Skip to main content

Cellular Models of Epithelial Ion Transport

  • Chapter
Book cover Physiology of Membrane Disorders

Abstract

The first cellular model of epithelial ion transport was proposed in 1958 by Koefoed-Johnsen and Ussing(1) (KJU) to account for the relation between active Na+ transport and the electrical potential difference across isolated frog skin. The essential feature of this now-classic model (Fig. 1) was that the epithelial cell could be viewed as two membranes arranged in series separated by a homogeneous cytoplasmic compartment with net transcellular or vectorial transport resulting from the asymmetric properties of the two limiting barriers. In the case of frog skin, the outer or apical membrane was presumed to be permselective to Na + and scarcely if at all permeable to K +. The inner or basolateral membrane, on the other hand, was presumed to be permselective to K +, scarcely if at all permeable to Na +, and to possess an active pump mechanism that extrudes Na + from the cell in exchange for K+. This asymmetric arrangement of pump and leaks could simultaneously account for active transcellular Na + transport as well as the maintenance of the low intracellular Na + concentration and the high intracellular K + concentration characteristic of virtually all cells of higher animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koefoed-Johnsen, V., and H. H. Ussing. 1958. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308.

    Article  PubMed  CAS  Google Scholar 

  2. Macknight, A. D. C., D. R. DiBona, and A. Leaf. 1980. Sodium transport across toad urinary bladder: A model tight epithelium. Physiol Rev. 60: 615–715.

    PubMed  CAS  Google Scholar 

  3. Lewis, S. A. 1977. A reinvestigation of the function of the mammalian urinary bladder. Am. J. Physiol. 232: F187–F195.

    Google Scholar 

  4. Schultz, S. G. 1984. A cellular model for active sodium absorption by mammalian colon. Annu. Rev. Physiol. 46: 435–451.

    Article  PubMed  CAS  Google Scholar 

  5. Giebisch, G. 1978. Amiloride effects on distal nephron function. In: Cell Membrane Receptors for Drugs and Hormones: A Multi- disciplinary Approach. R. W. Straub and L. Bohs, eds. Raven Press, New York. pp. 337–342.

    Google Scholar 

  6. Frömter, E., and J. Diamond. 1972. Route of passive ion permeation in epithelia. Nature New Biol. 235: 9–13.

    Article  PubMed  Google Scholar 

  7. Schultz, S. G. 1977. The role of paracellular pathways in isotonic fluid transport. Yale J. Biol. Med. 50: 99–113.

    PubMed  CAS  Google Scholar 

  8. Ussing, H. H. 1980. Life with tracers. Annu. Rev. Physiol. Sodium transport across toad urinary bladder: A model tight epithelium. Physiol Rev. 60: 615–715: 1–16.

    Google Scholar 

  9. Hladky, S. B. 1974. Pore or carrier? Gramicidin A as a simple pore. In: Drugs and Transport Processes. B. A. Callingham, ed. University Park Press, Baltimore, pp. 193–210.

    Google Scholar 

  10. Laüger, P. 1972. Carrier-mediated ion transport. Science 178: 24–30.

    Article  PubMed  Google Scholar 

  11. Laüger, P. 1980. Kinetic properties of ion carriers and channels. J. Membr. Biol. 57: 163–178.

    Article  PubMed  Google Scholar 

  12. Haydon, D. A., and S. B. Hladky. 1972. Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5: 187–282.

    Article  PubMed  CAS  Google Scholar 

  13. Kolb, H.-A., and P. Laüger. 1978. Spectral analysis of current noise generated by carrier-mediated ion transport. J. Membr. Biol. 41: 167–187.

    Article  Google Scholar 

  14. Bentley, P. J. 1968. Amiloride: A potent inhibitor of sodium transport across toad bladder. J. Physiol. (London) 195: 317–330.

    CAS  Google Scholar 

  15. Benos, D. J., L. J. Mandel, and R. S. Balaban. 1979. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia. J. Gen. Physiol. 73: 307–326.

    Article  PubMed  CAS  Google Scholar 

  16. Turnheim, K., A. Luger, and M. Grasl. 1981. Kinetic analysis of the amiloride-sodium entry site interaction in rabbit colon. Mol. Pharmacol. 20: 543–550.

    PubMed  CAS  Google Scholar 

  17. O’Neil, R. G., and E. L. Boulpaep. 1979. Effect of amiloride on the apical cell membrane cation channels of a sodium-absorbing potassium-secreting renal epithelium. J. Membr. Biol. 50: 365–387.

    Article  PubMed  Google Scholar 

  18. Li, J. H.-Y., and B. Lindemann. 1983. Competitive blocking of epithelial sodium channels by organic cations: The relationship between macroscopic inhibition constants. J. Membr. Biol. 76: 235–251.

    Article  PubMed  CAS  Google Scholar 

  19. Cuthbert, A. W. 1974. Interactions of sodium channels in transporting epithelia: A two state model. Mol. Pharmacol. 10: 892–903.

    CAS  Google Scholar 

  20. Cuthbert, A. W. 1974. Interactions of sodium channels in transporting epithelia: A two state model. Mol. Pharmacol. 10: 892–903.

    CAS  Google Scholar 

  21. Cuthbert, A. W., and.W. K. Shum. 1974. Amiloride and the sodium channel. Naunyn-Schmiedebergs Arch. Pharmacol. 281: 261–269.

    Article  CAS  Google Scholar 

  22. Cuthbert, A. W. 1981. Sodium entry step in transporting epithelia: Results of ligand-binding studies. In: Ion Transport by Epithelia. S. G. Schultz, ed. Raven Press, New York. pp. 181–195.

    Google Scholar 

  23. Benos, D. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242: C131–C145.

    Google Scholar 

  24. Lindemann, B., and U. Gebhardt. 1973. Delayed changes of Na permeability in response to steps of [Na] at the outer surface of frog skin and frog bladder. In: Transport Mechanisms in Epithelia. H. H. Ussing and N. A. Thorn, eds. Munksgaard, Copenhagen, pp. 115–130.

    Google Scholar 

  25. Fuchs, W., E. H. Larsen, and B. Lindemann. 1977. Current- voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J. Physiol. (London) 267: 137–166.

    CAS  Google Scholar 

  26. Palmer, L. G., I. S. Edelman, and B. Lindemann. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism. J. Membr. Biol. 57: 59–71.

    Article  PubMed  CAS  Google Scholar 

  27. Palmer, L. G., J. H.-Y. Li, B. Lindemann, and I. S. Edelman. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder. J. Membr. Biol. 64: 91–102.

    Article  PubMed  CAS  Google Scholar 

  28. Li, J. H.-Y., L. G. Palmer, I. S. Edelman, and B. Lindemann. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone. J. Membr. Biol. 64: 77–89.

    Article  PubMed  CAS  Google Scholar 

  29. Helman, S. I., T. C. Cox, and W. van Driessche. 1983. Hormonal control of apical membrane Na transport in epithelia: Studies with fluctuation analysis. J. Gen. Physiol. 82: 201–220.

    Article  PubMed  CAS  Google Scholar 

  30. Garty, H., I. S. Edelman, and B. Lindemann. 1983. Metabolic regulation of apical sodium permeability in toad urinary bladder in the presence and absence of aldosterone. J. Membr. Biol. 74: 15–24.

    Article  PubMed  CAS  Google Scholar 

  31. Frömter, E., J. T. Higgins, and B. Gebler. 1981. Electrical properties of amphibian urinary bladder epithelia. IV. The current-voltage relationship of the sodium channels in the apical cell membrane. In: Ion Transport by Epithelia. S. G. Schultz, ed. Raven Press, New York. pp. 31–45.

    Google Scholar 

  32. Thomas, S. R., Y. Suzuki, S. M. Thompson, and S. G. Schultz. 1983. The electrophysiology of Necturus urinary bladder. I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations. J. Membr. Biol. 73: 157–175.

    Article  PubMed  CAS  Google Scholar 

  33. Thompson, S. M., Y. Suzuki, and S. G. Schultz. 1982. The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current-voltage relations and the current-voltage relation of the Na-entry mechanism. J. Membr. Biol. 66: 41–54.

    Article  PubMed  CAS  Google Scholar 

  34. Thompson, S. M., Y. Suzuki, and S. G. Schultz. 1982. The electrophysiology of rabbit descending colon. II. Current-voltage relations of the apical and baso-lateral membranes and the paracellular pathway. J. Membr. Biol. 66: 55–61.

    Article  PubMed  CAS  Google Scholar 

  35. Turnheim, K., S. M. Thompson, and S. G. Schultz. 1983. Relation between intracellular sodium and active sodium transport in rabbit colon. J. Membr. Biol. 76: 299–309.

    Article  PubMed  CAS  Google Scholar 

  36. Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27: 37–60.

    Article  PubMed  CAS  Google Scholar 

  37. Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 108: 37–77.

    CAS  Google Scholar 

  38. Benos, D. J., B. A. Hyde, and R. Latorre. 1983. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin. J. Gen. Physiol. 81: 667–685.

    Article  PubMed  CAS  Google Scholar 

  39. Palmer, L. G. 1982. Na transport and flux ratio through apical channels in toad bladder. Nature (London) 297: 688–690.

    Article  CAS  Google Scholar 

  40. Ussing, H. H. 1949. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19: 43–56.

    Article  CAS  Google Scholar 

  41. Schultz, S. G. 1980. Basic Principles of Membrane Transport. Cambridge University Press, London.

    Google Scholar 

  42. Lindemann, B., and W. van Driessche. 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover. Science 195: 292–294.

    Article  PubMed  CAS  Google Scholar 

  43. van Driessche, W., and B. Lindemann. 1979. Concentration dependence of currents through single sodium-selective pores in frog skin. Nature (London) 282: 519–520.

    Article  Google Scholar 

  44. Finkelstein, A., and O. S. Anderson. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membr. Biol. 59: 155–171.

    Article  PubMed  CAS  Google Scholar 

  45. Anderson, O. S., and R. U. Muller. 1982. Monazomycin-induced single channels. I. Characterization of the elementary conductance events. J. Gen. Physiol. 80: 403–426.

    Article  Google Scholar 

  46. Hoffman, J. F., B. G. Kennedy, and G. Lunn. 1981. Modulation of red cell Na/K pump rates. In: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances. W. C. Kruckeberg, J. W. Eaton, and G. T. Brewer, eds. Liss, New York. pp. 5–9.

    Google Scholar 

  47. Henrich, M., and B. Lindemann. 1983. Fluctuation analysis of apical Na channels: Voltage dependence of channel currents and channel densities. In Intestinal Absorption and Secretion. E. Skadhauge and K. Heintze, eds. M.T.P. Press, Lancaster, pp. 209–220.

    Google Scholar 

  48. Lindemann, B. 1982. Dependence of ion flow through channels on the density of fixed charges at the channel opening. Biophys. J. 39: 15–22.

    Article  PubMed  CAS  Google Scholar 

  49. Kirschner, L. B. 1955. On the mechanism of active sodium transport across the frog skin. J. Cell. Comp. Physiol. 45: 65–87.

    Google Scholar 

  50. Frazier, H. S., E. F. Dempsey, and A. Leaf. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J. Gen. Physiol. 45: 529–543.

    Article  PubMed  CAS  Google Scholar 

  51. Cereijido, M., F. C. Herrera, W. J. Flanigan, and P. F. Curran. 1964. The influence of Na concentration on Na transport across frog skin. J. Gen. Physiol. 47: 879–893.

    Article  PubMed  CAS  Google Scholar 

  52. Lindemann, B., and C. Voute. 1976. Structure and function of the epidermis. In: Frog Neurobiology. R. Llinas and W. Precht, eds. Springer-Verlag, Berlin, pp. 169–210.

    Google Scholar 

  53. Lindemann, B. 1977. Steady-state kinetics of a floating receptor model for the inhibition of sodium uptake by sodium in frog skin. In: Renal Function. G. H. Giebisch and E. F. Purcell, eds. J. C. Macy, Jr. Foundation, New York. pp. 110–131.

    Google Scholar 

  54. Larsen, E. H. 1973. Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin. In: Transport Mechanisms in Epithelia. H. H. Ussing and N. A. Thorn, eds. Munksgaard, Copenhagen, pp. 131–143.

    Google Scholar 

  55. Lewis, S. A., D. C. Eaton, and J. M. Diamond. 1976. The mechanism of Na transport by rabbit urinary bladder. J. Membr. Biol 28: 41–70.

    Article  PubMed  CAS  Google Scholar 

  56. Turnheim, K., R. A. Frizzell, and S. G. Schultz. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J. Membr. Biol. 39: 233–256.

    Article  PubMed  CAS  Google Scholar 

  57. Helman, S. I., W. Nagel, and R. S. Fisher. 1979. Ouabain on active transepithelial Na transport in frog skin: Studies with micro- electrodes. J. Gen. Physiol. 74: 105–127.

    Article  PubMed  CAS  Google Scholar 

  58. Chase, H. S., Jr., and Q. Al-Awqati. 1981. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium. J. Gen. Physiol. 77: 693–712.

    Article  PubMed  Google Scholar 

  59. Leblanc, G., and F. Morel. 1975. Na and K movements across the membranes of frog skin associated with transient current changes. Pfluegers Arch. 358: 159–177.

    Article  CAS  Google Scholar 

  60. Erlij, D., and M. W. Smith. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport. J. Physiol. (London) 228: 221–239.

    CAS  Google Scholar 

  61. Essig, A., and A. Leaf. 1963. The role of potassium in active transport of sodium by the toad bladder. J. Gen. Physiol. 46:505– 515.

    Google Scholar 

  62. Schultz, S. G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241: F579–F590.

    Google Scholar 

  63. Erlij, D., and W. van Driessche. 1983. Noise analyses of inward and outward current in ouabain treated frogs. Fed. Proc. 42: 1101.

    Google Scholar 

  64. Chase, H. S., Jr., and Q. Al-Awqati. 1983. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder: Studies using a fast reaction apparatus. J. Gen. Physiol. 81: 643–665.

    Article  PubMed  CAS  Google Scholar 

  65. Grinstein, S., and D. Erlij. 1978. Intracellular calcium and the regulation of sodium transport in the frog skin. Proc. R. Soc. London Ser. B 202: 353–360.

    Article  CAS  Google Scholar 

  66. Taylor, A., and E. E. Windhager. 1979. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236: F505–F512.

    PubMed  CAS  Google Scholar 

  67. Windhager, E. E., and A. Taylor. 1983. Regulatory role of intracellular calcium ions in epithelial Na transport. Annu. Rev. Physiol. 45: 519–532.

    Article  PubMed  CAS  Google Scholar 

  68. Hildemann, B., A. Schmidt, and H. Murer. 1982. Ca transport across basal-lateral plasma membranes from rat small intestine epithelial cells. J. Membr. Biol. 65: 55–62.

    Article  Google Scholar 

  69. Arruda, J. A. L., S. Sabatini, and C. Westenfelder. 1982. Serosal Na/Ca exchange and H and Na transport by the turtle and toad bladders. J. Membr. Biol. 70: 135–146.

    Article  PubMed  CAS  Google Scholar 

  70. Feldman, D., J. W. Funder, and I. S. Edelman. 1972. Subcellular mechanisms in the action of adrenal steroids. Am. J. Med. 53: 545–560.

    Article  PubMed  CAS  Google Scholar 

  71. Ussing, H. H. 1960. The Alkali Metal Ions in Biology. Springer-Verlag, Berlin.

    Google Scholar 

  72. Garty, H., and I. S. Edelman. 1983. Amiloride-sensitive trypsinization of apical sodium channels: Analysis of hormonal regulation of sodium transport in toad bladder. J. Gen. Physiol. 81: 785–803.

    Article  PubMed  CAS  Google Scholar 

  73. Turnheim, K., R. A. Frizzell, and S. G. Schultz. 1977. Effect of anions on amiloride-sensitive, active sodium transport across rabbit colon, in vitro. J. Membr. Biol. 37: 63–84.

    Article  PubMed  CAS  Google Scholar 

  74. Singer, I., and M. M. Civan. 1971. Effects of anions on sodium transport in toad urinary bladder. Am. J. Physiol. 221: 1019–1026.

    PubMed  CAS  Google Scholar 

  75. Lindemann, B., and W. van Driessche. 1978. The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin. In: Membrane Transport Processes, Volume 1. J. Hoffman, ed. Raven Press, New York. pp. 155–178.

    Google Scholar 

  76. Li, J. H.-Y., and B. Lindemann. 1983. Chemical stimulation of Na-transport through amiloride blockade channels of frog skin. J. Membr. Biol. 75: 179–192.

    Article  PubMed  CAS  Google Scholar 

  77. Spooner, P. M., and I. S. Edelman. 1976. Stimulation of Na transport across the toad urinary bladder by p-chloromercuribenzene sulfonate. Biochim. Biophys. Acta 455: 272–276.

    Article  PubMed  CAS  Google Scholar 

  78. Gottleib, G. P., K. Turnheim, R. A. Frizzell, and S. G. Schultz. 1978. p-Chloromercuribenzene sulfonate blocks and reverses the effect of amiloride on sodium transport across rabbit colon in vitro. Biophys. J. 22: 125–129.

    Google Scholar 

  79. Luger, A., and K. Turnheim. 1981. Modification of cation permeability of rabbit descending colon by sulphydryl reagents. J. Physiol. (London) 317: 49–66.

    CAS  Google Scholar 

  80. Lindemann, B. 1984. Fluctuation analysis of sodium channels in epithelia. Annu. Rev. Physiol. 46: 497–515.

    Article  PubMed  CAS  Google Scholar 

  81. Thompson, S. M., andD. C. Dawson. 1978. Cations selectivity of the apical membrane of the turtle colon: Sodium entry in the presence of lithium. J. Gen. Physiol. 72: 269–282.

    Article  PubMed  CAS  Google Scholar 

  82. Palmer, L. G. 1982. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J. Membr. Biol. 67: 91–98.

    Article  PubMed  CAS  Google Scholar 

  83. Nagel, W. 1977. Influence of lithium upon the intracellular potential of frog skin epithelium. J. Membr. Biol. 37: 347–359.

    Article  PubMed  CAS  Google Scholar 

  84. Herrera, F. C. 1972. Inhibition of lithium transport across toad bladder by amiloride. Am. J. Physiol. 222: 499–502.

    PubMed  CAS  Google Scholar 

  85. Benos, D. J., L. J. Mandel, and S. A. Simon. 1980. Cation selectivity and competition at the sodium entry site in frog skin. J. Gen. Physiol. 76: 233–247.

    Article  PubMed  CAS  Google Scholar 

  86. Csaky, T. Z., and L. Zollicoffer. 1960. Ionic effect on intestinal transport of glucose in the rat. Am. J. Physiol. 198: 1056–1058.

    PubMed  CAS  Google Scholar 

  87. Csaky, T. Z., and M. Thale. 1960. Effect of ionic environment on intestinal sugar transport. J. Physiol. (London) 151: 59–65.

    CAS  Google Scholar 

  88. Bihler, I., K. A. Hawkins, and R. K. Crane. 1962. Studies on the mechanism of intestinal absorption of sugars. VI. The specificity and other properties of Na+ dependent entrance of sugars into intestinal tissue under anaerobic conditions in vitro. Biochim. Biophys. Acta 59: 94–102.

    Article  PubMed  CAS  Google Scholar 

  89. Crane, R. K. 1962. Hypothesis for mechanism of intestinal active transport of sugars. Fed. Proc. 21: 891–895.

    PubMed  CAS  Google Scholar 

  90. Schultz, S. G., and R. Zalusky. 1964. Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J. Gen. Physiol. 47: 1043–1059.

    Article  PubMed  CAS  Google Scholar 

  91. Schultz, S. G., and R. Zalusky. 1965. Interactions between active sodium transport and active amino acid transport in isolated rabbit ileum. Nature (London) 204: 292–294.

    Article  Google Scholar 

  92. Schultz, S. G., and P. F. Curran. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev. 50: 637–718.

    PubMed  CAS  Google Scholar 

  93. Schultz, S. G. 1977. Sodium-coupled solute transport by small intestine: A status report. Am. J. Physiol. 233: E249–E254.

    Google Scholar 

  94. Schultz, S. G. 1978. Ion-coupled transport across biological membranes. In: Physiology of Membrane Disorders. T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds. Plenum Press, New York, pp. 273–286.

    Google Scholar 

  95. Kinne, R., and E. Kinne-Saffran. 1978. Differentiation of cell faces in epithelia. In: Molecular Specialization and Symmetry in Membrane Function. A. K. Solomon and M. Karnovsky, eds. Harvard University Press, Cambridge, Mass. pp. 272–293.

    Google Scholar 

  96. Sacktor, B. 1982. Na gradient-dependent transport systems in renal proximal tubule brush border membrane vesicles. In: Membranes and Transport, Volume 2. A. N. Martonosi, ed. Plenum Press, New York. pp. 197–206.

    Google Scholar 

  97. Rose, R. C., and S. G. Schultz. 1971. Studies on the electrical potential profile across rabbit ileum: Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. Gen. Physiol. 57: 639–663.

    Article  PubMed  CAS  Google Scholar 

  98. White, J. F., and W. M. Armstrong. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am. J. Physiol. 221: 194–201.

    PubMed  CAS  Google Scholar 

  99. Maruyama, T., andT. Hoshi. 1972. The effect of D-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim. Biophys. Acta 282: 214–225.

    Article  PubMed  CAS  Google Scholar 

  100. Okada, Y., W. Tsuchiya, A. Irimajiri, and A. Inouye. 1977. Electrical properties and active solute transport in rat small intestine. I. Potential profile changes associated with sugar and amino acid transports. J. Membr. Biol. 31: 205–219.

    Article  PubMed  CAS  Google Scholar 

  101. Gunther-Smith, P., E. Grasset, and S. G. Schultz. 1982. Sodium-coupled amino acid sugar transport by Necturus small intestine: An equivalent electrical circuit analysis of a rheogenic co-transport system. J. Membr. Biol. 66: 25–39.

    Article  Google Scholar 

  102. Frömter, E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic principles. Pfluegers Arch. 393: 179–189.

    Article  Google Scholar 

  103. Samarzija, I., and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pfluegers Arch. 393: 199–209.

    Article  CAS  Google Scholar 

  104. Samarzija, I., and E. Frömter. 1982. Electrophysiologic analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pfluegers Arch. 393: 210–214.

    Article  CAS  Google Scholar 

  105. Samarzija, I., and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar andamino acid transport. V. Acidic amino acids. Pfluegers Arch. 393: 215–221.

    Article  CAS  Google Scholar 

  106. Murer, H., and U. Hopfer. 1974. Demonstration of an electrogenic Na-dependent D-glucose transport in intestinal brush border membranes. Proc. Natl. Acad. Sci. USA 71: 484–488.

    Article  PubMed  CAS  Google Scholar 

  107. Beck, J. C., and B. Sacktor. 1975. Energetics of the Na + -dependent transport of D-glucose in renal brush border membrane vesicles. J. Biol. Chem. 250: 8674–8680.

    PubMed  CAS  Google Scholar 

  108. Fairclough, P., P. Malathi, H. Preiser, and R. K. Crane. 1979. Reconstitution into liposomes of glucose active transport from the rabbit renal proximal tubule. Characteristics of the system. Biochim. Biophys. Acta 553: 295–306.

    Article  PubMed  CAS  Google Scholar 

  109. Koepsell, H., H. Menuhr, I. Ducis, and T. F. Wissmuller. 1983. Partial purification and reconstitution of the Na-D-glucose cotransport protein from pig renal proximal tubule. J. Biol. Chem. 258: 1888–1894.

    PubMed  CAS  Google Scholar 

  110. Ducis, I., and H. Koepsell. 1983. A simple liposomal system to reconstitute and assay highly efficient Na/D-glucose cotransport from kidney brush-border membranes. Biochim. Biophys. Acta 730: 119–129.

    Article  PubMed  CAS  Google Scholar 

  111. Schmidt, O. M., B. Eddy, C. M. Fraser, J. C. Venter, and G. Semenza. 1983. Isolation of (a subunit of) the Na +/D-glucose co-transporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies. FEBS Lett. 61: 279–293.

    Article  Google Scholar 

  112. Diamond, J. M. 1962. The mechanism of solute transport by the gallbladder. J. Physiol. (London) 161: 474–502.

    CAS  Google Scholar 

  113. Diamond, J. M. 1964. Transport of salt and water in rabbit and guinea pig gallbladder. J. Gen. Physiol. 48: 1–14.

    Article  PubMed  CAS  Google Scholar 

  114. Nellans, H. N., R. A. Frizzell, and S. G. Schultz. 1973. Coupled sodium-chloride influx across the brush border of rabbit ileum. Am. J. Physiol. 225: 467–475.

    PubMed  CAS  Google Scholar 

  115. Frizzell, R. A., M. C. Dugas, and S. G. Schultz. 1975. Sodium chloride transport by rabbit gallbladder: Direct evidence for a coupled NaCl influx process. J. Gen. Physiol. 65: 769–795.

    Article  PubMed  CAS  Google Scholar 

  116. Duffey, M. E., K. Turnheim, R. A. Frizzell, and S. G. Schultz. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport. J. Membr. Biol. 42: 229–245.

    Article  PubMed  CAS  Google Scholar 

  117. Duffey, M. E., S. M. Thompson, R. A. Frizzell, and S. G. Schultz. 1979. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder. J. Membr. Biol. 50: 331–341.

    Article  PubMed  CAS  Google Scholar 

  118. Armstrong, W. McD., W. R. Bixenman, K. F. Frey, J. F. Garcia-Diaz, M. G. O’Regan, and J. L. Owens. 1979. Energetics of coupled Na and CI entry into epithelial cells of bullfrog small intestine. Biochim. Biophys. Acta 551: 207–219.

    Article  PubMed  CAS  Google Scholar 

  119. Reuss, L., and S. A. Weinman. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J. Membr. Biol. 49: 345–362.

    Article  PubMed  CAS  Google Scholar 

  120. Reuss, L., and T. P. Grady. 1979. Effects of external sodium and cell membrane potential on intracellular CI activity in gallbladder epithelium. J. Membr. Biol. 51: 15–31.

    Article  PubMed  CAS  Google Scholar 

  121. Garcia-Diaz, J. F., and W. M. Armstrong. 1980. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder. J. Membr. Biol. 55: 213–222.

    Article  PubMed  CAS  Google Scholar 

  122. Spring, K. R., and G. Kimura. 1978. Chloride reabsorption by renal proximal tubules of Necturus. J. Membr. Biol. 38: 233–254.

    Article  PubMed  CAS  Google Scholar 

  123. Kimura, G., and K. R. Spring. 1979. Luminal Na entry into Necturus proximal tubule cells. Am. J. Physiol. 236: F295–F301.

    PubMed  CAS  Google Scholar 

  124. Oberleithner, H., W. Guggino, and G. Giebisch. 1982. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am. J. Physiol. 242: F331–F339.

    PubMed  CAS  Google Scholar 

  125. Murer, H., U. Hopfer, and R. Kinne. 1976. Sodium/proton anti-port in brush border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154: 597–604.

    PubMed  CAS  Google Scholar 

  126. Liedtke, C. M., and U. Hopfer. 1982. Mechanism of CI translocation across small intestinal brush-border membrane. I. Absence of Na-Cl cotransport. Am. J. Physiol. 242: G263–G271.

    PubMed  CAS  Google Scholar 

  127. Liedtke, C. M., and U. Hopfer. 1982. Mechanism of Cl translocation across small intestinal brush border membrane. II. Demonstration of Cl-OH exchange and CI conductance. Am. J. Physiol. 242: G272–G280.

    PubMed  CAS  Google Scholar 

  128. Kinsella, J. L., and P. S. Aronson. 1980. Properties of the Na-H exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238: F461–F469.

    PubMed  CAS  Google Scholar 

  129. Aronson, P. S. 1981. Identifying secondary active solute transport in epithelia. Am. J. Physiol. 240: F1–F11.

    PubMed  CAS  Google Scholar 

  130. Knickerbein, R., P. S. Aronson, W. Atherton, and J. W. Dobbins. 1983. Sodium and chloride transport across rabbit ileal brush border. I. Evidence for Na-H exchange. Am. J. Physiol. 245: G504–G510.

    Google Scholar 

  131. Dubinsky, W. B., and R. A. Frizzell. 1983. A novel effect of amiloride on H + -dependent Na + transport. Am. J. Physiol. 245: C157–C159.

    PubMed  CAS  Google Scholar 

  132. Cabantchik, Z. I., and A. Rothstein. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membr. Biol. 10: 311–330.

    Article  PubMed  CAS  Google Scholar 

  133. Weinman, S. A., and L. Reuss. 1982. Na +-H + exchange at the apical membrane of Necturus gallbladder. J. Gen. Physiol. 80: 299–321.

    Article  PubMed  CAS  Google Scholar 

  134. Heintze, K., K.-U. Peterson, P. Olles, S. H. Saverymuttu, and J. R. Wood. 1979. Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: A bicarbonate-chloride exchange. J. Membr. Biol. 45: 43–59.

    Article  PubMed  CAS  Google Scholar 

  135. Friedman, P. A., andT. E. Andreoli. 1982. C02-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. J. Gen. Physiol 80: 683–711.

    Article  PubMed  CAS  Google Scholar 

  136. Ericson, A.-C., and K. R. Spring. 1982. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am. J. Physiol. 243: C140–C145.

    PubMed  CAS  Google Scholar 

  137. Ericson, A.-C., and K. R. Spring. 1982. Volume regulation by Necturus gallbladder: Apical Na-H and C1-HC03 exchange. Am. J. Physiol. 243: C146–C150.

    PubMed  CAS  Google Scholar 

  138. Cremaschi, D., G. Meyer, S. Bermano, and M. Marcati. 1983. Different sodium chloride cotransport systems in the apical membrane of rabbit gallbladder epithelial cells. J. Membr. Biol. 73: 227–235.

    Article  PubMed  CAS  Google Scholar 

  139. Frizzell, R. A., P. L. Smith, E. Vosburgh, and M. Field. 1979. Coupled sodium-chloride influx across brush border of flounder intestine. J. Membr. Biol. 46: 27–40.

    Article  PubMed  CAS  Google Scholar 

  140. Musch, M. W., S. A. Orellana, L. S. Kimberg, M. Field, D. R. Halm, E. J. Krasny, Jr., and R. A. Frizzell. 1982. Na-K-Cl cotransport in the intestine of a marine teleost. Nature (London) 300: 351–353.

    Article  CAS  Google Scholar 

  141. Greger, R., E. Schlatter, and F. Lang. 1983. Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396: 308–314.

    Article  CAS  Google Scholar 

  142. Oberleithner, H., G. Giebisch, F. Lang, and W. Wang. 1982. Cellular mechanism of the furosemide sensitive transport system in the kidney. Klin. Wochenschr. 60: 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  143. Brazy, P. C., and R. B. Gunn. 1976. Furosemide inhibition of chloride transport in human red blood cells. J. Gen. Physiol. 68: 583–599.

    Article  PubMed  CAS  Google Scholar 

  144. Duffey, M. E., and C. Bebernitz. 1983. Intracellular chloride and hydrogen activities in rabbit colon. Fed. Proc. 42: 1353.

    Google Scholar 

  145. Diez de los Rios, A., N. E. DeRose, and W. McD. Armstrong. 1981. Cyclic AMP and intracellular ionic activities in Necturus gallbladder. J. Membr. Biol. 63: 25–30.

    Article  PubMed  CAS  Google Scholar 

  146. Rao, M. C., N. T. Nash, and M. Field. 1984. Differing effects of cGMP and cAMP on ion transport across flounder intestine. Am. J. Physiol. 246: C167–C171.

    PubMed  CAS  Google Scholar 

  147. Palfrey, H. C., and P. Greengard. 1981. Hormone-sensitive ion transport systems in erythrocytes as models for epithelial ion pathways. Ann. N.Y. Acad. Sci. 373: 291–308.

    Article  Google Scholar 

  148. Garay, R. P. 1982. Inhibition of the Na/K cotransport system by cyclic AMP and intracellular Ca in human red cells. Biochim. Biophys. Acta 688: 786–792.

    Article  PubMed  CAS  Google Scholar 

  149. Peterson, K.-U., and L. Reuss. 1983. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J. Gen. Physiol. 81: 705–729.

    Article  Google Scholar 

  150. Field, M. 1979. Intracellular mediators of secretion in the small intestine. In: Mechanisms of Intestinal Secretion. H. J. Binder, ed. Liss, New York. pp. 83–91.

    Google Scholar 

  151. Reuss, L., L. Y. Cheung, andT. P. Grady. 1981. Mechanisms of cation permeation across apical cell membrane of Necturus gallbladder: Effects of luminal pH and divalent cations on K and Na permeability. J. Membr. Biol. 59: 211–224.

    Article  PubMed  CAS  Google Scholar 

  152. Gogelein, H., and W. van Driessche. 1981. Noise analysis of the K current through the apical membrane of Necturus gallbladder. J. Membr. Biol. 60: 187–198.

    Article  PubMed  CAS  Google Scholar 

  153. Stewart, C. P., P. L. Smith, M. J. Welsh, R. A. Frizzell, M. W. Musch, and M. Field. 1980. Potassium transport by the intestine of the winter flounder, Pseudopleuronectes americanus. Mount Desert Island Biological Laboratory Bulletin 20: 92–95.

    Google Scholar 

  154. Musch, M. W., M. Field and R. A. Frizzell. 1981. Active K transport by the intestine of the flounder, Pseudopleuronectes americanus: Evidence for cotransport with Na and CI. Bull. Mt. Desert Is. Biol. Lab. 21: 95–99.

    Google Scholar 

  155. Nagel, W., and W. Hirschmann. 1980. K-permeability of the outer border of the frog skin (R. temporaria). J. Membr. Biol. 52: 107–113.

    Article  PubMed  CAS  Google Scholar 

  156. van Driessche, W., and W. Zeiske. 1980. Ba-induced conductance fluctuations of spontaneously fluctuating K channels in the apical membrane of frog skin (Rana temporaria). J. Membr. Biol. 56: 31–42.

    Article  PubMed  Google Scholar 

  157. Wills, N. K., W. Zeiske, and W. van Driessche. 1982. Noise analysis reveals K channel conductance fluctuations in the apical membrane of rabbit colon. J. Membr. Biol. 69: 187–197.

    Article  PubMed  CAS  Google Scholar 

  158. O’Neil, R. 1983. Voltage-dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane. J. Membr. Biol. 74: 165–173.

    Article  PubMed  Google Scholar 

  159. Greger, R., and E. Schlatter. 1983. Properties of the lumen membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396: 315–324.

    Article  CAS  Google Scholar 

  160. O’Neil, R. C., andS. C. Sansom. 1984. Characterization of apical cell membrane Na and K channels of cortical collecting duct using microelectrode techniques. Am. J. Physiol. 247: F14–F24.

    PubMed  Google Scholar 

  161. Armstrong, C. M., and S. R. Taylor. 1980. Interaction of barium ions with potassium channels in squid giant axons. Biophys. J. 30: 473–488.

    Article  PubMed  CAS  Google Scholar 

  162. Wills, N. K., and B. Biagi. 1982. Active potassium transport by rabbit descending colon epithelium. J. Membr. Biol. 64: 195–203.

    Article  PubMed  CAS  Google Scholar 

  163. McCabe, R., H. J. Cook, and L. P. Sullivan. 1982. Potassium transport by rabbit descending colon. Am. J. Physiol. 242: C81–C86.

    PubMed  CAS  Google Scholar 

  164. Dibona, D. R., and J. W. Mills, 1979. Distribution of Na +-pump sites in transporting epithelia. Fed. Proc. 38: 134–143.

    PubMed  CAS  Google Scholar 

  165. Thomas, R. C. 1972. Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52: 563–594.

    PubMed  CAS  Google Scholar 

  166. Hoffman, J. F., H. Kaplan, and T. J. Callahan. 1979. The Na:K pump in red cells is electrogenic. Fed. Proc. 38: 2440–2441.

    PubMed  CAS  Google Scholar 

  167. Thomas, R. C. 1982. Electrophysiology of the sodium pump in a snail neuron. Curr. Top. Membr. Transp. 16: 3–16.

    Article  CAS  Google Scholar 

  168. Nelson, M. T., and W. J. Lederer. 1983. Stoichiometry of the electrogenic Na pump in barnacle muscle: Simultaneous measurement of Na efflux and membrane current. Curr. Top. Membr. Transp. 19: 707–711.

    CAS  Google Scholar 

  169. Nielsen, R. 1979. A 3 to 2 coupling of the Na-K pump responsible for the transepithelial Na transport in frog skin as disclosed by the effect of Ba. Acta Physiol. Scand. 107: 189–191.

    Article  PubMed  CAS  Google Scholar 

  170. Nielsen, R. 1979. Coupled transepithelial sodium and potassium transport across isolated frog skin: Effect of ouabain, amiloride and the polyene antibiotic filipin. J. Membr. Biol. 51: 161–184.

    Article  PubMed  CAS  Google Scholar 

  171. Kirk, K.L.,D.R. Halm, and D. C. Dawson. 1980. Active sodium transport by turtle colon via an electrogenic Na-K exchange pump. Nature (London) 287: 237–239.

    Article  Google Scholar 

  172. Turnheim, K., S. M. Thompson, and S. G. Schultz. 1983. Relation between intracellular sodium and active sodium transport in rabbit colon. J. Membr. Biol. 76: 299–309.

    Article  PubMed  CAS  Google Scholar 

  173. Nielsen, R. 1982. Effect of ouabain, amiloride, and antidiuretic hormone on the sodium-transport pool in isolated epithelia from frog skin (Rana temporaria). J. Membr. Biol. 65: 221–226.

    Article  PubMed  CAS  Google Scholar 

  174. Lewis, S. A., and N. K. Wills. 1981. Interaction between apical and baso-lateral membranes during sodium transport across tight epithelia. In: Ion Transport by Epithelia. S. G. Schultz, ed. Raven Press, New York. pp. 93–107.

    Google Scholar 

  175. Eaton, D. C. 1981. Intracellular sodium ion activity and sodium transport in rabbit urinary bladder. J. Physiol. (London) 316:527– 544.

    Google Scholar 

  176. Eaton, D. C., A. M. Frace, and S. U. Silverthorn. 1982. Active and passive Na fluxes across the basolateral membrane of rabbit urinary bladder. J. Membr. Biol. 67: 219–229.

    Article  PubMed  CAS  Google Scholar 

  177. Halm, D. R. and D. C. Dawson. 1983. Cation activation of the basolateral sodium-potassium pump in turtle colon. J. Gen. Physiol. 82: 315–329.

    CAS  Google Scholar 

  178. Hoffman, J. F., B. G. Kennedy, and G. Lunn. 1981. Modulation of red cell Na/K pump rates. In: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances. Liss, New York. pp. 5–9.

    Google Scholar 

  179. Jorgensen, P. L. 1980. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60: 864–917.

    PubMed  CAS  Google Scholar 

  180. Charney, A. N., M. D. Kinsey, L. Myers, R. A. Giannella, and R. E. Gots. 1975. Na-K-activated adenosine triphosphatase and intestinal electrolyte transport. J. Clin. Invest. 56: 653–660.

    Article  PubMed  CAS  Google Scholar 

  181. Silva, P., A. N. Charney, and F. H. Epstein. 1975. Potassium adaptation and Na-K-ATPase activity in mucosa of colon. Am. J. Physiol. 229: 1576–1579.

    PubMed  CAS  Google Scholar 

  182. Will, P. C., R. C. De Lisle, R. N. Cortright, and U. Hopfer. 1981. Induction of amiloride sensitive sodium transport in the intestines by adrenal steroids. Ann. N.Y. Acad. Sci. 372: 64–78.

    Article  PubMed  CAS  Google Scholar 

  183. Katz, A. I., and F. H. Epstein. 1967. The role of sodium-potassium-activated adenosine triphosphatase in the reabsorption of sodium by the kidney. J. Clin. Invest. 46: 1999–2011.

    Article  PubMed  CAS  Google Scholar 

  184. Jorgensen, P. L. 1972. The role of aldosterone in the regulation of (Na-K)-ATPase in rat kidney. J. Steroid Biochem. 3: 181–191.

    Article  PubMed  CAS  Google Scholar 

  185. Charney, A. N., P. Silva, A. Beserab, and F. H. Epstein. 1974. Separate effects of aldosterone, DOCA and methylprednisolone on renal Na-K-ATPase. Am. J. Physiol. 227: 345–350.

    PubMed  CAS  Google Scholar 

  186. Petty, K. J., J. P. Kokko, and D. Marver. 1981. Secondary effect of aldosterone on Na-K-ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68: 1514–1521.

    Article  PubMed  CAS  Google Scholar 

  187. Petty, K. J. 1982. The role of sodium-potassium-activated adenosine triphosphatase in the mechanism of mineralocorticoid action in the mammalian nephron. Ph.D. thesis. The University of Texas Health Science Center, Dallas, Texas.

    Google Scholar 

  188. Handler, J. S., A. S. Preston, F. M. Perkins, M. Matsumura, J. P. Johnson, and C. O. Watlington. 1981. The effect of adrenal steroid hormones on epithelia formed in culture by A6 cells. Ann. N.Y. Acad. Sci. 372: 442–454.

    Article  PubMed  CAS  Google Scholar 

  189. O’Neil, R. G., and W. P. Dubinsky. 1983. Na-dependent mineralocorticoid regulation of cortical collecting duct (CCD) Na-K-ATPase. Fed. Proc. 42: 475.

    Google Scholar 

  190. Katz, A. 1982. Renal Na-K-ATPase: Its role in tubular sodium and potassium transport. Am. J. Physiol. 242: F207–F219.

    PubMed  CAS  Google Scholar 

  191. Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium. Biochim. Biophys. Acta 552: 346–357.

    Article  PubMed  CAS  Google Scholar 

  192. Bello-Reuss, E. 1982. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J. Physiol. (London) 326: 49–63.

    CAS  Google Scholar 

  193. Welsh, M. J. 1983. Barium inhibition of basolateral membrane potassium conductance in tracheal epithelium. Am. J. Physiol. 244: F639–F645.

    PubMed  CAS  Google Scholar 

  194. Lau, K., R. L. Hudson, and S. G. Schultz. 1984. Cell swelling increases a barium-inhibitable energy dependent potassium conductance in the basolateral membrane of Necturus small intestine. Proc. Natl. Acad. Sci. USA 81: 3591–3954.

    Article  PubMed  CAS  Google Scholar 

  195. Davis, C. W., and A. L. Finn. 1982. Sodium transport effects on the basolateral membrane in toad urinary bladder. J. Gen. Physiol. 80: 733–751.

    Article  PubMed  CAS  Google Scholar 

  196. Davis, C. W., and A. L. Finn. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science 216: 525–527.

    Article  PubMed  CAS  Google Scholar 

  197. Grasset, E., P. Gunter-Smith, and S. G. Schultz. 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes of Necturus small intestine. J. Membr. Biol. 71: 89–94.

    Article  PubMed  CAS  Google Scholar 

  198. Welsh, M. J., P. L. Smith, and R. A. Frizzell. 1982. Chloride secretion by canine tracheal epithelium. II. The cellular electrical potential profile. J. Membr. Biol. 70: 227–238.

    Article  PubMed  CAS  Google Scholar 

  199. Welsh, M. J., P. L. Smith, and R. A. Frizzell. 1983. Chloride secretion by canine tracheal mucosa. III. Membrane resistances and electromotive forces. J. Membr. Biol. 71: 209–218.

    Article  PubMed  CAS  Google Scholar 

  200. Shorofsky, S. R., M. Field, and H. A. Fozzard. 1983. Electrophysiology of CI secretion in canine trachea. J. Membr. Biol. 72: 105–115.

    Article  PubMed  CAS  Google Scholar 

  201. Smith, P. L., and R. A. Frizzell. 1984. Chloride secretion by canine tracheal epithelium. IV. Basolateral membrane K permeability parallels secretion rate. 77: 187–199.

    CAS  Google Scholar 

  202. Foskett, J. K., and K. R. Spring. 1983. Control of epithelial cell volume regulation. J. Gen. Physiol. 82: 21a.

    Google Scholar 

  203. Stevens, C. F. 1980. Ionic channels in neuromembranes: Methods for studying their properties. In: Molluscan Nerve Cells: From Biophysics to Behavior. J. Koester and J. H. Byrne, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. pp. 11–31.

    Google Scholar 

  204. Miller, C. 1983. Integral membrane channels: Studies in model membranes. Physiol. Rev. 63: 1209–1242.

    PubMed  CAS  Google Scholar 

  205. Kandel, E. 1980. The multichannel model of the nerve cell membrane: A perspective. In: Molluscan Nerve Cells: From Biophysics to Behavior. J. Koester and J. H. Byrne, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. pp. 1–10.

    Google Scholar 

  206. Grinstein, S., O. Candia, and D. Erlij. 1978. Nonhormonal mechanisms for the regulation of transepithelial sodium transport: The role of surface potential cell calcium. J. Membr. Biol. 40:261– 280.

    Google Scholar 

  207. Lee, C. O., A. Taylor, and E. E. Windhager. 1980. Cytosolic calcium ion activity in epithelial cells of Necturus kidney. Nature (London) 287: 859–861.

    Article  CAS  Google Scholar 

  208. Lorenzen, M., C. O. Lee, and E. E. Windhager. 1981. Effect of quinidine and ouabain on intracellular calcium and sodium activities in isolated perfused proximal tubules of Necturus kidney. Kidney Int. 21: 281a.

    Google Scholar 

  209. Blaustein, M. P. 1974. The interrelationship between sodium and calcium fluxes across cell membranes. Rev. Physiol. Biochem. Pharmacol. 70: 33–82.

    Article  PubMed  CAS  Google Scholar 

  210. Cremaschi, D., and S. Henin. 1975. Na and CI transepithelial routes in rabbit gallbladder: Tracer analysis of the transports. Pfluegers Arch. 361: 33–41.

    Article  CAS  Google Scholar 

  211. Henin, S., and D. Cremaschi. 1975. Transcellular ion route in rabbit gallbladder: Electric properties of the epithelial cells. Pfluegers Arch. 355: 125–139.

    Article  CAS  Google Scholar 

  212. VanOs, C. H., and J. F. G. Siegers. 1975. The electrical potential profile of gallbladder epithelium. J. Membr. Biol. 24:341– 363.

    Google Scholar 

  213. Gunter-Smith, P., and S. G. Schultz. 1982. Intracellular potassium activities and potassium transport by rabbit gallbladder. J. Membr. Biol. 65: 41–47.

    Article  PubMed  CAS  Google Scholar 

  214. Reuss, L. 1979. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. III. Ionic permeability of the basolateral cell membrane. J. Membr. Biol. 47: 239–259.

    Article  PubMed  CAS  Google Scholar 

  215. Reuss, L., and S. A. Weinman. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J. Membr. Biol. 49: 345–362.

    Article  PubMed  CAS  Google Scholar 

  216. Reuss, L., S. A. Weinman, andT. P. Grady. 1980. IntracellularK activity and its relation to basolateral membrane ion transport in Necturus gallbladder. J. Gen. Physiol. 76: 33–52.

    Article  PubMed  CAS  Google Scholar 

  217. Shindo, T., and K. R. Spring. 1981. Chloride movement across the basolateral membrane of proximal tubule cells. J. Membr. Biol. 58: 35–42.

    Article  PubMed  CAS  Google Scholar 

  218. Corcia, A., and W. McD. Armstrong. 1983. KC1 cotransport: A mechanism for basolateral chloride exit in Necturus gallbladder. J. Membr. Biol. 76: 173–182.

    Article  PubMed  CAS  Google Scholar 

  219. Suzuki, K., G. Kottra, L. Kampmann, and E. Fromter. 1982. Square wave pulse analysis of cellular and paracellular conductance pathways in Necturus gallbladder epithelium. Pfluegers Arch. 394: 302–312.

    Article  CAS  Google Scholar 

  220. Koefoed-Johnsen, V., H. H. Ussing, and K. Zerahn. 1952. The origin of the short-circuit current in the adrenaline stimulated frog skin. Acta Physiol. Scand. 27: 38–48.

    Article  PubMed  CAS  Google Scholar 

  221. Hogben, C. A. M. 1955. Active transport of chloride by isolated frog gastric mucosa. Am. J. Physiol. 180: 641–649.

    PubMed  CAS  Google Scholar 

  222. Field, M., G. R. Plotkin, and W. Silen. 1968. Effects of vasopressin, theophylline and cyclic adenosine monophosphate on short-circuit current across isolated rabbit ileal mucosa. Nature (London) 217: 469–471.

    Article  CAS  Google Scholar 

  223. Kimberg, D. V., M. Field, J. Johnson, A. Henderson, and E. Gershon. 1971. Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J. Clin. Invest. 50: 1218–1230.

    Article  PubMed  CAS  Google Scholar 

  224. Field, M., D. Fromm, Q. Al-Awqati, and W. B. Greenough, III. 1972. Effect of cholera enterotoxin on ion transport across isolated ileal mucosa. J. Clin. Invest. 51: 796–804.

    Article  PubMed  CAS  Google Scholar 

  225. Field, M. 1971. Intestinal secretion: Effect of cyclic AMP and its role in cholera. N. Engl. J. Med. 284: 1137–1144.

    Article  CAS  Google Scholar 

  226. Field, M. 1974. Intestinal secretion. Gastroenterology 66: 1063–1084.

    PubMed  CAS  Google Scholar 

  227. Field, M. 1979. Intracellular mediators of secretion in the small intestine. In: Mechanisms of Intestinal Secretion. H. J. Binder, ed. Liss, New York. pp. 83–91.

    Google Scholar 

  228. Field, M. 1980. Regulation of small intestinal ion transport by cyclic nucleotides and calcium. In: Secretory Diarrhea. M. Field, J. S. Fordtran, and S. G. Schultz, eds. American Physiological Society, Washington, D.C. pp. 21–30.

    Google Scholar 

  229. Frizzell, R. A., M. J. Koch, andS. G. Schultz. 1976. Ion transport by rabbit colon. I. Active and passive components. J. Membr. Biol. 27: 297–316.

    Article  PubMed  CAS  Google Scholar 

  230. Frizzell, R. A. 1977. Active chloride secretion by rabbit colon: Calcium-dependent stimulation by ionophore A23187. J. Membr. Biol. 35: 175–187.

    Article  PubMed  CAS  Google Scholar 

  231. Frizzell, R. A., K. Heintze, andC. P. Stewart. 1980. Mechanism of intestinal chloride secretion. In: Secretory Diarrhea. M. Field, J. S. Fordtran, and S. G. Schultz, eds. American Physiological Society, Washington, D.C. pp. 11–19.

    Google Scholar 

  232. Zadunaisky, J. A. 1966. Active transport of chloride in frog cornea. Am. J. Physiol. 211: 506–512.

    PubMed  CAS  Google Scholar 

  233. Zadunaisky, J. A. 1972. Sodium activation of chloride transport in the frog cornea. Biochim. Biophys. Acta 282: 255–257.

    Article  PubMed  CAS  Google Scholar 

  234. Zadunaisky, J. A., M. A. Lande, M. Chalfie, and A. H. Neufeld. 1973. Ion pumps in the cornea and their stimulation by epinephrine and cyclic AMP. Exp. Eye Res. 15: 577–584.

    Article  PubMed  CAS  Google Scholar 

  235. Degnan, K. J., K. J. Karnaky, and J. A. Zadunaisky. 1977. Active chloride transport in the in vitro opercular skin of a teleost (Fun- dulus heteroclitus), a gill-like epithelium rich in chloride cells. J. Physiol. (London) 271: 155–191.

    CAS  Google Scholar 

  236. Silva, P., J. Stoff, M. Field, L. Fine, J. N. Forrest, and F. H. Epstein. 1977. Mechanism of active chloride secretion by shark rectal gland: Role of Na-K-ATPase in chloride transport. Am. J. Physiol. 233: F298–F306.

    PubMed  CAS  Google Scholar 

  237. Sachs, G., J. G. Spenney, and M. Lewin. 1978. H+ transport: Regulation and mechanism in gastric mucosa and membrane vesicles. Physiol. Rev. 58: 106–173.

    PubMed  CAS  Google Scholar 

  238. Al-Bazzaz, F., and Q. Al-Awqati. 1979. Interaction between sodium and chloride transport in canine tracheal mucosa. Am. J. Physiol. 46: 111–119.

    CAS  Google Scholar 

  239. Smith, P. L., M. J. Welsh, J. S. Stoff, and R. A. Frizzell. 1982. Chloride secretion by canine tracheal epithelium. I. Role of intracellular cAMP levels. J. Membr. Biol. 70: 217–226.

    Article  PubMed  CAS  Google Scholar 

  240. Welsh, M.J. 1983. Inhibition of chloride secretion by furosemide in canine tracheal epithelium. J. Membr. Biol. 71: 219–226.

    Article  PubMed  CAS  Google Scholar 

  241. Frizzell, R. A., M. Field, and S. G. Schultz. 1979. Sodium- coupled chloride transport by epithelial tissues. Am. J. Physiol. 236: F1–F8.

    PubMed  CAS  Google Scholar 

  242. Welsh, M. J., P. L. Smith, M. Fromm, andR. A. Frizzell. 1982. Crypts are the site of intestinal fluid and electrolyte secretion. Science 218: 1219–1221.

    Article  PubMed  CAS  Google Scholar 

  243. Welsh, M. J. 1983. Intracellular chloride activities in canine tracheal epithelium: Direct evidence for sodium-coupled intracellular chloride accumulation in a chloride-secreting epithelium. J. Clin. Invest. 71: 1391–1401.

    Google Scholar 

  244. Shorofsky, S. R., M. Field, and H. A. Fozzard. 1984. Mechanism of CI secretion in canine trachea: Changes in intracellular chloride activity with secretion. J. Membr. Biol. 81: 1–8.

    Article  PubMed  CAS  Google Scholar 

  245. Klyce, S. D., andR. K. S. Wong. 1977. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J. Physiol. (London) 266: 777–799.

    CAS  Google Scholar 

  246. Zadunaisky, J. A., K. R. Spring, and T. Shindo. 1979. Intracellular chloride activity in the corneal epithelium. Fed. Proc. 38: 1059.

    Google Scholar 

  247. Eveloff, J. R., R. Kinne, E. Kinne-Saffran, H. Murer, P. Silva, H. Epstein, J. Stoff, and W. B. Kinter. 1978. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pfluegers Arch. 378: 87–92.

    Article  CAS  Google Scholar 

  248. Welsh, M. J., P. L. Smith, andR. A. Frizzell. 1981. Intracellular chloride activities in the isolated perfused shark rectal gland. Clin. Res. 29: 480a.

    Google Scholar 

  249. Hannafin, J., E. Kinne-Saffran, D. Friedman, and R. Kinne. 1983. Presence of a sodium-potassium chloride cotransport system in the rectal gland of Squalus acanthias. J. Membr. Biol. 75: 73–83.

    Article  PubMed  CAS  Google Scholar 

  250. Roos, A., and W. F. Boron. 1981. Intracellular pH. Physiol. Rev. 61: 296–434.

    PubMed  CAS  Google Scholar 

  251. Boron, W. F., andE. L. Boulpaep. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Na-H exchange. J. Gen. Physiol. 81: 29–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Schultz, S.G. (1986). Cellular Models of Epithelial Ion Transport. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics