocyte system: Role in expression of immunocompetence in neonatal and adult life, Pediatrics 64: 829–833.Google Scholar
  17. Bodger, M. P., Janossy, G., Bollum, F. J., Burford, G. D., and Hoffbrand, A. V., 1983, The ontogeny of terminal deoxynucleotidyl transferase positive cells in the human fetus, Blood 61: 1125–1131.Google Scholar
  18. Boedeker, B. G. D., Kortmann, C., Peter, H. H., Pichler, W. J., and Muehlradt, P. F., 1982, Interleukin 2 in the ontogeny of human lymphoid tissues, Immunobiology 162: 66–77.Google Scholar
  19. Christensen, R. D., and Rothstein, G., 1980, Exhaustion of mature marrow neutrophils in neonates with sepsis, Pediatrics 96: 316–320.CrossRefGoogle Scholar
  20. Christensen, R. D., Bradley, P. R, and Rothstein, G., 1981, The leukocyte left shift in clinical and experimental neonatal sepsis, J. Pediatr. 98: 101–105.CrossRefGoogle Scholar
  21. Ciba Foundation, 1973, Intrauterine Infections, Associated Scientific Publishers, New York.Google Scholar
  22. Clark, D. A., Slapsys, R. M., Croy, B. A., and Rossant, J., 1983, Suppressor cell activity in uterine decidua correlates with success or failure of murine pregnancies, J. Immunol. 131: 540–542.Google Scholar
  23. Cunningham, A. S., 1979, Morbidity in breast and artificial fed infants. II, J. Pediatr. 95: 685–689.CrossRefGoogle Scholar
  24. Fahey, K. J., and Morris, B., 1978, Humoral immune responses in fetal sheep, Immunology 35: 651–661.Google Scholar
  25. Fowler, R., Shubet, W. K., and West, C. D., 1960, Acquired partial tolerance to homologous skin grafts in the human infant at birth, Ann. N. Y. Acad. Sci. 87: 403.Google Scholar
  26. Gathings, W. E., Kubagawa, H., and Cooper, M. D., 1981, A distinctive pattern of B cell immaturity in perinatal humans, Immunol. Rev. 57: 107–126.CrossRefGoogle Scholar
  27. Gathings, W. E., Lawton, A. R., and Cooper, M. D., 1977, Immunofluorescent studies on the development of pre B cells, B lymphocytes and immunoglobulin isotype diversity in humans, Eur. J. Immunol. 7: 804–810.CrossRefGoogle Scholar
  28. Gehrz, R. C., Linner, K. M., Christianson, W. R., Ohm, A. E., and Balfour, H. H., 1982, Cytomegalovirus infection in infancy: Virological and immunological studies, Clin. Exp. Immunol. 47: 27 - 33.Google Scholar
  29. Gitlin, D., 1971, Development and metabolism of immunoglobulins, in: Immunological Incompetence ( B. M. Kargan and R. Stiehm, eds.), pp. 3–13, Year Book Medical Publishers, Chicago.Google Scholar
  30. Gitlin, D., and Biasucci, A., 1969, Development of γG, γA, γM, BIC/BIA, CI esterase inhibitor, caerutoplasmin, transferrin, hemopexin, haptoglobin, fibrinogen, plasminogen, antitrypsin, orosomucoid, β-lipoprotein, α2-macroglobulin and pre-albumin in the human conceptus, J. Clin. Invest. 48: 1433.CrossRefGoogle Scholar
  31. Hawes, C. S., Kemp, A. S., and Jones, W. R., 1980, In vitro parameters of cell mediated immunity in the human neonate, Clin. Immunol Immunopathol. 17: 530–536.CrossRefGoogle Scholar
  32. Hayward, A. R., 1981, Development of lymphocyte responses and interactions in the human fetal and newborn, Immunol. Rev. 57: 40–60.CrossRefGoogle Scholar
  33. Hayward, A. R., 1983, The human fetus and newborn: Development of the immune response, in: Primary Immunodeficiency Diseases, ( R. J. Wedgwood, F. S. Rosen, and N. W. Paul, eds.), pp. 289–294, Alan R. Liss, New York.Google Scholar
  34. Hayward, A. R., and Kurnick, J. T., 1981, Newborn T cell suppression: Early appearance, maintenance in culture and lack of growth factor suppression, J. Immunol. 126: 50–53.Google Scholar
  35. Hayward, A. R., and Law, S., 1984, Response of human newborn lymphocytes to alloantigen: Lack of evidence for suppression induction, Pediatr. Res. 18: 414–419.CrossRefGoogle Scholar
  36. Hayward, A. R., and Lawton, A. R., 1977, Induction of plasma cell differentiation of human fetal lymphocytes: Evidence for functional immaturity of T and B cells, J. Immunol. 119: 1213–1216.Google Scholar
  37. Hayward, A. R., and Merrill, D., 1981, Requirement for OKT 8+ suppressor cell proliferation by human newborn T cells, Clin. Exp. Immunol. 45: 468–474.Google Scholar
  38. Hayward, A. R., and Soothill, J. F., 1972, Reaction to antigen by human fetal thymus lymphocytes. Ontogeny of acquired immunity, Ciba Found. Symp. 261.Google Scholar
  39. Hess, M. W., 1968, Experimental Thymectomy. Possibilities and Limitations, Springer-Verlag, Berlin.Google Scholar
  40. Hoffman, A. A., Hayward, A. R., Kurnick, J. T., DeFreitas, E., McGregor, J., and Harbeck, R. J., 1981, Presentation of antigen by human newborn monocytes to maternal tetanus toxoid specific T cell blasts, J. Clin. Immunol. 1: 217–223.CrossRefGoogle Scholar
  41. Jerne, N. K., 1971, The somatic generation of immune recognition, Eur. J. Immunol. 1: 1–5.CrossRefGoogle Scholar
  42. Johnston, R. B., Altenburger, K. M., Atkinson, K. W., and Curry, R. H., 1979, Complement in the newborn infant, Pediatrics 64: 781–786.Google Scholar
  43. King, S. D., Ramial, A., Wynter, H., et al, 1981, Safety and immunogenicity of a new Haemophilus influenzae type b vaccine in infants under one year of age, Lancet 2: 705–709.CrossRefGoogle Scholar
  44. Klinman, N. R., and Press, J. L., 1975, The characterization of the B cell repertoire specific for the DNP and TNP determinants in neonatal BALB/c mice, J. Exp. Med. 141: 1133–1146.CrossRefGoogle Scholar
  45. Klinman, N. R., Schrater, A. F., and Katz, D. H., 1981, Immature B cells as the taget for in vivo tolerance induction, Immunol. 126: 1970–1973.Google Scholar
  46. Kohl, S., Loo, L. S., and Pickering, L. D., 1981, Protection of neonatal mice against herpes simplex viral infections by human antibody and leukocytes from adult but not neonatal humans, J. Immunol. 127: 1273–1275.Google Scholar
  47. Kung, P. C., and Goldstein, G., 1980, Functional and de-velopmental compartments of human T lymphocytes, Vox Sang 39: 121–127.CrossRefGoogle Scholar
  48. Lamb, J. R., Skidmore, B. J., Green, M., Chitter, J. M., and Feldman, M., 1983, Induction of tolerance in influenza virus immune T lymphocyte clones with peptides of influenza hemagglutinin, Exp. Med. 157: 1434–1447.CrossRefGoogle Scholar
  49. Linch, D. C., Beverley, P. C. L., Levinsky, R. L., and Rodeck, C. H., 1982, Phenotypic analyses of fetal blood leukocytes: Potential for prenatal diagnosis of immunodeficiency disorders, Prenatal Diagn. 2: 211–218.CrossRefGoogle Scholar
  50. Mage, R. G., 1975, Allotype suppression in rabbits: Ef-fects of anti-allotype antisera upon expression of immunoglobulin genes, Transplant. Rev. 27: 84.Google Scholar
  51. Martensson, L., and Fudenberg, H. H., 1965, Gm genes and y globulin synthesis in the human fetus, J. Immunol. 94: 514–520.Google Scholar
  52. Metcalf, E. S., and Klinman, N. R., 1976, In vitro tolerance induction of neonatal B cell, J. Exp. Med. 143: 1327–1340.CrossRefGoogle Scholar
  53. Miller, M. E., 1979, Phagocyte function in the neonate: Selected aspects, Pediatrics 6: 709–712.Google Scholar
  54. Mills, E. L., Thompson, T., Bjorkten, B., Filipovich, B., Ovie, P. G., 1979, Chemiluminescence response and bacterial activity polymorphonuclear neutrophils from newborns and their mothers, Pediatrics 63: 429–434.Google Scholar
  55. Miyagawa, Y., Komiyama, A., and Akabene, T., 1981, Demonstration of T lymphocytotoxic human fetal antibody against maternal T and concanavalin A inducible adult T cells in cord IgM, Immunology 11: 106–109.Google Scholar
  56. Miyagawa, Y., Komiyama, A., Akabane, T., Vehara, Y., and Yano, A., 1982, Cord IgM antibody specific for human killer T cells: T lymphocytotoxic human fetal antibody (TLFA) recognizing maternal killer T cells proliferating in the presence of interleukin 2, J. Immu-nol 129: 1993–1996.Google Scholar
  57. Oxelius, V. A., 1979, IgG subclass levels in infancy and childhood, Acta Paediatr. Scand. 68: 23.CrossRefGoogle Scholar
  58. Peltonen, H., Kayhty, H., Sivonen, A., and Makela, H., 1977, Haemophilus influenzae type b capsular polysaccharide vaccine in children: A double blind field study of 100,000 vaccinees 3 months to 5 years of age in Fin-land, Pediatrics 60: 730–737.Google Scholar
  59. Rayfield, L. S., Brent, L., and Rodeck, C. H., 1980, Development of cell mediated lympholysis in human fetal blood lymphocytes, Clin. Exp. Immunol. 42: 561–520.Google Scholar
  60. Reynolds, D. W., Dean, P. H., Pass, R. F., and Alford, C. A., 1979, Specific cell mediated immunity in children with congenital and neonatal cytomegalovirus infection and their mothers, J. Infect. Dis. 140: 439–499.CrossRefGoogle Scholar
  61. Roitt, I., 1980, Essential Immunology, Blackwell Scientific Publications, Oxford.Google Scholar
  62. Rosenthal, P., Rimm, I. J., Vmiel, T., Griffin, J. D., Osathanondh, R., Schlossman, S. F., and Nadler, L. M., 1983, Ontogeny of human hematopoietic cells: Analysis using monoclonal antibodies, J. Immunol. 131: 232–237.Google Scholar
  63. Rothberg, R. M., 1969, Immunoglobulin and specific antibody synthesis during the first weeks of life of premature infants, Pediatrics 75: 391–399.CrossRefGoogle Scholar
  64. Russell, A. S., 1975, Cell mediated immunity to microbial antigens in mother and child, Clin. Exp. Immunol. 22: 457.Google Scholar
  65. Schwaber, J., Molgaard, H., Orkin, S. H., Gould, H. J., and Rosen, F. S., 1983, Early pre-B cells from normal and X-linked agammaglobulinaemia produce Cμ without an attached VH region, Nature (London) 304: 355–357.CrossRefGoogle Scholar
  66. Seiner, J. C., Merrill, D. A., and Claman, H. N., 1968, Salivary immunoglobulin and albumin: Development during the newborn period, J. Pediatr. 72: 685–689.CrossRefGoogle Scholar
  67. Sherman, L. A., 1980, Dissection of the B10D2 anti H2Kb cytolytic T lymphocyte receptor repertoire, J. Exp. Med. 151: 1386–1397.CrossRefGoogle Scholar
  68. Shigeoka, A. O., Santos, J. I., and Hill, H. R., 1979, Functional analysis of neutrophil granulocytes from healthy, infected and stressed neonates, J. Pediatr. 95: 454–460.CrossRefGoogle Scholar
  69. Silverstein, A. M., and Lukes, R. J., 1962, Fetal response to antigenic stimulus. I. Plasma cellular and lymphoid reactions in the human fetus to intrauterine infection, Lab. Invest. 11: 918–932.Google Scholar
  70. Sirianni, M. C., Fiorilli, M., Pana, A., Pezzella, M., and Aitui, F., 1979, In vitro transfer of specific reactivity to cytomegalovirus and Candida to cord blood leukocytes with dialyzable leukocyte extracts, Clin. Immunol. Immunopathol. 14: 300–306.CrossRefGoogle Scholar
  71. Smith, R. T., and Eitzman, D. V., 1964, The development of the immune response. Characterization of the immune response of the human infant and adult to immunization with salmonella vaccines, Pediatrics 33: 163–183.Google Scholar
  72. Stiehm, E. R., Sztein, M. B., Steeg, P. S., Mann, D., Newland, D., Blaese, M., and Oppenheim, J. J., 1984, Deficient DR antigen expression on human cord blood monocytes: Reversal with lymphokines. Clin. Immunol. Immunopathol. 30: 430–436.CrossRefGoogle Scholar
  73. Stites, D. P., Stobo, J. D., Fuderberg, H. H., and Wells, J. V., 1984, Basic and Clinical Immunology, Lange Medical Publications, Los Altos, California.Google Scholar
  74. Sugiyama, H., Akira, S., Kikutani, H., Kishimoto, S., Yamamura, Y., and Kishimoto, T., 1983, Functional v region formation during in vitro culture of a murine immature B precursor cell line, Nature (London) 303: 812.CrossRefGoogle Scholar
  75. Tidman, N., Janossy, G., Bodger, M., Granger, S., Kung, P. C., and Goldstein, G., 1981, Delineation of human thymocyte differentiation pathways using double staining techniques with monoclonal antibodies, Clin. Exp. Immunol. 45: 457–467.Google Scholar
  76. Toivanen, P., Uksila, J., Leino, A., Lassila, O., Hirvonen, T., and Russkanen, O., 1981, Development of mitogen responding T cells and natural killer cells in the human fetus, Immunol. Rev. 57: 89–106.CrossRefGoogle Scholar
  77. Tonegawa, S., 1983, Somatic generation of antibody di-versity, Nature (London) 302: 575–581.CrossRefGoogle Scholar
  78. Tosato, G., McGrath, I. T., Koski, I. R., Dooley, N. J., and Blaese, R. M., 1980, B cell differentiation and immunoregulatory T cell function in human cord blood lymphocytes, Clin. Invest. 66: 383–388.CrossRefGoogle Scholar
  79. Uhr, J. W., Dancis, J., and Newmann, C. G., 1960, Delayed type hypersensitivity in premature neonatal humans, Nature (London) 187: 1130–1131.CrossRefGoogle Scholar
  80. Unander, A. M., and Olding, L. B., 1981, Ontogeny and post natal persistence of a strong suppressor activity in man, Immunology 127: 1182–1186.Google Scholar
  81. Weissman, I., Papaioannou, V., and Gardner, R., 1978, Fetal hematopoietic origins of the adult hematolymphoid system, in: Differentiation of Normal and Neoplastic Hematopoietic Cells, Vol. V ( B. Clarkson, P. A. Marks, and J. E. Till, eds.), pp. 33–47, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  82. Whitley, R. J., Nahmias, A. J., Visintine, A. M., Fleming, C. L., and Alford, C. A., 1980, The natural history of herpes simplex virus infection of mother and newborn, Pediatrics 66: 489 - 494.Google Scholar
  83. Wood, P. J., and Streilein, J. W., 1982, Ontogeny of acquired immunological tolerance to H2 alloantigens, Eur. J. Immunol. 12: 188–194.CrossRefGoogle Scholar
  84. Yarchoan, R., and Nelson, D. C., 1983, A study of the functional capabilities of human neonatal lymphocytes for in vitro specific antibody production, J. Immunol. 131: 1222–1228.Google Scholar
  85. Yeager, A. S., Arvin, A. M., Urbani, L. E., and Kemp, J. A., 1980, Relationship of antibody to outcome in neonatal herpes simplex infections, Infect. Immun. 29: 532–538.Google Scholar
  86. Zanders, E. D., Lamb, J. R., Feldman, M., Green, N., and Beverley, P. C. L., 1983, Tolerance of T cell clones is associated with membrane antigen changes, Nature (London) 303: 625–627.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Anthony R. Hayward
    • 1
  1. 1.Department of PediatricsUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations