Skip to main content

Part of the book series: Ettore Majorana International Science Series ((PRIP))

Abstract

One of the most interesting and challenging aspects of research on the biological effects of magnetic fields is the broad spectrum of potential interaction mechanisms between these fields and living tissues- At the level of macromolecules and larger structures, interactions of stationary magnetic fields with biological systems can be characterized as electrodynamic or magnetomechanical in nature. Electrodynamic effects originate through the interaction of magnetic fields with electrolyte flows, leading to the induction of electrical potentials and currents. Magnetomechanical phenomena include orientation of magnetically anisotropic macromolecules in strong homogeneous fields, and the translation of paramagnetic species in strong gradient fields. Magnetic fields that are time-varying also interact with living tissues at the macroscopic and microscopic levels to produce circulating currents via the mechanism of magnetic induction. Each of these interaction mechanisms will be described from a theoretical viewpoint in this chapter, and their applicability to biologically relevant systems will be illustrated with selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. W. Cope, Evidence from activation energies for superconductive tunneling in biological systems at physiological temperatures, Physiol. Chem. Phys. 3: 403 (1971).

    Google Scholar 

  2. E. H. Halpern and A. A. Wolf, Speculations of superconductivity in biological and organic systems, in: “Cryogenic Engineering,” Vol. 17, K. D. Timmerhaus, ed.. Plenum, New York (1972).

    Google Scholar 

  3. F, W. Cope, Biological sensitivity to weak magnetic fields due to biological superconductive Josephson junctions?, Physiol. Chem. Phys. 5: 173 (1973).

    Google Scholar 

  4. J. P. Marton, Conjectures on superconductivity and cancer, Physiol. Chem. Phys. 5: 259 (1973).

    Google Scholar 

  5. K. Antonowicz, Possible superconductivity at room temperature, Nature 247: 358 (1974).

    Article  ADS  Google Scholar 

  6. F. W. Cope, Enhancement by high electric fields of super conduction in organic and biological solids at room temperature and a role in nerve conduction?, Physiol. Chem. Phys. 6: 405 (1974).

    Google Scholar 

  7. F. W. Cope, On the relativity and uncertainty of electromagnetic energy measurement at a superconductive boundary. Application to perception of weak magnetic fields by living systems, Physiol. Chem. Phys. 13: 231 (1981).

    Google Scholar 

  8. A. J. Kalmijn, The detection of electric fields from inanimate and animate sources other than electric organs, in: “Handbook of Sensory Physiology,” H. Autrum, R. Jung, W. R. Loewenstein, D. M. MacKay, and H. L. Teuber, eds., Springer-Verlag, New York (1974).

    Google Scholar 

  9. A. J. Kalmijn, Experimental evidence of geomagnetic orientation in elasmobranch fishes, in: “Animal Migration, Navigation, and Homing,” K. Schmidt-Koenig and W. T. Keeton, eds., Springer-Verlag, New York (1978).

    Google Scholar 

  10. A. J. Kalmijn, Biophysics of geomagnetic field detection, IEEE Trans. Mag. MAG-17: 1113 (1981).

    Google Scholar 

  11. A. Kalmijn, Electric and magnetic field detection in elasmobranch fishes. Science 218: 916 (1982).

    Article  ADS  Google Scholar 

  12. A. Kolin, An alternating field induction flow meter of high sensitivity. Rev. Sci. Instrum. 16: 109 (1945).

    Article  ADS  Google Scholar 

  13. A. Kolin, Improved apparatus and technique for electromagnetic determination of blood flow. Rev. Sci. Instrum. 23: 235 (1952).

    Article  ADS  Google Scholar 

  14. C. J. Mills, The electromagnetic flowmeter, Med. Instrum. 11: 136 (1977).

    Google Scholar 

  15. D. E. Beischer and J. C. Knepton, Influence of strong magnetic fields on the electrocardiogram of squirrel monkeys (Saimiri sciureus), Aerosp. Med. 35: 939 (1964).

    Google Scholar 

  16. T. Togawa, O. Okai, and M. Oshima, Observation of blood flow E.M.F. in externally applied strong magnetic fields by surface electrodes, Med. Biol. Engin. 5: 169 (1967).

    Article  Google Scholar 

  17. D. E. Beischer, Vectorcardiogram and aortic blood flow of squirrel monkeys (Saimiri sciureus) in a strong superconductive electromagnet, “Biological Effects of Magnetic Fields,” M. Barnothy, ed., Plenum, New York (1969).

    Google Scholar 

  18. C. T. Gaffey and T. S. Tenforde, Alterations in the rat electrocardiogram induced by stationary magnetic fields, Bioelectromagnetics 2: 357 (1981).

    Article  Google Scholar 

  19. T. S. Tenforde, C. T. Gaffey, B. R. Moyer, and T. F. Budinger, Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis, Bioelectromagnetics 4: 1 (1983).

    Article  Google Scholar 

  20. T. S. Tenforde, Biological effects of strong magnetic fields, “Biological effects and dosimetry of non-ionizing radiation: static and ELF electromagnetic fields,” M. Grandolfo, S. M. Michaelson, and A. Rindi, eds.. Plenum, New York (1985).

    Google Scholar 

  21. V. A. Vardanyan, Effect of a magnetic field on blood flow, Biofiz. 18: 491 (1973).

    Google Scholar 

  22. V. M. Abashin and G. I. Yevtushenko, Concerning the paper by V. A. Vardanyan “Effect of the magnetic field on the flow of blood” printed in “Biofizika” 18:No. 3, 515, 1973, Biofiz. 19: 1107 (1974).

    Google Scholar 

  23. J. Hartmann, Hg-dynamics I: Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field, Klg. Danske Videnskab. Selskab. Math.-fys. Medd. 15 (6): 1 (1937).

    Google Scholar 

  24. J. P. Wikswo, Jr. and J. P. Barach, An estimate of the steady magnetic field strength required to influence nerve conduction, IEEE Trans. Biomed. Engin. BME-27: 722 (1980).

    Google Scholar 

  25. R. L. Liboff, Neuromagnetic thresholds, J. Theor. Biol. 83: 427 (1980).

    Article  Google Scholar 

  26. M. Valentinuzzi, Notes on magnetic actions upon the nervous system. Bull. Math. Biophys. 27: 203 (1965).

    Article  Google Scholar 

  27. R. B. Frankel, Biological effects of static magnetic fields, in: “Handbook of biological effects of electromagnetic fields,” C. Polk and E. Postow, eds., C.R.C. Press, Boca Raton (1986).

    Google Scholar 

  28. G. Maret, M. V. Schickfus, A. Mayer, and K. Dransfeld, Orientation of nucleic acids in high magnetic fields, Phys. Rev. Lett. 35: 397 (1975).

    Article  ADS  Google Scholar 

  29. G. Maret and K. Dransfeld, Macromolecules and membranes in high magnetic fields, Physica 86 - 88B: 1077 (1977).

    Google Scholar 

  30. N. Chalazonitis, R. Chagneux, and A. Arvanitaki, Rotation des segments externes des photorecepteurs dans le champ magnetique constant, C. R. Acad. Sci. Paris Ser. D 271: 130 (1970).

    Google Scholar 

  31. F. T. Hong, D. Mauzerall, and A. Mauro, Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field, Proc. Natl. Acad. Sci., (USA) 68: 1283 (1971).

    Article  ADS  Google Scholar 

  32. R. Chagneux and N. Chalazonitis, Evaluation de 1’anisotro pic megnetique des cellules multimembranaires dans un champ magnétique constant (segments externes des bâtonnets de la retine de grenouille). C. R. Acad. Sci. Paris Ser. D 274: 317 (1972).

    Google Scholar 

  33. R. Chagneux, H. Chagneux, and N. Chalazonitis, Decrease in magnetic anisotropy of external segments of the retinal rods after a total photolysis, Biophys. J. 18: 125 (1977).

    Article  ADS  Google Scholar 

  34. J. F. Becker, F. Trentacosti, and N. E. Geacintov, A linear dichroism study of the orientation of aromatic protein residues in magnetically oriented bovine rod outer segments, Photochem. Photobiol. 27: 51 (1978).

    Article  Google Scholar 

  35. F. T. Hong, Magnetic anisotropy of the visual pigment rhodopsin, Biophys. J. 29: 343 (1980).

    Article  ADS  Google Scholar 

  36. M. M. Vilenchik, Magnetic susceptibility of rhodopsin, Biofiz. 27: 31 (1982).

    Google Scholar 

  37. N. E. Geacintov, F. Van Nostrand, M. Pope, and J. B. Tinkel, Magnetic field effect on the chlorophyll fluorescence in Chlorella, Biochim. Biophys. Acta 226: 486 (1971).

    Article  Google Scholar 

  38. N. E. Geacintov, F. Van Nostrand, J. F. Becker, and J. B. Tinkel, Magnetic field induced orientation of photo- synthetic systems, Biochim. Biophys. Acta 267: 65 (1972).

    Article  Google Scholar 

  39. J. F. Becker, N. E. Geacintov, F. Van Nostrand, and R. Van Metter, Orientation of chlorophyll in vivo. Studies with magnetic field oriented Chlorella, Biochem. Biophys. Res. Comm. 51: 597 (1973).

    Article  Google Scholar 

  40. J. Breton, The state of chlorophyll and carotenoid in vivo. II - A linear dichroism study of pigment orientation in photosynthetic bacteria, Biochem. Biophys. Res. Comm. 59: 1011 (1974).

    Article  Google Scholar 

  41. J. F. Becker, N. E. Geacintov, and C. E. Swenberg, Photo-voltages in suspensions of magnetically oriented chloroplasts, Biochim. Biophys. Acta 503: 545 (1978).

    Article  Google Scholar 

  42. D.-Ch. Neugebauer and A. E. Blaurock, Magnetic orientation of purple membranes demonstrated by optical measurements and neutron scattering, FEBS Lett. 78: 31 (1977).

    Article  Google Scholar 

  43. W. Arnold, R. Steele, and H. Mueller, On the magnetic asymmetry of muscle fibers, Proc. Natl. Acad. Sci. (USA) 44: 1 (1958).

    Article  ADS  Google Scholar 

  44. R. Blakemore, Magnetotactic bacteria. Science 190: 377 (1975).

    Article  ADS  Google Scholar 

  45. R. B. Frankel, R. P. Blakemore, and R. S. Wolfe, Magnetite in freshwater magnetotactic bacteria. Science 203: 1355 (1979).

    Article  ADS  Google Scholar 

  46. R. P. Blakemore, R. B. Frankel, and A. J. Kalmijn, South-seeking magnetotactic bacteria in the Southern Hemisphere, Nature 286: 384 (1980).

    Article  ADS  Google Scholar 

  47. R. B. Frankel, R. P. Blakemore, F. F. Torres de Araujo, and D. M. S. Esquival, Magnetotactic bacteria at the geomagnetic equator. Science 212: 1269 (1981).

    Article  ADS  Google Scholar 

  48. C. Rosenblatt, F. F. Torres de Araujo, and R. B. Frankel, Light scattering determination of magnetic moments of magnetotactic bacteria, J. Appl. Phys. 53: 2727 (1982).

    Article  ADS  Google Scholar 

  49. C. Rosenblatt, F. F. Torres de Araujo, and R. B. Frankel, Birefringence determination of magnetic moments of magnetotactic bacteria, Biophys. J. 40: 83 (1982).

    Article  ADS  Google Scholar 

  50. D. Melville, F. Paul, and S. Roath, Direct magnetic separation of red cells from whole blood. Nature 255: 706 (1975).

    Article  ADS  Google Scholar 

  51. F. Paul, S. Roath, and D. Melville, Differential blood cell separation using a high gradient magnetic field, Brit. J. Haematol. 38: 273 (1978).

    Article  Google Scholar 

  52. P. C. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242: 190 (1973).

    Article  ADS  Google Scholar 

  53. P. C. Lauterbur, Medical imaging by nuclear magnetic resonance zeugmatography, IEEE Trans. Nucl. Sci. NS-26: 2808 (1979).

    Google Scholar 

  54. P.G. Morris, P. Mansfield, I. L. Pykett, R. J. Ordidge, and R. E. Coupland, Human whole body line scan imaging by nuclear magnetic resonance, IEEE Trans. Nucl. Sci. NS-26: 2817 (1979).

    Google Scholar 

  55. G. L. Brownell, T. F. Budinger, P. C. Lauterbur, and P. L. McGeer, Positron emission tomography and nuclear magnetic resonance imaging. Science 215: 619 (1982).

    Article  ADS  Google Scholar 

  56. A. R. Margulis, C. B. Higgins, L. Kaufman, and L. E. Crooks, eds., “Clinical Magnetic Resonance Imaging,” Univ. Calif. Printing Dept., San Francisco (1983).

    Google Scholar 

  57. B. Chance, Y. Nakase, M. Bond, J. S. Leigh, Jr., and G. McDonald, Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays, Proc. Natl. Acad. Sci. (USA) 75: 4925 (1978).

    Article  ADS  Google Scholar 

  58. E. T. Fossel, H. E. Morgan, and J. S. Ingwall, Measurement of changes in high-energy phosphates in the cardiac cycle by using gated 31P nuclear magnetic resonance, Proc. Natl. Acad. Sci. (USA) 77: 3654 (1980).

    Article  ADS  Google Scholar 

  59. R. E. Blankenship, T. J. Schaafsma, and W. W. Parson, Magnetic field effects on radical pair intermediates in bacterial photosynthesis, Biochim. Biophys. Acta 461: 297 (1977).

    Article  Google Scholar 

  60. H.-J. Werner, K. Schulten, and A. Weller, Electron transfer and spin exchange contributing to the magnetic field dependence of the primary photochemical reaction of bacterial photosjmthesis, Biochim. Biophys. Acta 502: 255 (1978).

    Article  Google Scholar 

  61. R. Haberkorn and M. E. Michel-Beyerle, On the mechanism of magnetic field effects in bacterial photosynthesis, Biophys. J. 26: 489 (1979).

    Article  Google Scholar 

  62. M. E. Michel-Beyerle, H. Scheer, H. Seidlitz, D. Tempus, and R. Haberkorn, Time-resolved magnetic field effect on triplet formation in photos3mthetic reaction centers of Rhodopseudomonas sphaeroides R-26, FEBS Lett. 100: 9 (1979).

    Article  Google Scholar 

  63. A. J. Hoff, Magnetic field effects on photosynthetic reactions. Quart. Rev. Biophys. 14: 599 (1981).

    Article  Google Scholar 

  64. A. Ogrodnik, H. W. Kruger, H. Orthuber, R. Haberkorn, M. E. Michel-Beyerle, and H. Scheer, Recombination dynamics in bacterial photosynthetic reaction centers, Biophys. J. 39: 91 (1982).

    Article  ADS  Google Scholar 

  65. M. A. d’Arsonval, Dispositifs pour la mesure des courants alternatifs a toutes frequences, C. R. Soc. Biol. (Paris) 3 (100 Ser.): 451 (1896).

    Google Scholar 

  66. H. B. Barlow, H. I. Kohn, and E. G. Walsh, Visual sensations aroused by magnetic fields, Amer. J. Physiol. 148: 372 (1947).

    Google Scholar 

  67. P. Lovsund, P. I. Oberg, and S. E. G. Nilsson, Influence on vision of extremely low frequency electromagnetic fields. Acta Ophth. 57: 812 (1979).

    Google Scholar 

  68. P. Lovsund, P. A. Oberg, S. E. G. Nilsson, and T. Reuter, Magnetophosphenes: a quantitative analysis of thres-holds, Med. Biol. Engin. Comput. 18: 326 (1980).

    Article  Google Scholar 

  69. P. Lovsund, P. A. Oberg, and S. E. G. Nilsson, Magneto- and electrophosphenes: a comparative study, Med. Biol. Engin. Comput. 18: 758 (1980).

    Article  Google Scholar 

  70. P. Lovsund, S. E. G. Nilsson, and P. A. Oberg, Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity, Med. Biol. Eng. Comput. 19: 679 (1981).

    Article  Google Scholar 

  71. J. Bernhardt, The direct influence of electromagnetic fields on nerve and muscle cells of man within the frequency range of 1 Hz to 30 MHz, Radiat. Envir. Biophys. 16: 309 (1979).

    Article  MathSciNet  Google Scholar 

  72. R. D. Tucker and 0. H. Schmitt, Tests for human perception of 60 Hz moderate strength magnetic fields, IEEE Trans. Biomed. Eng. BME-25: 509 (1978).

    Google Scholar 

  73. H. P. Davis, S. J. Y. Mizumori, H. Allen, M. R. Rosenzweig, E. L. Bennett, and T. S. Tenforde, Behavioral studies with mice exposed to DC and 60-Hz magnetic fields, Bioelectromagnetics 5: 147 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Tenforde, T.S. (1985). Mechanisms for Biological Effects of Magnetic Fields. In: Grandolfo, M., Michaelson, S.M., Rindi, A. (eds) Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2099-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2099-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9243-2

  • Online ISBN: 978-1-4613-2099-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics