Skip to main content

The Effects of ADH on Salt and Water Transport in the Mammalian Nephron

The Collecting Duct and Thick Ascending Limb of Henle

  • Chapter
Physiology of Membrane Disorders

Abstract

A cardinal function of the kidney is the separation of salt and water excretion, thus maintaining the constancy of both osmolality and composition of body fluids despite the wide variations in water and solute intake. The processes that accomplish this task are complex and involve the integrated action of virtually all nephron segments, coupled with that of a specialized vascular system (see Chapter 39, Concentrating and Diluting Processes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orloff, J., and J. H. Handler. 1962. The similarity of effects of vasopressin, adenosine 3′,5′-monophosphate (cyclic AMP) and theophylline on the toad bladder. J. Clin. Invest. 41: 702–709.

    Article  PubMed  CAS  Google Scholar 

  2. Grantham, J. J., and M. B. Burg. 1966. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259.

    PubMed  CAS  Google Scholar 

  3. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. 1981. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am. J. Physiol. 241: F412–F431.

    PubMed  CAS  Google Scholar 

  4. Morel, F. 1983. Regulation of kidney functions by hormones: A new approach. Recent Prog, tiorm. Res. 39: 271–304.

    CAS  Google Scholar 

  5. Jard, S., C. Roy, T. Barth, R. Rajerison, and J. Bockaert. 1975. Antidiuretic hormone-sensitive kidney adenylate cyclase. Adv. Cyclic Nucleotide Res. 5: 31–52.

    PubMed  CAS  Google Scholar 

  6. Eggena, P., I. L. Schwartz, and R. Walter. 1970. Threshold and receptor reserve in the action of neurohypophyseal peptides: A study of synergists and antagonists in the hydroosmotic response on the toad urinary bladder. J. Gen. Physiol. 56: 250–271.

    Article  PubMed  CAS  Google Scholar 

  7. Dousa, T. P., and H. Valtin. 1976. Cellular actions of vasopressin in the mammalian kidney. Kidney Int. 10: 4663.

    Article  Google Scholar 

  8. Dousa, T. P., L.O.Barnes, and J. K.Kim. 1977. The role of cyclic AMP-dependent protein phosphorylations and microtubules in the cellular action of vasopressin in mammalian kidney. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 220–235.

    Google Scholar 

  9. Schwartz, I. L., C. S. Huang, A. J. Fischman, S. K. Marur, andH. R. Wyssbrod. 1981. Current ideas on the sequence of events involved in the hydroosmotic action of antidiuretic hormones. In: Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides. D. H. Schlessinger, ed. Elsevier, Amsterdam, pp. 101–110.

    Google Scholar 

  10. Muller, J., W. A. Kachadorian, and V. A. DiScala. 1980. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol. 85: 83–95.

    Article  PubMed  CAS  Google Scholar 

  11. Wirz, V. H., B. Hargitay, and W. Kuhn. 1951. Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv. Physiol. Pharmacol. Acta 9: 196–207.

    PubMed  CAS  Google Scholar 

  12. Burg, M. B., and N. Green. 1973. Function of the thick ascending limb of Henle’s loop. Am. J. Physiol. 224: 659–668.

    PubMed  CAS  Google Scholar 

  13. Rocha, A. S., and J. P. Kokko. 1973. Sodium chloride and water transport in the medullary thick ascending limb of Henle: Evidence for active chloride transport. J. Clin. Invest. 52: 612–623.

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt, U., and U. C. Dubach. 1969. Activity of (Na+, K +)- stimulated adenosine triphosphatase in the rat nephron. Pfluegers Arch. 306: 219–226.

    Article  CAS  Google Scholar 

  15. Jørgensen, P. L. 1977. The function of (Na+, K+)-ATPase in the thick ascending limb of Henle’s loop. Curr. Probl. Clin. Biochem. 6: 190–199.

    Google Scholar 

  16. Katz, A. I., A. Doucet, and F. Morel. 1979. Na-K-ATPase activity along the rabbit, rat and mouse nephron. Am. J. Physiol. 237: F114–F120.

    PubMed  CAS  Google Scholar 

  17. Greger, R., and E. Schlatter. 1983. Properties of the lumen membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396: 315–324.

    Article  CAS  Google Scholar 

  18. O’Neil, R. G. 1983. Voltage-dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane. J. Membr. Biol. 74: 165–173.

    Article  PubMed  Google Scholar 

  19. van Driessche, W., and W. Zeiske. 1980. Ba2-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria). J. Membr. Biol. 56: 31–42.

    Article  PubMed  Google Scholar 

  20. Wills, N. K., W. Zeiske, and W. Van Driessche. 1982. Noise analysis reveals K+ channel conductance fluctuations in the apical membrane of rabbit colon. J. Membr. Biol. 69: 187–197.

    Article  PubMed  CAS  Google Scholar 

  21. Zeiske, W., and W. van Driessche. 1983. The interaction of “K+ - like” cations with the apical K+ channel in frog skin. J. Membr. Biol. 76: 57–72.

    Article  PubMed  CAS  Google Scholar 

  22. García-Díaz, J. F., W. Nagel, and A. Essig. 1983. Voltage-dependent K conductance at the apical membrane of Necturus gallbladder. Biophys. J. 43: 269–278.

    Article  PubMed  Google Scholar 

  23. Armstrong, C. M., R. P. Swenson, Jr., and S. R. Taylor. 1982. Block of squid axon K+ channels by internally and externally applied barium ions. J. Gen. Physiol. 80: 663–682.

    Article  PubMed  CAS  Google Scholar 

  24. Greger, R., and G. Frómter. 1981. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle: A sodium dependent process. Pfluegers Arch. 390: 38–43.

    Article  CAS  Google Scholar 

  25. Hebert, S. C., P. A. Friedman, and T. E. Andreoli. 1984. The effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. I. ADH increases transcellular conductance pathways. J. Membr. Biol. 80: 201–219.

    Article  PubMed  CAS  Google Scholar 

  26. Murer, H., and R. Greger. 1982. Membrane transport in the proximal tubule and thick ascending limb of Henle’s loop: Mechanisms and their alterations. Klin. Wochenschr. 60: 1103–1113.

    Article  PubMed  CAS  Google Scholar 

  27. Hebert, S. C., and T. E. Andreoli. 1984. Control of NaC1 transport in the thick ascending limb. Am. J. Physiol. 246: F745–F756.

    PubMed  CAS  Google Scholar 

  28. Eveloff, J., and R. Kinne. 1983. Sodium-chloride transport in the medullary thick ascending limb of Henle’s loop: Evidence for a sodium-chloride cotransport system in plasma membrane vesicles. J. Membr. Biol. 72: 173–181.

    Article  PubMed  CAS  Google Scholar 

  29. Forbush, B., and H. C. Palfrey. 1983. [3H]-Bumetanide binding to membranes isolated from dog kidney outer medulla. J. Biol. Chem. 258: 11787–11792.

    Google Scholar 

  30. Oberleithner, H., W. Guggino, and G. Giebisch. 1982. Mechanism of distal tubular chloride transport in amphiuma kidney. Am. J. Physiol. 242: F331–F339.

    PubMed  CAS  Google Scholar 

  31. Greger, R., and E. Schlatter. 1983. Properties of the basolateral membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney—A model for secondary active chloride transport. Pfluegers Arch. 396: 325–334.

    Article  CAS  Google Scholar 

  32. Hebert, S. C., and T. E. Andreoli. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. II. Determinants of the ADH-mediated increases in transepithelial voltage and in net CI¯ absorption. J. Membr. Biol. 80: 221–223.

    Article  PubMed  CAS  Google Scholar 

  33. Greger, R., H. Oberleithner, E. Schlatter, A. C. Cassola, and C. Weidtke. 1983. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pfluegers Arch. 399: 29–34.

    Article  CAS  Google Scholar 

  34. Guggino, W. B., B. A. Stanton, and G. Giebisch. 1982. Electrical properties of isolated early distal tubule of the amphiuma kidney. Fed. Proc. 41: 1597.

    Google Scholar 

  35. Oberleithner, H., F. Lang, R. Greger, W. Wang, and G. Giebisch. 1983. Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney. Pfluegers Arch. 396: 34–40.

    Article  CAS  Google Scholar 

  36. Stokes, J. B. 1982. Consequences of potassium recycling in the renal medulla: Effects on ion transport by the medullary thick ascending limb of Henle’s loop. J. Clin. Invest. 70: 219–229.

    Article  PubMed  CAS  Google Scholar 

  37. Hebert, S. C., and T. E. Andreoli. 1984. Kinetic analysis of Ba+ -blockade of apical membrane K+ -channels in mouse medullary thick ascending limbs. IX International Congress of Nephrology, P416A.

    Google Scholar 

  38. Schultz, S. G. 1981. Homocellular regulatory mechanism in sodium-transporting epithelia: Avoidance of extinction by “flush- through.” Am. J. Physiol. 241: F579–F590.

    PubMed  CAS  Google Scholar 

  39. Hall, D. A., and D. M. Varney. 1980. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle’s loop. J. Clin. Invest. 66: 792–802.

    Article  PubMed  CAS  Google Scholar 

  40. Work, J., B. Booker, J. A. Schafer, J. Galla, and R. Luke. 1983.In vivo and in vitro effect of ADH on loop of Henle: Chloride reabsorption in the Brattleboro (DI) rat. Am. Soc. Nephrol. 16th Ann. Meet. 185A.

    Google Scholar 

  41. Hebert, S. C., J. A. Schafer, and T. E. Andreoli. 1981. The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron. J. Membr. Biol. 58: 1–19.

    Article  PubMed  CAS  Google Scholar 

  42. Hebert, S. C., and T. E. Andreoli. 1982. Water permeability of biological membranes: Lessons from antidiuretic hormone-responsive epithelia. Biochim. Biophys. Acta 650: 267–280.

    PubMed  CAS  Google Scholar 

  43. Cass, A., and A. Finkelstein. 1967. Water permeability of thin lipid membranes. J. Gen. Physiol. 50: 1765–1784.

    Article  PubMed  CAS  Google Scholar 

  44. Grantham, J. J., and M. B. Burg. 1966. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259.

    PubMed  CAS  Google Scholar 

  45. Grantham, J. J., and J. Orloff. 1968. Effect of prostaglandin EY on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′-monophosphate, and theophylline. J. Clin. Invest. 47: 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  46. Schafer, J. A., and T. E. Andreoli. 1972. Cellular constraints to diffusion: The effect of antidiuretic hormone on water flows in isolated mammalian collecting ducts. J. Clin. Invest. 51: 1264–1278.

    Article  PubMed  CAS  Google Scholar 

  47. Schafer, J. A., and T. E. Andreoli. 1972. The effect of antidiuretic hormone on solute flows in mammalian collecting tubules. J. Clin. Invest. 51: 1279–1286.

    Article  PubMed  CAS  Google Scholar 

  48. Finkelstein, A. 1976. Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues. J. Gen. Physiol. 68: 137–143.

    Article  PubMed  CAS  Google Scholar 

  49. Gallucci, E., S. Micelli, and C. Lippi. 1971. Nonelectrolyte permeability across thin lipid membranes. Arch. Int. Physiol. Biochim. 79: 881–887.

    Article  PubMed  CAS  Google Scholar 

  50. Vreeman, H. J. 1966. Permeability of thin phospholipid films. 1. K. Ned. Akad. Wet. Amsterdam Ser. B 69: 542–577.

    CAS  Google Scholar 

  51. Koefoed-Johnsen, V., and H. H. Ussing. 1953. The contributions of diffusion and flow to the passage of D20 through living membranes. Acta Physiol. Scand. 28: 60–76.

    Article  PubMed  CAS  Google Scholar 

  52. Pappenheimer, J. R. 1953. Passage of molecules through capillary walls. Physiol. Rev. 33: 387–423.

    PubMed  CAS  Google Scholar 

  53. Pappenheimer, J. R., E. M. Renkin, and L. M. Boneru. 1951. Filtration diffusion and molecular seiving through peripheral capillary membranes. Am. J. Physiol. 167: 13–46.

    PubMed  CAS  Google Scholar 

  54. Andersen, B., and H. H. Ussing. 1957. Solvent drag on non- electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol. Scand. 39: 228–239.

    Article  PubMed  CAS  Google Scholar 

  55. Kedem, O., and A. Katchalsky. 1961. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45: 143–179.

    Article  PubMed  CAS  Google Scholar 

  56. Dainty, J. 1963. Water relations of plant cells. Adv. Bot. Res. 1: 279–326.

    Article  CAS  Google Scholar 

  57. Nernst, W. 1904. Theorie der reactionsgeschwindigkeit in hetero- genen systemen. Z. Phys. Chem. 47: 52–55.

    CAS  Google Scholar 

  58. Teorell, T. 1936. A method of studying conditions within diffusion layers. J. Biol. Chem. 113: 735–748.

    CAS  Google Scholar 

  59. Holz, R., and A. Finkelstein. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antiobiotics nystatin and amphotericin B. J. Gen. Physiol. 56: 125–145.

    Article  PubMed  CAS  Google Scholar 

  60. Levine, S. D., M. Jacoby, and A. Finkelstein. 1984. The water permeability of toad urinary bladder. II. The value of Pf/Pd(w) for the antidiuretic hormone-induced water permeation pathway. J. Gen. Physiol. 83: 543–561.

    Article  PubMed  CAS  Google Scholar 

  61. Levine, S. D., M. Jacoby, and A. Finkelstein. 1984. The water permeability of toad urinary bladder. I. Permeability of barriers in series with the luminal membrane. J. Gen. Physiol. 83: 529–541.

    Article  PubMed  CAS  Google Scholar 

  62. Dick, D. A. T. 1966. Cell Water. Butterworths, London, pp. 102–111.

    Google Scholar 

  63. Lea, E. J. A. 1963. Permeation through long narrow pores. J. Theor. Biol. 5: 102–107.

    Article  PubMed  CAS  Google Scholar 

  64. Levitt, D. G. 1974. A new theory of transport for cell membrane pores. I. General theory and application to red cell. Biochim. Bi- ophys. Acta 373: 115–131.

    Article  CAS  Google Scholar 

  65. Hebert, S. C., and T. E. Andreoli. 1980. Interactions of temperature and ADH on transport in cortical collecting tubules. Am. J. Physiol. 238: F470–F480.

    PubMed  CAS  Google Scholar 

  66. Rosenberg, P. A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels: Streaming potentials across lipid bilayer membranes. J. Gen. Physiol. 72: 327–340.

    Article  PubMed  CAS  Google Scholar 

  67. Rosenberg, P. A., and A. Finkelstein. 1978. Water permeability of gramicidin A-treated lipid bilayer membranes. J. Gen. Physiol. 72: 341–350.

    Article  PubMed  CAS  Google Scholar 

  68. O’Neil, R. G., and E. L. Boulpaep. 1979. Effect of amiloride on the apical cell membrane cation channels of sodium-absorbing, potassium-secreting renal epithelium. J. Membr. Biol. 50: 365–387.

    Article  PubMed  Google Scholar 

  69. Hebert, S. C., and T. E. Andreoli. 1982. Water movement across the mammalian cortical collecting duct. Kidney Int. 22: 526–535.

    Article  PubMed  CAS  Google Scholar 

  70. Hebert, S. C., and T. E. Andreoli. 1980. Interactions of temperature and ADH on transport processes in cortical collecting tubules: Evidence for ADH-induced narrow aqueous channels in apical membranes. Am. J. Physiol. 238: F470–F480.

    PubMed  CAS  Google Scholar 

  71. Cohen, B.E. 1975. The permeability of liposomes to non- electrolytes. I. Activation energies for permeation. J. Membr. Biol. 20: 205–234.

    Article  PubMed  CAS  Google Scholar 

  72. Chevalier et al. 1974. Membrane-associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 152: 129–140.

    Google Scholar 

  73. Kachadorian, W. A., J. B. Wade, and V. A. DiScala. 1975. Vasopressin: Induced structural change in toad bladder luminal membranes. Science 190: 67–69.

    Article  PubMed  CAS  Google Scholar 

  74. Harmanci, M. C., P. Stern, W. A. Kachadorian, H. Valtin, and V. A. DiScala. 1980. Vasopressin and collecting duct intra- membranous particle clusters: A dose-response relationship. Am. J. Physiol. 239: F560–F564.

    PubMed  CAS  Google Scholar 

  75. Harmanci, M. C., M. Lorenzen, and W. A. Kachadorian. 1982. Vasopressin-induced intramembranous particle aggregates in isolated rabbit collecting duct. Kidney Int. 21: 275a.

    Google Scholar 

  76. Wade, J. B., D. L. Stetson, and S. A. Lewis. 1981. ADH action: Evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372: 106–117.

    Article  PubMed  CAS  Google Scholar 

  77. Li, H-YS., L. G. Palmer, I. S. Edelman, and B. Lindeman. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to antidiuretic hormone. J. Membr. Biol. 64: 77–89.

    Article  PubMed  CAS  Google Scholar 

  78. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. 1981. NaCl transport in mouse medullary thick ascending limbs. III. Modulation of the ADH effect by peritubular osmolality. Am. J. Physiol. 241: F443–F451.

    PubMed  CAS  Google Scholar 

  79. Orloff, J., J. S. Handler, and S. Bergstrom. 1965. Effect of prostaglandin (PGE) on the permeability response of the toad bladder to vasopressin, theophylline and adenosine 3′–5′-monophosphate. Nature (London) 205: 397–398.

    Article  CAS  Google Scholar 

  80. Grantham, J. J., and J. Orloff. 1968. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′–5′-monophosphate and theophylline. J. Clin. Invest. 47: 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  81. Handler, J. S. 1981. Vasopressin-prostaglandin interactions in the regulation of epithelial cell permeability to water. Kidney Int. 19: 831–838.

    Article  PubMed  CAS  Google Scholar 

  82. Beck, T. R., and M. J. Dunn. 1981. The relationship of antidiuretic hormone and renal protaglandins. Miner. Electrolyte Metab. 6: 46–59.

    CAS  Google Scholar 

  83. Higashihara, E., J. B. Stokes, J. P. Kokko, W. B. Campbell, and T. D. DuBose. 1979. Cortical and papillary micropuncture examination of chloride transport in segments of the rat kidney during inhibition of prostaglandin production. J. Clin. Invest. 64: 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  84. Kauker, M. L. 1977. Prostaglandin E2 effect from the luminal side on renal tubular 22Na efflux: Tracer microinjection studies. Proc. Soc. Exp. Biol. Med. 154: 274–277.

    PubMed  CAS  Google Scholar 

  85. Stokes, J. B. 1979. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle. J. Clin. Invest. 64: 495–502.

    Article  PubMed  CAS  Google Scholar 

  86. Culpepper, R. M., and T. E. Andreoli. 1983. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating CI absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71: 1588–1601.

    Article  PubMed  CAS  Google Scholar 

  87. Torikai, S., and K. Kurokawa. 1983. Effect of PGE2 on vasopressin-dependent cell cAMP in isolated single segments. Am. J. Physiol. 245: F58–F66.

    PubMed  CAS  Google Scholar 

  88. Torikai, S., and K. Kurokawa. 1983. Effect of PGE2 on vasopressin-dependent cell cAMP in isolated single segments. Am. J. Physiol. 245: F58–F66.

    PubMed  CAS  Google Scholar 

  89. Dominguez, J. H., F. Schuler, T. Brown, T. D. Pitts, and J. B. Puschett. 1984. Pertussigen reverses the inhibition of adenylate cyclase by prostaglandin E2 in the proximal nephron. Clin. Res. 32: 445a.

    Google Scholar 

  90. Fejes-Tóth, G., A. Magyer, and J. Walter. 1977. Renal response to vasopressin after inhibition of prostaglandin synthesis. Am. J. Physiol. 232: F416–F423.

    PubMed  Google Scholar 

  91. Berl, T., A. Raz, H. Wald, J. Horowitz, and W. Czaczkes. 1977. Prostaglandin synthesis inhibition and the action of vasopressin: Studies in man and rat. Am. J. Physiol. 232: F529–F537.

    PubMed  CAS  Google Scholar 

  92. Ganguli, M., L. Tobin, S. Azar, and M. O’Donnell. 1977. Evidence that prostaglandin synthesis inhibitors increase the concentration of sodium and chloride in rat renal medulla. Circ. Res. Suppl. 40: 1135–1139.

    Google Scholar 

  93. Craven, P. A., and F. R. DeRubertis. 1981. Effects of vasopressin and urea on Ca2 +-calmodulin-dependent renal prostaglandin E. Am. J. Physiol. 241: F649–F658.

    CAS  Google Scholar 

  94. Finkelstein, A. 1974. Aqueous pores created in thin lipid membranes by the antibiotics nystatin, amphotericin B and gramicidin A: Implications for pores in plasma membranes. In: Drugs and Transport Processes. B. A.Callingham, ed. MacMillan, London, pp. 241–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Hebert, S.C., Andreoli, T.E. (1986). The Effects of ADH on Salt and Water Transport in the Mammalian Nephron. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics