Skip to main content

Ion Movements in Skeletal Muscle in Relation to the Activation of Contraction

  • Chapter
Book cover Physiology of Membrane Disorders

Abstract

The dramatic event by which skeletal muscle, when stimulated, converts chemical energy into mechanical work has fascinated and puzzled physiologists for a long time(1) The interest with which the process of muscular activation has been studied was probably also aroused by the possibility of measuring accurately both the electrical activity associated with the outer membranous system and the mechanical output. The whole sequence of events which bridges these two processes has been intuitively called excitation-contraction coupling(2) Most of the current knowledge concerning this coupling is based on experiments performed in recent years, particularly on single amphibian and crustacean muscle fibers, a point to be borne in mind in any discussion on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.Hill, A. V. 1965. Trails and Trials in Physiology. Arnold, London. p. 374.

    Google Scholar 

  2. Sandow, A. 1952. Excitation—contraction coupling in muscular response. Yale J. Biol. Med. 25: 176–201.

    PubMed  CAS  Google Scholar 

  3. Huxley, A. F. 1971. The activation of striated muscle and its mechanical response. Proc. R. Soc. London Ser. B 178: 1–27.

    Article  CAS  Google Scholar 

  4. Costantin, L. L. 1971. Inward spread of activation in frog skeletal muscle. In: Contractility of Muscle Cells and Related Processes. R. J. Podolsky, ed. Prentice-Hall, Englewood Cliffs, N.J. pp. 89–98.

    Google Scholar 

  5. Page, S. G. 1965. A comparison of the fine structures of frog slow and twitch muscle fibers. J. Cell Biol. 26: 477–497.

    Article  PubMed  CAS  Google Scholar 

  6. Peachey, L. D. 1965. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell Biol. 25: 209–231.

    Article  PubMed  Google Scholar 

  7. Peachey, L. D., and R. F. Schild. 1968. The distribution of the T-system along the sarcomeres of frog and toad sartorius muscles. J. Physiol. (London) 194: 249–258.

    CAS  Google Scholar 

  8. Franzini-Armstrong, C., and L. D. Peachey. 1981. Striated muscle—Contractile and control mechanism. J. Cell Biol. 91: 166s–186s.

    Article  PubMed  CAS  Google Scholar 

  9. Page, S. G. 1964. The organization of the sarcoplasmic reticulum in frog muscle. J. Physiol (London) 175: 10P–11 P.

    Google Scholar 

  10. Huxley, H. E. 1964. Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature (London) 202: 1067–1071.

    Article  CAS  Google Scholar 

  11. Franzini-Armstrong, C., L. Landmesser, and G. Pilar. 1975. Size and shape of transverse tubule openings in frog twitch muscle fibers. J. Cell Biol. 64: 493–497.

    Article  PubMed  CAS  Google Scholar 

  12. Dulhunty, A. F., and C. Franzini-Armstrong. 1975. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. (London) 250: 513–539.

    CAS  Google Scholar 

  13. Zampighi, G., J. Vergara, and F. Ramon. 1975. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle: Are caveolae the mouths of the transverse tubule system? J. Cell Biol 64: 734–740.

    Article  PubMed  CAS  Google Scholar 

  14. Mobley, B. A., and B. R. Eisenberg. 1975. Sizes of components in frog skeletal muscle measured by methods of stereology. J. Gen. Physiol 66: 31–45.

    Article  PubMed  CAS  Google Scholar 

  15. Hodgkin, A. L., and S. Nakajima. 1972. Analysis of the membrane capacity in frog muscle. J. Physiol (London) 221: 121–136.

    CAS  Google Scholar 

  16. Franzini-Armstrong, C. 1970. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol 47: 488–499.

    Article  PubMed  CAS  Google Scholar 

  17. Franzini-Armstrong, C. 1975. Membrane particles and transmission at the triad. Fed. Proc. 34: 1382–1389.

    PubMed  CAS  Google Scholar 

  18. Franzini-Armstrong, C., and G. Nunzi. 1983. Junctional feet and particles in the triads of a fast-twitch muscle fibre. J. Muse. Res. Cell Motil 4: 233–252.

    Article  CAS  Google Scholar 

  19. Eisenberg, B. R., and A. Gilai. 1979. Structural changes in single muscle fibers after stimulation at a low frequency. J. Gen. Physiol 74: 1–16.

    Article  PubMed  CAS  Google Scholar 

  20. Eisenberg, B. R., and R. S. Eisenberg. 1982. The T-SR junction in contracting single skeletal muscle fibers. J. Gen. Physiol 79:1–19.

    Article  Google Scholar 

  21. Zachar, J. 1971. Electrogenesis and Contractility in Skeletal Muscle Cells. University Park Press, Baltimore, p. 638.

    Google Scholar 

  22. Baker, P. F., and H. Reuter. 1975. Calcium Movement in Excitable Cells. Pergamon Press, Elmsford, N.Y. p. 102.

    Google Scholar 

  23. Adrian, R. H. 1960. Potassium chloride movement and the membrane potential of frog muscle. J. Physiol (London) 151: 154–185.

    CAS  Google Scholar 

  24. Adrian, R. H. 1961. Internal chloride concentration and chloride efflux of frog muscle. J. Physiol (London) 156: 623–632.

    CAS  Google Scholar 

  25. Hodgkin, A. L., and P. Horowicz. 1959. Movements of Na and K in single muscle fibres. J. Physiol (London) 145: 405–432.

    CAS  Google Scholar 

  26. Hodgkin, A. L., and P. Horowicz. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol (London) 148: 127–160.

    CAS  Google Scholar 

  27. Eisenberg, R. S., and P. W. Gage. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J. Gen. Physiol 53: 279–297.

    Article  PubMed  CAS  Google Scholar 

  28. Palade, P. T., and R. L. Barchi. 1977. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids. J. Gen. Physiol 69: 879–896.

    Article  PubMed  CAS  Google Scholar 

  29. Dulhunty, A. F. 1979. Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. J. Membr. Biol 45: 293–310.

    Article  PubMed  CAS  Google Scholar 

  30. Hodgkin, A. L., and P. Horowicz. 1957. The differential action of hypertonic solutions on the twitch and action potential of a muscle fibre. J. Physiol (London) 136: 17 P.

    Google Scholar 

  31. Nastuk, W. L., and A. L. Hodgkin. 1950. The electrical activity of single muscle fibers. J. Cell Comp. Physiol 35: 39–74.

    Article  CAS  Google Scholar 

  32. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Voltage clamp experiments in striated muscle fibres. J. Physiol (London) 208: 607–644.

    CAS  Google Scholar 

  33. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Slow changes in potassium permeability in skeletal muscle. J. Physiol (London) 208: 645–668.

    CAS  Google Scholar 

  34. Ildefonse, M., and O. Rougier. 1972. Voltage clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. J. Physiol (London) 222: 373–395.

    CAS  Google Scholar 

  35. Ildefonse, M., and G. Roy. 1972. Kinetic properties of the sodium current in striated muscle fibres on the basis of the Hodgkin- Huxley theory. J. Physiol (London) 227: 419–431.

    CAS  Google Scholar 

  36. Freygang, W. H., Jr., D. A. Goldstein, and D. C. Hellam. 1964. The after-potential that follows trains of impulses in frog muscle fibers. J. Gen. Physiol. 47: 929–952.

    Article  PubMed  Google Scholar 

  37. Kirsch, G. C., R. A. Nichols, and S. Nakajima. 1978. Delayed rectification in the transverse tubule. J. Gen. Physiol. 70: 1–12.

    Article  Google Scholar 

  38. Stanfield, P. R. 1975. The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle. J. Physiol. (London) 251: 711–735.

    CAS  Google Scholar 

  39. Sjodin, R. A. 1982. Transport of electrolytes in muscle. J. Membr. Biol. 68: 161–178.

    Article  PubMed  CAS  Google Scholar 

  40. Stefani, E., and D.J. Chiarandini. 1982. Ionic channels in skeletal muscle. Annu. Rev. Physiol. 44: 357–372.

    Article  PubMed  CAS  Google Scholar 

  41. Stanfield, P. R. 1977. A calcium dependent inward current in frog skeletal muscle fibres. Pfluegers Arch. 368: 267–270.

    Article  CAS  Google Scholar 

  42. Sánchez, J. A., and E. Stefani. 1978. Inward calcium current in twitch muscle fibres of the frog. J. Physiol. (London) 283: 197–209.

    Google Scholar 

  43. Nicola-Siri, L., J. A. Sánchez, and E. Stefani. 1980. Effect of glycerol treatment on the calcium current of frog skeletal muscle. J. Physiol. (London) 305: 87–96.

    Google Scholar 

  44. Aimers, W., and P. T. Palade. 1981. Slow calcium and potassium currents across frog muscle membrane: Measurements with a Vaseline-gap technique. J. Physiol. (London) 312: 159–176.

    Google Scholar 

  45. Takeda, K. 1977. Prolonged sarcotubular regenerative response in frog sartorius muscle. Jap. J. Physiol. 27: 379–389.

    Article  CAS  Google Scholar 

  46. Potreau, D., and G. Raymond. 1982. Existence of a sodium-induced calcium release mechanism in frog skeletal muscle fibres. J. Physiol. (London) 333: 463–480.

    CAS  Google Scholar 

  47. Aimers, W., E. W. McCleskey, and P. T. Palade. 1984. A nonselective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J. Physiol. (London) 353: 565–583.

    Google Scholar 

  48. Aimers, W., and E. W. McCleskey. 1984. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore. J. Physiol. (London) 353: 585–608.

    Google Scholar 

  49. Stühmer, W., and W. Aimers. 1982. Photobleaching through glass micropipettes: Sodium channels without lateral mobility in the sarcolemma of frog skeletal muscle. Proc. Natl. Acad. Sci. USA 79: 946–950.

    Article  PubMed  Google Scholar 

  50. Aimers, W., R. Fink, and N. Shepherd. 1982. Lateral distribution of ionic channels in the cell membrane of skeletal muscle. In: Disorders of the Motor Unit. D. L. Scotland, ed. Wiley, New York. pp. 349–366.

    Google Scholar 

  51. Aimers, W., P. R. Stanfield, and W. Stühmer. 1983. Lateral distribution of sodium and potassium channels in frog skeletal muscle: Measurements with a patch-clamp technique. J. Physiol. (London) 336: 261–284.

    Google Scholar 

  52. Stanfield, P. R., N. B. Standen, C. A. Leech, andF. M. Ashcroft. 1981. Inward rectification in skeletal muscle fibres. Adv. Physiol. Sci. 5: 247–262.

    CAS  Google Scholar 

  53. Lüttgau, H. C. 1965. The effect of metabolic inhibitors on the fatigue of the action potential in single muscle fibres. J. Physiol. (London) 178: 45–67.

    Google Scholar 

  54. Fink, R., S. Hase, H. C. Lüttgau, and E. Wettwer. 1983. The effect of cellular energy reserves and internal Ca2 + on the potassium conductance in skeletal muscle of the frog. J. Physiol. (London) 336: 211–228.

    CAS  Google Scholar 

  55. Barrett, J. N., K. L. Magleby, andB. S. Pallotta. 1982. Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (London) 331: 211–230.

    CAS  Google Scholar 

  56. Methfessel, C., and G. Boheim. 1982. The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism. Biophys. Struct. Mech. 9: 35–60.

    Article  PubMed  CAS  Google Scholar 

  57. Lüttgau, H. C., and E. Wettwer. 1983. Ca2 + -activated potassium conductance in metabolically exhausted skeletal muscle fibres. Cell Calcium 4: 331–341.

    Article  PubMed  Google Scholar 

  58. Bezanilla, F., C. Caputo, H. Gonzales-Serratos, and R. A. Venosa. 1972. Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. J. Physiol. (London) 223: 507–523.

    CAS  Google Scholar 

  59. Aimers, W., R. Fink, and P. T. Palade. 1981. Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization. J. Physiol. (London) 312: 177–207.

    Google Scholar 

  60. Adrian, R. H., and S. H. Bryant. 1974. On the repetitive discharge in myotonic muscle fibres. J. Physiol. (London) 240: 505–515.

    CAS  Google Scholar 

  61. Huxley, A. F., and R. E. Taylor. 1955. Function of Krause’s membrane. Nature (London) 176: 1068.

    Article  CAS  Google Scholar 

  62. Costantin, L. L. 1970. The role of sodium current in the radial spread of contraction in frog muscle fibers. J. Gen. Physiol. 55: 703–715.

    Article  PubMed  CAS  Google Scholar 

  63. Huxley, A. F. 1974. Review lecture: Muscular contraction. J. Physiol. (London) 243: 1–43.

    CAS  Google Scholar 

  64. Costantin, L. L. 1975. Contractile activation in skeletal muscle. Prog. Biophys. Mol. Biol. 29: 197–224.

    Article  PubMed  CAS  Google Scholar 

  65. Lüttgau, H. C., and H. G. Glitsch. 1976. Membrane physiology of nerve and muscle fibres. Fortschr. Zool. 24: 1–132.

    PubMed  Google Scholar 

  66. Huxley, A. F., and R. E. Taylor. 1958. Local activation of striated muscle fibres. J. Physiol. (London) 144: 426–441.

    CAS  Google Scholar 

  67. Adrian, R. H., L. L. Costantin, and L. D. Peachey. 1969. Radial spread of contraction in frog muscle fibres. J. Physiol. (London) 204: 231–257.

    CAS  Google Scholar 

  68. Nakajima, S., and A. Gilai. 1980. Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes. J. Gen. Physiol. 76: 751–762.

    Article  PubMed  CAS  Google Scholar 

  69. Jaimovich, E., R. A. Venosa, P. Shrager, and P. Horowicz. 1975. Tetrodotoxin (TTX) binding in normal and “detubulated” frog sartorius muscle. Biophys. J. 15: 255a.

    Google Scholar 

  70. Frank, G. B. 1982. Roles of extracellular and “trigger” calcium ions in excitation-contraction coupling in skeletal muscle. Can. J. Physiol. Pharmacol. 60: 427 - 439.

    Article  PubMed  CAS  Google Scholar 

  71. Schneider, M. F., and W. K. Chandler. 1973. Voltage dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling. Nature (London) 242: 244–246.

    Article  CAS  Google Scholar 

  72. Mathias, R. T., R. A. Levis, andR. S. Eisenberg. 1980. Electrical models of excitation contraction coupling and charge movement in skeletal muscle. J. Gen. Physiol. 76: 1–31.

    Article  PubMed  CAS  Google Scholar 

  73. Hodgkin, A. L., and P. Horowicz. 1960. Potassium contractures in single muscle fibres. J. Physiol. (London) 153: 386–403.

    CAS  Google Scholar 

  74. Caputo, C., and P. Fernandez de Bolanōs. 1979. Membrane potential, contractile activation and relaxation rates in voltage clamped short muscle fibres of the frog. J. Physiol. (London) 289: 175–189.

    CAS  Google Scholar 

  75. Lüttgau, H. C., and H. Oetliker. 1968. The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J. Physiol. (London) 194: 51–74.

    Google Scholar 

  76. Nagai, T., M. Takauji, I. Kosaka, and M. Tsutsu-Ura. 1979. Biphasic time course of inactivation of potassium contractures in single twitch muscle fibers of the frog. Jpn. J. Physiol. 29: 539–549.

    Article  PubMed  CAS  Google Scholar 

  77. Ford, L. E., and R. J. Podolsky. 1970. Regenerative calcium release within muscle cells. Science 167: 58–59.

    Article  PubMed  CAS  Google Scholar 

  78. Endo, M., M. Tanaka, and Y. Ogawa. 1970. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature (London) 228: 34–36.

    Article  CAS  Google Scholar 

  79. Sandow, A. 1965. Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev. 17: 265–320.

    PubMed  CAS  Google Scholar 

  80. Lüttgau, H. C., and W. Spiecker. 1979. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog. J. Physiol. (London) 296: 411–429.

    Google Scholar 

  81. Cota, G., and E. Stefani. 1981. Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres. J. Physiol (London) 317: 303–316.

    CAS  Google Scholar 

  82. Gonzalez-Serratos, H., R. Valle-Aguilera, D. A. Lathrop, and M. del Carmen Garcia. 1982. Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature (London) 298: 292–294.

    Article  CAS  Google Scholar 

  83. Lüttgau, H. C., W. Melzer, and W. Spiecker. 1981. The role of external Ca2+ in excitation contraction coupling. Adv. Physiol. Sci. 5: 375–388.

    Google Scholar 

  84. Blinks, J. R., R. Rüdel, and S. R. Taylor. 1978. Calcium transients in isolated amphibian skeletal muscle fibres: Detection with aequorin. J. Physiol. (London) 277: 291–323.

    CAS  Google Scholar 

  85. Kumbaraci, N. M., and W. L. Nastuk. 1982. Action of caffeine in excitation-contraction coupling of frog skeletal muscle fibres. J. Physiol. (London) 325: 195–211.

    CAS  Google Scholar 

  86. Endo, M. 1975. Conditions required for calcium-induced release of calcium from the sarcoplasmic reticulum. Proc. Jpn. Acad. 51: 467–472.

    CAS  Google Scholar 

  87. Thorens, S., and M. Endo. 1975. Calcium-induced calcium release and “depolarization”-induced calcium release: Their physiological significance. Proc. Jpn. Acad. 51: 473–478.

    CAS  Google Scholar 

  88. Moisescu, D. G., and R. Thieleczek. 1978. Calcium and strontium concentration changes within skinned muscle preparations following a change in the external bathing solution. J. Physiol. (London) 275: 241–262.

    CAS  Google Scholar 

  89. Stephenson, D. G., and D. A. Williams. 1980. Activation of skinned arthropod muscle fibres by Ca2+ and Sr2+. J. Muse. Res. Cell Motil. 1: 73–87.

    Article  CAS  Google Scholar 

  90. Eisenberg, R. S., R. T. McCarthy, and R. L. Milton. 1983. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600. J. Physiol. (London) 341: 495–505.

    CAS  Google Scholar 

  91. Hui, C. S., R. L. Milton, andR. S. Eisenberg. 1983. Elimination of charge movement in skeletal muscle by a calcium antagonist. Biophys. J. 41: 178a.

    Google Scholar 

  92. Chandler, W. K., R. F. Rakowski, and M. F. Schneider. 1976. A non-linear voltage dependent charge movement in frog skeletal muscle. J. Physiol. (London) 254: 245–283.

    CAS  Google Scholar 

  93. Chandler, W. K., R. F. Rakowski, and M. F. Schneider. 1976. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J. Physiol. (London) 254: 285–316.

    CAS  Google Scholar 

  94. Adrian, R. H., and W. Aimers. 1976. Charge movement in the membrane of striated muscle. J. Physiol. (London) 254: 339–360.

    CAS  Google Scholar 

  95. Adrian, R. H., W. K. Chandler, and R. F. Rakowski. 1976. Charge movement and mechanical repriming in skeletal muscle. J. Physiol. (London) 254: 36–388.

    Google Scholar 

  96. Hodgkin, A. L., and A. F. Huxley. 1952. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (London) 116: 497–506.

    CAS  Google Scholar 

  97. Rakowski, R. F. 1981. Immobilization of membrane charge in frog skeletal muscle by prolonged depolarization. J. Physiol. (London) 317: 129–148.

    CAS  Google Scholar 

  98. Rakowski, R. F. 1981. Inactivation and recovery of membrane charge movement in skeletal muscle. In: The Regulation of Muscle Contraction. A. D. Grinell and M. A. B. Brazier, eds. Academic Press, New York. pp. 23–37.

    Google Scholar 

  99. Almers, W. 1975. Observations on intramembrane charge movements in skeletal muscle. Philos. Trans. R. Soc. London Ser. B. 270: 507–513.

    Article  CAS  Google Scholar 

  100. Almers, W. 1978. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82: 96–190.

    Article  PubMed  CAS  Google Scholar 

  101. Adrian, R. H. 1978. Charge movement in the membrane of striated muscle. Annu. Rev. Biophys. Bioeng. 7: 85–112.

    Article  PubMed  CAS  Google Scholar 

  102. Schneider, M. F. 1981. Membrane charge movement and depolarization-contraction coupling. Annu. Rev. Physiol. 43: 507–517.

    Article  PubMed  CAS  Google Scholar 

  103. Gilly, W. F. 1981. Intramembrane charge movements and excita- tion-contraction (E-C) coupling. In: The Regulation of Muscle Contraction. A. D. Grinell and M. A. B. Brazier, eds. Academic Press, New York. pp. 3–22.

    Google Scholar 

  104. Horowicz, P., and M. F. Schneider. 1981. Membrane charge moved at contraction thresholds in skeletal muscle fibres. J. Physiol. (London) 314: 595–633.

    CAS  Google Scholar 

  105. Caputo,C.,G. Gottschalk, and H.C. Lüttgau. 1981. The control of contraction activation by the membrane potential. Experientia 37: 580–581.

    Article  Google Scholar 

  106. Kovacs,L., and G. Sziics. 1983. Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog. J. Physiol. (London) 341: 559–578.

    Google Scholar 

  107. Weber, A., R. Herz, and I. Reiss. 1964. The regulation of myofibrillar activity by calcium. Proc. R. Soc. London Ser. B 160: 489–501.

    Article  CAS  Google Scholar 

  108. Desmedt, I. E., and K. Hainaut. 1977. Inhibition of the intracellular release of calcium by dantrolene in barnacle giant muscle fibres. J. Physiol. (London) 265: 565–585.

    CAS  Google Scholar 

  109. Hui, C. S. 1983. Pharmacological studies of charge movement in frog skeletal muscle. J. Physiol. (London) 337: 509–529.

    CAS  Google Scholar 

  110. Hui, C. S. 1983. Differential properties of two charge components in frog skeletal muscle. J. Physiol. (London) 337: 531–552.

    CAS  Google Scholar 

  111. Huang, C. L.-H. 1982. Pharmacological separation of charge movement components in frog skeletal muscle. J. Physiol. (London) 324: 375–387.

    CAS  Google Scholar 

  112. Vergara, J., and C. Caputo. 1983. Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 80: 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  113. Foulks, J.G., J. A. D.Miller, and F.A.Perry. 1973. Repolariza- tion-induced reactivation of contracture tension in frog skeletal muscle. Can. J. Physiol. Pharmacol. 51: 324–334.

    Article  PubMed  CAS  Google Scholar 

  114. Gomolla, M., G. Gottschalk, and H. C. Lüttgau. 1983. Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres. J. Physiol. (London) 343: 197–214.

    CAS  Google Scholar 

  115. Lüttgau, H. C., G. Gottschalk, L. Kovács, and M. Fuxreiter. 1983. How perchlorate improves excitation-contraction coupling in skeletal muscle fibers. Biophys. J. 43: 247–249.

    Article  PubMed  Google Scholar 

  116. Dulhunty, A. F., and P. W. Gage. 1983. Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rats. J. Physiol. (London) 341: 213–231.

    CAS  Google Scholar 

  117. Mathias, R. T., R. A. Levis, and R. S. Eisenberg. 1981. An alternative interpretation of charge movement in muscle. In: The Regulation of Muscle Contraction. A. D. Grinell and M. A. B. Brazier, eds. Academic Press, New York. pp. 39–52.

    Google Scholar 

  118. Huang, C. L.-H. 1983. Experimental analysis of alternative models of charge movement in frog skeletal muscle. J. Physiol. (London) 336: 527–543.

    CAS  Google Scholar 

  119. Stephenson, E. W. 1981. Activation of fast skeletal muscle: Contributions of studies on skinned fibers. Am. J. Physiol. 240: C1–C19.

    PubMed  CAS  Google Scholar 

  120. Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1981. Optical studies in skeletal muscle using probes of membrane potential. In: The Regulation of Muscle Contraction. A. D. Grinell and M. A. B. Brazier, eds. Academic Press, New York. pp. 97–130.

    Google Scholar 

  121. Oetliker, H. 1982. An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle. J. Muse. Res. Cell Motil. 3: 247–272.

    Article  CAS  Google Scholar 

  122. Somlyo, A. V., H. Shuman, and A. P. Somlyo. 1977. Elemental distribution in striated muscle and the effects of hypertonicity: Electron probe analysis of cryo sections. J. Cell Biol. 74: 828–857.

    Article  PubMed  CAS  Google Scholar 

  123. Somlyo, A. V., H. Gonzalez-Serratos, H. Shuman, G. McClellan, and A. P. Somlyo. 1981. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron-probe study. J. Cell Biol. 90: 577–594.

    Article  PubMed  CAS  Google Scholar 

  124. Kasai, M., T. Kanemasa, and S. Fukumoto. 1979. Determination of reflection coefficients for various ions and neutral molecules in sarcoplasmic reticulum vesicles through osmotic volume change studied by stopped flow technique. J. Membr. Biol. 51: 311–324.

    Article  PubMed  CAS  Google Scholar 

  125. Miller, C., and E. Racker. 1976. Ca2 +-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membr. Biol. 30: 283–300.

    Article  PubMed  CAS  Google Scholar 

  126. Miller, C. 1978. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. J. Membr. Biol. 40: 1–23.

    PubMed  CAS  Google Scholar 

  127. Ebashi, S., M. Endo, and I. Ohtsuki. 1969. Control of muscle contraction. Q. Rev. Biophys. 2: 351–384.

    Article  PubMed  CAS  Google Scholar 

  128. Weber, A., and J. M. Murray. 1973. Molecular control mechanisms in muscle contraction. Physiol. Rev. 53: 612–673.

    PubMed  CAS  Google Scholar 

  129. Lehmann, W., and A. G. Szent-Gyorgyi. 1975. Regulation of muscular contraction. J. Gen. Physiol. 65: 1–30.

    Article  Google Scholar 

  130. Potter, J. D., and J. Gergely. 1974. Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13: 2697–2703.

    Article  PubMed  CAS  Google Scholar 

  131. Chantler, P. D., and A. G. Szent-Gyorgyi. 1980. Regulatory light chains and scallop myosin: Full dissociation, reversibility and cooperative effects. J. Mol. Biol. 138: 473–492.

    Article  PubMed  CAS  Google Scholar 

  132. Huxley, H. E. 1969. The mechanism of muscular contraction. Science 164: 1356–1366.

    Article  PubMed  CAS  Google Scholar 

  133. Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30: 383–434.

    PubMed  CAS  Google Scholar 

  134. Squire, J. M. 1974. Symmetry and three-dimensional arrangement of filaments in vertebrate skeletal muscle. J. Mol. Biol. 90 153–160.

    Article  PubMed  CAS  Google Scholar 

  135. Gordon, A. M., A. F. Huxley, and F. J. Julian. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (London) 184: 170–192.

    CAS  Google Scholar 

  136. Elliott, G. F., J. Lowy, and C. R. Worthington. 1963. An X-ray and light diffraction study of the filament lattice of striated muscle in the living state and rigor. J. Mol. Biol. 6: 295–305.

    Article  Google Scholar 

  137. Hanson, J., and J. Lowy. 1963. The structure of actin and of actin filaments isolated from muscle. J. Mol. Biol. 6: 46–60.

    Article  CAS  Google Scholar 

  138. Haselgrove, J. C. 1972. X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp. Quant. Biol. 37: 341–359.

    Google Scholar 

  139. Adelstein, R. S., M. A. Conti, D. R. Hathaway, and C. B. Klee. 1978. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′:5′ monophosphate- dependent protein kinase. J. Biol. Chem. 253: 8347–8350.

    PubMed  CAS  Google Scholar 

  140. Morgan, M., S. V. Perry, and J. Ottaway. 1976. Myosin light- chain phosphatase. Biochem. J. 157: 687–697.

    PubMed  CAS  Google Scholar 

  141. Stull, J. T., and C. W. High. 1977. Phosphorylation of skeletal muscle contractile proteins in vivo. Biochem. Biophys. Res. Commun. 77: 1078–1083.

    Article  CAS  Google Scholar 

  142. Moisescu, D. G. 1976. Kinetics of reaction in Ca-activated skinned muscle fibres. Nature (London) 262: 610–613.

    Article  CAS  Google Scholar 

  143. Stephenson, D. G., and D. A. Williams. 1981. Calcium-activation force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J. Physiol. (London) 317: 281–302.

    CAS  Google Scholar 

  144. Lehmann, W. 1978. Thick-filament-linked calcium regulation in vertebrate striated muscle. Nature (London) 274: 80–81.

    Article  Google Scholar 

  145. Chin, T. K., and A. J. Rowe. 1982. Biochemical properties of native myosin filaments. J. Muse. Res. Cell Motil. 3: 118.

    Google Scholar 

  146. Jóbsis, F. F., and M. J. O’Connor. 1966. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25: 246–252.

    Article  PubMed  Google Scholar 

  147. Miledi, R., I. Parker, and G. Schalow. 1977. Measurement of calcium transients in frog muscle by the use of arsenazo III. Proc. R. Soc. London Ser. B 198: 201–210.

    Article  CAS  Google Scholar 

  148. Kovócs, L., E. Ríos, and M. F. Schneider. 1979. Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature (London) 279: 391–396.

    Article  Google Scholar 

  149. Palade, P., and J. Vergara. 1982. Arsenazo III and antipyrylazo III calcium transients in single skeletal muscle fibers. J. Gen. Physiol. 79: 679–707.

    Article  PubMed  CAS  Google Scholar 

  150. Dubyak, G. R., and A. Scarpa. 1982. Sarcoplasmic Ca2 + transients during the contractile cycle of single barnacle muscle fibres: Measurements with arsenazo Ill-injected fibres. J. Muse. Res. Cell Motil. 3: 87–112.

    Article  CAS  Google Scholar 

  151. Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1982. Use of metallochromic dyes to measure changes in myoplasmic calcium during activity in frog skeletal muscle fibres. J. Physiol. (London) 331: 139–177.

    CAS  Google Scholar 

  152. Ashley, C. C., and E. B. Ridgway. 1970. On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J. Physiol. (London) 209: 105 - 130.

    CAS  Google Scholar 

  153. Ashley, C. C., P. C. Caldwell, A. K. Campbell, T. J. Lea, andD. G. Moisescu. 1976. Calcium movements in muscle. Symp. Soc. Exp. Biol. 30: 397–422.

    CAS  Google Scholar 

  154. Ashley, C. C., and A. K. Campbell. 1979. Detection and measurement of free calcium ions in cells. Elsevier, Amsterdam.

    Google Scholar 

  155. Eusebi, F., R. Miledi, and T. Takahashi. 1980. Calcium transients in mammalian muscles. Nature (London) 284: 560 - 561.

    Article  CAS  Google Scholar 

  156. Natori, R. 1954. The property and contraction process of isolated myofibrils. Jikeikai Med. J. 1: 119–126.

    Google Scholar 

  157. Hellam, D. C., and R. J. Podolsky. 1969. Force measurements in skinned muscle fibres. J. Physiol. (London) 200: 807–819.

    CAS  Google Scholar 

  158. Julian, F. J. 1971. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol. (London) 218: 117–145.

    CAS  Google Scholar 

  159. Godt, R. E., and B. D. Lindley. 1982. Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J. Gen. Physiol. 80 •219–291.

    Article  Google Scholar 

  160. Brandt, P. W., R. N. Cox, and M. Kawai. 1980. Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCatension relationship of skeletal muscle? Proc. Natl. Acad. Sci. USA 77: 4717 - 4720.

    Article  PubMed  CAS  Google Scholar 

  161. Ashley, C. C., and D. G. Moisescu. 1977. The effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of myofibrils isolated from single crustacean muscle fibres. J. Physiol. (London) 270: 627–652.

    CAS  Google Scholar 

  162. Simmons, R. M., and A. G. Szent-Györgyi. 1980. Control of tension development in scallop muscle fibers with foreign regulatory light chains. Nature (London) 286: 626–628.

    Article  CAS  Google Scholar 

  163. Ashley, C. C., and D. G. Moisescu. 1974. The influence of [Mg2+] and pH upon the isometric steady state tension-Ca2+ relationship in isolated bundles of myofibrils. J. Physiol. (London) 239: 112P–114 P.

    CAS  Google Scholar 

  164. Donaldson, S. K. B., and W. G. L. Kerrick. 1975. Characterization of the effects of Mg2+on Ca2 + - and Sr2+ -activated tension generation of skinned skeletal muscle fibers. J. Gen. Physiol. 66: 427–444.

    Article  PubMed  CAS  Google Scholar 

  165. Moisescu, D. G. 1975. The effect of [K+] on the calcium-induced development of tension in isolated bundles of myofibrils. Pfluegers Arch. 355: R62.

    Google Scholar 

  166. Fabiato, A., and F. Fabiato. 1978. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. (London) 276: 233–255.

    CAS  Google Scholar 

  167. Stephenson, D. G., and I. R. Wendt, 1984. Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J. Muse. Res. Cell Motil. 5: 243–272.

    Article  CAS  Google Scholar 

  168. Wendt, I. R., and D. G. Stephenson. 1983. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pfluegers Arch. 398: 210–216.

    Article  CAS  Google Scholar 

  169. Potter, J. D., and J. Gergely. 1975. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar ATPase. J. Biol. Chem. 250: 4628–4633.

    PubMed  CAS  Google Scholar 

  170. Fuchs, F., and C. Fox. 1982. Parallel measurements of bound calcium and force in glycerinated rabbit psoas muscle fibers. Biochim. Biophys. Acta 679: 110–115.

    Article  PubMed  CAS  Google Scholar 

  171. Ashley, C. C., and D. G. Moisescu. 1972. Model for the action of calcium in muscle. Nature New Biol. 237: 208–211.

    PubMed  CAS  Google Scholar 

  172. Pechere, J. F., J. Demaille, J. P., Capony, E. Dutruge, G. Baron, and C. Pina. 1975. Muscular parvalbumins: Some explorations into their possible biological significance. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 459–468.

    Google Scholar 

  173. Lehky, P., H. E. Blum, E. A. Stein, and E. H. Fischer. 1974. Isolation and characterization of parvalbumins from the skeletal muscle of higher vertebrates. J. Biol. Chem. 249: 4332–4334.

    PubMed  CAS  Google Scholar 

  174. Cox, J. A., D. R. Winge, and E. Stein. 1979. Calcium, magnesium and the conformation of parvalbumin during muscular activity. Biochimie 61: 501–605.

    Article  Google Scholar 

  175. Robertson, S. P., J. D. Johnson, and J. D. Potter. 1981. The time course of Ca2 + exchange with calmodulin, troponin, parvalbumin and myosin in response to transient increases in Ca2+. Biophys J. 34: 559–569.

    Article  PubMed  CAS  Google Scholar 

  176. Gillis, J. M., D. Thomason, J. Lefevre, and R. H. Kretsinger. 1982. Paralbumins and muscle relaxation: A computer simulation study. J. Muse. Res. Cell Motil. 3: 377–398.

    Article  CAS  Google Scholar 

  177. Cheung, W. Y. 1980. Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27.

    Article  PubMed  CAS  Google Scholar 

  178. Carafoli, E., K. Malmstrom, H. Capano, E. Sigel, and M. Crompton. 1975. Mitochondria and the regulation of cell calcium. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 53–64.

    Google Scholar 

  179. Scarpa, A. 1975. Kinetics and energy-coupling of Ca2+ transport in mitochondria. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 65–76.

    Google Scholar 

  180. Bygrave, F. L. 1978. Mitochondria and the control of intracellular calcium. Biol. Rev. 53: 43–79.

    Article  PubMed  CAS  Google Scholar 

  181. Portzehl, H., P. C. Caldwell, and J. C. Riiegg. 1964. The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta 79: 581–591.

    PubMed  CAS  Google Scholar 

  182. Hagiwara, S., and S. Nakajima. 1966. Effects of the intracellular [Ca2 +] upon the excitability of the muscle fiber membrane of a barnacle. J. Gen. Physiol. 49: 807–817.

    Article  PubMed  CAS  Google Scholar 

  183. Keynes, R. D., E. Rojas, R. E. Taylor, and J. Vergara. 1973. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J. Physiol. (London) 229: 409–455.

    CAS  Google Scholar 

  184. Coray, A., C. H. Fry, P. Hess, Y. A. S. McGuigan, and R. Weingart. 1980. Resting calcium in sheep cardiac tissue and in frog skeletal muscle measured with ion-selective micro-electrodes. J. Physiol. (London) 305: 60P–61 P.

    Google Scholar 

  185. Cosmos, E., and E.J. Harris. 1961. In vitro studies of the gain and exchange of calcium in frog skeletal muscle. J. Gen. Physiol. 44: 1121–1130.

    CAS  Google Scholar 

  186. DiPolo, R. 1973. Sodium-dependent calcium influx in dialysed barnacle muscle fibres. Biochim. Biophys. Acta 298: 279–283.

    Article  PubMed  CAS  Google Scholar 

  187. Ashley, C. C., J. C. Ellory, and K. Hainaut. 1974. Calcium movements in single crustacean muscle fibres. J. Physiol. (London) 242: 255–272.

    CAS  Google Scholar 

  188. Barritt, G. J. 1981. Calcium transport across cell membranes: Progress toward molecular mechanisms. Trends Biochem. Sci. 6: 322–325.

    Article  CAS  Google Scholar 

  189. DiPolo, R., and L. Beauge. 1980. Mechanisms of calcium transport in the giant axon of the squid and their physiological role. Cell Calcium 1: 147–169.

    Article  CAS  Google Scholar 

  190. Bianchi, C. P., and A. M. Shanes. 1959. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J. Gen. Physiol. 42: 803–815.

    Article  PubMed  CAS  Google Scholar 

  191. Curtis, B. A. 1966. Ca fluxes in single twitch muscle fibers. J. Gen. Physiol. 50: 255–267.

    Article  PubMed  CAS  Google Scholar 

  192. Ashley, C. C., P. J. Griffiths, D. G. Moisescu, and R. M. Rose. 1975. The use of aequorin and the isolated myofibrillar bundle preparation to investigate the effect of SR calcium releasing agents. J. Physiol. (London) 245: 12P–14 P.

    CAS  Google Scholar 

  193. Hill, A. V. 1949. The abrupt transition from rest to activity in muscle. Proc. R. Soc. London Ser. B 136: 399–420.

    Article  CAS  Google Scholar 

  194. Winegrad, S. 1968. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. Gen. Physiol. 51: 65–83.

    Article  PubMed  CAS  Google Scholar 

  195. Curtis, B. 1970. Calcium efflux from frog twitch muscle fibers. J. Gen. Physiol. 55: 243–253.

    Article  CAS  Google Scholar 

  196. Ford, L. E., and R. J. Podolsky. 1972. Calcium uptake and force development by skinned muscle fibres in EGTA buffered solutions. J. Physiol. (London) 233: 1–19.

    Google Scholar 

  197. Ashley, C. C., P. C. Caldwell, and A. G. Lowe. 1972. The efflux of calcium from single crab and barnacle muscle fibres. J. Physiol. (London) 223: 735–755.

    CAS  Google Scholar 

  198. Winegrad, S. 1965. Autoradiographic studies of intracellular calcium in frog skeletal muscle. J. Gen. Physiol. 48: 455–479.

    Article  PubMed  CAS  Google Scholar 

  199. Costantin, L. L., C. Franzini-Armstrong, and R. J. Podolsky. 1965. Localization of calcium-accumulating structures in striated muscle fibers. Science 147: 158–160.

    Article  PubMed  CAS  Google Scholar 

  200. Pease, D. C., D. J. Jenden, and J. N. Howell. 1965. Calcium uptake in glycerol-extracted rabbit psoas muscle fibres. II. Electron microscopic localization of uptake sites. J. Cell. Comp. Physiol. 65: 141–154.

    Article  CAS  Google Scholar 

  201. Campbell, K. P., C. Franzini-Armstrong, and A. E. Shamoo. 1980. Further characterization of light and heavy sarcoplasmic reticulum vesicles: Identification of the “sarcoplasmic feet” associated with heavy sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 602: 97–116.

    Article  PubMed  CAS  Google Scholar 

  202. MacLennan, D. H., and P. G. Wong. 1971. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 68: 1231–1235.

    Article  PubMed  CAS  Google Scholar 

  203. Jorgensen, A. O., V. Kalnins, and D. H. MacLennan. 1979. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. J. Cell Biol. 80: 372–384.

    Article  PubMed  CAS  Google Scholar 

  204. Hasselbach, W. 1964. Relaxing factor and the relaxation of muscle. Prog. Biophys. Mol. Biol. 14: 167–222.

    Article  CAS  Google Scholar 

  205. Hasselbach, W. 1979. The sarcoplasmic calcium pump: A model of energy transduction in biological membranes. Fortschr. Chem. Forsch. 78: 1–56.

    CAS  Google Scholar 

  206. Weber, A., R. Herz, and I. Reiss. 1966. Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum. Biochem. Z. 345: 329–369.

    CAS  Google Scholar 

  207. Martonosi, A. 1972. Biochemical and clinical aspects of sarcoplasmic reticulum function. Curr. Top. Membr. Transp. 3: 83–197.

    Article  CAS  Google Scholar 

  208. de Meis, L., and A. L. Vianna. 1979. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 48: 275–292.

    Article  PubMed  Google Scholar 

  209. Tada, M., T. Yamamoto, and Y. Tonomura. 1978. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol. Rev. 58: 1–72.

    PubMed  CAS  Google Scholar 

  210. Hasselbach, W., and M. Makinose. 1963. Über den Mechanismus des Calciumtransportes durch die Membranen des sarko-plasmatischen Retikulums. Biochem. Z. 339: 94–111.

    PubMed  CAS  Google Scholar 

  211. Martonosi, A. N. 1975. The mechanism of Ca transport in sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 313–327.

    Google Scholar 

  212. Chiesi, M., and G. Inesi. 1980. Adenosine 5′-triphosphate dependent fluxes of manganese and hydrogen ions in sarcoplasmic reticulum vesicles. Biochemistry 19: 2912–2918.

    Article  PubMed  CAS  Google Scholar 

  213. Beeler, T. J., R. H. Farmen, and A. N. Martonosi. 1981. The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum. J. Membr. Biol. 62: 113–137.

    Article  PubMed  CAS  Google Scholar 

  214. Makinose, M., and W. Hasselbach. 1971. ATP synthesis by the reversal of the sarcoplasmic calcium pump. FEBS Lett. 12: 271–272.

    Article  PubMed  CAS  Google Scholar 

  215. Carvalho, A. P., M. G. P. Vale, and V. R. O. e Castro. 1975. Utilization of X-537A to differentiate between intravesicular and membrane bound Ca2+ in sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam. pp. 349–358.

    Google Scholar 

  216. Ogawa, Y. 1970. Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine. J. Biochem. (Tokyo) 67: 667–683.

    CAS  Google Scholar 

  217. Ashley, C. C., and D. G. Moisescu. 1973. The mechanism of the free calcium change in single muscle fibres during contraction. J. Physiol. (London) 231: 23P–25 P.

    CAS  Google Scholar 

  218. Moisescu, D. G. 1973. The intracellular control and action of calcium in striated muscle and the forces responsible for the stability of the myofilament lattice. Ph.D. thesis. University of Bristol.

    Google Scholar 

  219. Ashley, C. C., D. G. Moisescu, and R. M. Rose. 1974. Kinetics of calcium during contraction: Myofibrillar and SR fluxes during a single response of a skeletal muscle fibre. In: Calcium Binding Proteins. W. Drabikowski, H. Strzelecka-Golaszewska, and E. Carafoli, eds. North-Holland, Amsterdam, pp. 609–642.

    Google Scholar 

  220. Lüttgau, H. C., and D. G. Moisescu. 1978. Ion movements in skeletal muscle in relation to the activation of contraction. In: Physiology of Membrane Disorders. T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds. Plenum Press, New York. pp. 493–515.

    Google Scholar 

  221. Beeler, T. J., A. Schibeci, and A. Martonosi. 1980. The binding of arsenazo III to cell components. Biochim. Biophys. Acta 629: 317–327.

    PubMed  CAS  Google Scholar 

  222. Rios, E., and M. F. Schneider. 1979. Stoichiometry of the reactions of calcium with the metallochromic indicator dyes anti-pyrylazo III and arsenazo III. Biophys. J. 36: 607–621.

    Article  Google Scholar 

  223. Thomas, M. V. 1979. Arsenazo IE forms 2:1 complexes with Ca2 + and 1:1 complexes with Mg under physiological conditions. Biophys. J. 25: 541–548.

    Article  PubMed  CAS  Google Scholar 

  224. Blinks, J. R., F. G. Prendergast, and D. G. Allen. 1976. Photoproteins as biological calcium indicators. Pharmacol. Rev. 28: 1–93.

    PubMed  CAS  Google Scholar 

  225. Stephenson, D. G., and P. J. Sutherland. 1981. Studies on the luminescent response of the Ca-activated photoprotein obelin. Biochim. Biophys. Acta 678: 65–75.

    PubMed  CAS  Google Scholar 

  226. Stephenson, D. G., I. R. Wendt, and Q. G. Forrest. 1981. Nonuniform ion distributions and electrical potentials in sarcoplasmic regions of skeletal muscle fibres. Nature (London) 289: 690–692.

    Article  CAS  Google Scholar 

  227. Elliott, G. F., and E. M. Bartels. 1982. Donnan potential measurements in extended hexagonal polyelectrolyte gels such as muscle. Biophys J. 38: 195–199.

    Article  PubMed  CAS  Google Scholar 

  228. Naylor, G. R. S. 1982. Average electrostatic potential between the filaments in striated muscle and its relation to a simple Donnan potential. Biophys. J. 38: 201–204.

    Article  PubMed  CAS  Google Scholar 

  229. Close, R. I. 1981. Activation delays in frog twitch muscle fibres. J. Physiol. (London) 313: 81–100.

    CAS  Google Scholar 

  230. Stephenson, E. W. 1981. Ca dependence of stimulated 45Ca efflux in skinned muscle fibres. J. Gen. Physiol. 77: 419–443.

    Article  PubMed  CAS  Google Scholar 

  231. Goldman, Y. E., M. G. Hibberd, J. A. McCray, and D. R. Trentham. 1982. Relaxation of muscle fibres by photolysis of caged ATP. Nature (London) 300: 701–705.

    Article  CAS  Google Scholar 

  232. Johnson, J. D., S. C. Charlton, and J. D. Potter. 1979. A fluorescence stopped flow analysis of Ca2+ exchange with troponin C. J. Biol. Chem. 254: 3497–3502.

    PubMed  CAS  Google Scholar 

  233. Rosenfeld, S. S., and E. W. Taylor. 1985. Kinetic studies of calcium and magnesium binding to troponin C. J. Biol. Chem. 260: 242–251.

    PubMed  CAS  Google Scholar 

  234. Rosenfeld, S. S., and E. W. Taylor. 1985. Kinetic studies of calcium binding to regulatory complexes from skeletal muscle. J. Biol. Chem. 260: 251–261.

    Google Scholar 

  235. Hellam, D. C., and R.J. Podolsky. 1969. Force measurements in skinned muscle fibres. J. Physiol. (London) 200: 807–819.

    CAS  Google Scholar 

  236. Harafuji, H., and Y. Ogawa. 1980. Re-examination of the apparent binding constant of ethylene glycol bis (ß-amino-ethyl ether)-N,N,N’,N’-tetracetic acid with calcium around neutral pH. J. Biochem. (Tokyo) 87: B05–1312.

    Google Scholar 

  237. Harafuji, H., and Y. Ogawa. 1980. Re-examination of the apparent binding constant of ethylene glycol bis (ß-amino-ethyl ether)-N,N,N’,N’-tetracetic acid with calcium around neutral pH. J. Biochem. (Tokyo) 87: B05–1312.

    Google Scholar 

  238. Lio, T., and H. Kondo. 1981. Fluorescence titration and fluorescence stopped—flow studies of troponin C labeled with fluorescent maleimide reagent or dansylaziridine. J. Biochem. (Tokyo) 90: 163–173.

    Google Scholar 

  239. Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1984. Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from arsenazo III calcium transients. J. Physiol. (London) 344: 625–666.

    Google Scholar 

  240. Melzer, W., E. Rios, and M. F. Schneider. 1984. Time course of calcium release and removal in skeletal muscle fibers. Biophys. J. 45: 637–641.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Lüttgau, H.C., Stephenson, G.D. (1986). Ion Movements in Skeletal Muscle in Relation to the Activation of Contraction. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics