The Interaction of Hormones with Biological Membranes

  • Darrell D. Fanestil

Abstract

Hormones may be divided into two groups, based upon the cellular location from which they initiate their biological effects. The first group, composed of steroid hormones and thyroid hormone, generally exert their effects via initial interactions with a component (receptor) inside target cells. The second group, exemplified by peptide hormones and neurotransmitters, exert their effects via initial interactions with components (receptors) on the plasma membrane of target cells. In addition, the interaction of peptide hormones and neurotransmitters with membranes bears striking resemblance to the interaction with the plasma membrane of a number of other biological agents: prostaglandins, growth factors, and many pharmacological agents.

Keywords

Retina Angiotensin Histamine Prostaglandin Glucocorticoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tate, R. L., J. M. Holmes, L. D. Kohn, and R. J. Winand. 1975. Characteristics of solubilized thyrotropin receptor from bovine thyroid plasma membranes. J. Biol. Chem. 250: 6527–6533.PubMedGoogle Scholar
  2. 2.
    Freychet, P., R. Kahn, J. Roth, and D. M. Neville, Jr. 1973. Insulin receptors in liver cell plasma membranes. Excerpta Med. Int. Congr. Ser. 256: 335–340.Google Scholar
  3. 3.
    Westphal, U. 1971. High-affinity binding of estradiol and testosterone to serum proteins. Monogr. Endocrinol. 4: 356–374.Google Scholar
  4. 4.
    Fanestil, D. D., and I. S. Edelman. 1966. Characteristics of the nuclear receptors for aldosterone. Proc. Natl. Acad. Sci. USA 56: 872–879.PubMedCrossRefGoogle Scholar
  5. 5.
    Fressinad, P. H., P. Corval, J. P. Frenoy, and J. Menard. 1973. Purification of 125I-labeled lysine-vasopressin by affinity chromatography on Sepharose-bound neurophysins. Biochim. Biophys. Acta 317: 572–576.Google Scholar
  6. 6.
    Roy, C., and D. A. Ausiello. 1981. Characterization of (8-lysine) vasopressin binding sites on a pig kidney cell line (LLC-PKi). J. Biol. Chem. 256: 3415–3422.PubMedGoogle Scholar
  7. 7.
    Hazum, E., P. Cuatrecasas, J. Marian, and P. M. Conn. 1980. Receptor-mediated internalization of fluorescent gonadotropin-releasing hormone by pituitary gonadotropes. Proc. Natl. Acad. Sci. USA 77: 6692–6695.PubMedCrossRefGoogle Scholar
  8. 8.
    Willingham, M. C., and I. Pastan. 1980. The receptosome: An intermediate organelle of receptor-mediated endocytosis in cultured fibroblasts. Cell 21: 67–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Schneider, Y.-J., and A. Trouet. 1981. Effect of chloroquine and methylamine on endocytosis of fluorescein-labelled control Ig G and of anti-(plasma membrane) IgG by cultured fibroblasts. Eur. J. Biochem. 118: 33–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Jarett, L., and R. M. Smith. 1975. Ultra-structural localization of insulin receptors on adipocytes. Proc. Natl. Acad. Sci. USA 72: 3526–3530.PubMedCrossRefGoogle Scholar
  11. 11.
    Cuatrecasas, P., M. D. Hollenberg, K.-J. Chang, and V. Bennett. 1975. Hormone receptor complexes and their modulation of membrane function. Recent Prog. Horm. Res. 31: 37–94.PubMedGoogle Scholar
  12. 12.
    Klotz, I. M. 1982. Numbers of receptor sites from Scatchard graphs: Facts and fantasies. Science 217: 1247–1249.PubMedCrossRefGoogle Scholar
  13. 13.
    Munson, P. J., and D. Rodbard. 1983. Number of receptor sites from Scatchard and Klotz graphs: A constructive critique. Science 220: 979–981.PubMedCrossRefGoogle Scholar
  14. 14.
    Sasson, S., and A. C. Notides. 1982. The inhibition of the estrogen receptor’s positive cooperative [3H] estradiol binding by the antagonist, clomiphene. J. Biol. Chem. 257: 11540–11545.PubMedGoogle Scholar
  15. 15.
    Sasson, S., and A. C. Notides. 1983. Estriol and estrone interaction with the estrogen receptor. J. Biol. Chem. 258: 8113–8117.PubMedGoogle Scholar
  16. 16.
    Taylor, S. I. 1975. Binding of hormones to receptors: An alter¬native explanation on nonlinear Scatchard plots. Biochemistry 14: 2357–2361.PubMedCrossRefGoogle Scholar
  17. 17.
    Laduron, P. 1983. More binding, more fancy. TrendsPharm. Sci. 4: 333–335.CrossRefGoogle Scholar
  18. 18.
    Claire, M., M.-E. Oblin, J.-L. Steimer, H. Nakane, J. Misumi, A. Michaud, and P. Corvol. 1981. Effect of adrenalectomy and aldosterone on the modulation of mineralocorticoid receptors in rat kidney. J. Biol. Chem. 256: 142–147.PubMedGoogle Scholar
  19. 19.
    DeMeyts, P., J. Roth, D. M. Neville, Jr., J. R. Gavin, III, and M. A. Lesniak. 1973. Insulin interactions with its receptors: Experimental evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 55: 154–161.CrossRefGoogle Scholar
  20. 20.
    Harmon, J. T., E. S. Kempner, and C. R. Kahn. 1981. Demonstra¬tion by radiation inactivation that insulin alters the structure of the insulin receptor in rat liver membranes. J. Biol. Chem. 256: 7719–7722.PubMedGoogle Scholar
  21. 21.
    Slavin, B., and S. Yatziv. 1980. Hormone binding alters the con¬formation of the insulin receptor. Science 210: 1152–1153.CrossRefGoogle Scholar
  22. 22.
    DeLean, A., J. M. Stadel, and R. J. Lefkowitz. 1980. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled p-adrenergic receptor. J. Biol. Chem. 255: 7108–7117.Google Scholar
  23. 23.
    Rodbell, M. 1980. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature (London) 284: 17–22.CrossRefGoogle Scholar
  24. 24.
    Rizzoli, R. E., T. M. Murray, S. J. Marx, and G. D. Aurbach. 1983. Binding of radio-iodinated bovine parathyroid hormone-(l- 84) to canine renal cortical membranes. Endocrinology 112: 1303–1312.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffman, B. B., and R. J. Lefkowitz. 1980. Radioligand binding studies of adrenergic receptors: New insights into molecular and physiological regulation. Annu. Rev. Pharmacol. Toxicol. 20: 581–608.PubMedCrossRefGoogle Scholar
  26. 26.
    Venter, J. C., and C. M. Fraser. 1983. The structure of α- and (β- adrenergic receptors. Trends Pharm. Sci. 4: 256–258.CrossRefGoogle Scholar
  27. 27.
    Graham, R. M., H.-J. Hess, and C. J. Homey. 1982. Biophysical characterization of the purified α1-adrenergic receptor and identification of the hormone binding subunit. J. Biol. Chem. 257: 15174–15181.PubMedGoogle Scholar
  28. 28.
    Fujita-Yamaguchi, Y., S. Choi, Y. Sakamoto, and K. Itakura. 1983. Purification of insulin receptor with full binding activity. J. Biol. Chem. 258: 5045–5049.PubMedGoogle Scholar
  29. 29.
    Birnbaumer, M., W. T. Schrader, and B. W. O’Malley. 1983. Photoaffinity labeling of the chick progesterone receptor proteins. J. Biol. Chem. 258: 1637–1644.PubMedGoogle Scholar
  30. 30.
    Maturo, J. M., III, M. D. Hollenberg, and L. S. Aglio. 1983. Insulin receptor: Insulin-modulated interconversion between distinct molecular forms involving disulfide-sulfhydryl exchange. Biochemistry 22: 2579–2586.PubMedCrossRefGoogle Scholar
  31. 31.
    Corin, R. E., and D. B. Donner. 1982. Insulin receptors convert to a higher affinity state subsequent to hormone binding. J. Biol. Chem. 257: 104–110.PubMedGoogle Scholar
  32. 32.
    Bhaumick, B., R. M. Bala, and M. D. Hallenberg. 1981. Somatomedin receptor of human placenta: Solubilization, photolabeling, partial purification, and comparison with insulin receptor. Proc. Natl. Acad. Sci. USA 78: 4279–4283.PubMedCrossRefGoogle Scholar
  33. 33.
    Jacobs, S., and P. Cuatrecasas. 1983. Insulin receptors. Annu. Rev. Pharmacol. Toxicol. 23: 461–479.PubMedCrossRefGoogle Scholar
  34. 34.
    Czech, M. P. 1982. Structural and functional homologies in the receptors for insulin and the insulin-like growth factors. Cell 31: 8–10.PubMedCrossRefGoogle Scholar
  35. 34a.
    Czech, M. P., and J. Massague. 1982. Subunit structure and dynamics of the insulin receptor. Fed. Proc. 41: 2719–2723.PubMedGoogle Scholar
  36. 35.
    Hollenberg, M. D. 1982. Membrane receptors and hormone action. II. New perspectives for receptor-modulated cell function. Trends Pharm. Sci. 3: 25–28.CrossRefGoogle Scholar
  37. 36.
    Taylor, P., and S. M. Sine. 1982. Ligand occupation and the functional states of the nicotinic-cholinergic receptor. Trends Pharm. Sci. 3: 197–200.CrossRefGoogle Scholar
  38. 37.
    Walters, M. R., V. Hunziker, and A. W. Norman. 1981. Apparent nuclear localization of unoccupied receptors for 1,25-dihydroxy- vitamin D3. Biochem. Biophys. Res. Commun. 98: 990–996.PubMedCrossRefGoogle Scholar
  39. 38.
    Sheridan, P. J., J. M. Buchanan, V. C. Anselmo, and P. M. Martin. 1981. Unbound progesterone receptors are in equilibrium between nucleus and cytoplasm in cells of the rat uterus. Endocrinology 108: 1533–1537.PubMedCrossRefGoogle Scholar
  40. 39.
    Sheridan, P. J., J. M. Buchanan, V. C. Anselmo, and P. M. Martin. 1979. Equilibrium: The intracellular distribution of steroid receptors. Nature (London) 282: 579–582.CrossRefGoogle Scholar
  41. 40.
    Baulieu, E.-E. 1978. Cell membrane: A target for steroid hormones. Mol. Cell. Endocrinol. 12: 247–254.PubMedCrossRefGoogle Scholar
  42. 41.
    Duval, D., S. Durant, and F. Homo-Delarche. 1983. Non-genomic effects of steroids: Interactions of steroid molecules with membrane structures and functions. Biochim. Biophys. Acta 737: 409–442.PubMedGoogle Scholar
  43. 42.
    Koenig, H., A. Goldstone, and C. Y. Lu. 1982. Testosterone induces a rapid stimulation of endocytosis, amino acid and hexose transport in mouse kidney cortex. Biochem. Biophys. Res. Commun. 106: 346–353.PubMedCrossRefGoogle Scholar
  44. 43.
    Finidori-Lepicard, J., S. Schorderet-Slatkine, J. Hanoune, and E.- E. Baulieu. 1981. Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes. Nature (London) 292: 255–257.CrossRefGoogle Scholar
  45. 44.
    Sadler, S. E., and J. L. Mailer. 1982. Identification of a steroid receptor on the surface of Xenopus laevis oocytes by photoaffinity labeling. J. Biol. Chem. 257: 355–361.PubMedGoogle Scholar
  46. 45.
    Pascual, A., J. Casanova, and H. H. Samuels. 1982. Photoaffinity labeling of thyroid hormone nuclear receptors in intact cells. J. Biol. Chem. 257: 9640–9647.PubMedGoogle Scholar
  47. 46.
    Kasuga, M., F. A. Karlsson, and C. R. Kahn. 1982. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215: 185–187.PubMedCrossRefGoogle Scholar
  48. 47.
    Avruch, J., R. A. Nemenoff, P. J. Blackshear, M. W. Pierce, and R. Osathanondh. 1982. Insulin-stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membrane. J. Biol. Chem. 257: 15162–15166.PubMedGoogle Scholar
  49. 48.
    Roth, R. A., and D. J. Cassell. 1983. Insulin receptor: Evidence that it is a protein kinase. Science 219: 299–301.PubMedCrossRefGoogle Scholar
  50. 49.
    Shia, M. A., and P. F. Pilch. 1983. The 0 subunit of the insulin receptor is an insulin-activated protein kinase. Biochemistry 22: 717–721.PubMedCrossRefGoogle Scholar
  51. 50.
    Suzuki, K., and T. Kono. 1980. Evidence that insulin causes trans-location of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. USA 77: 2542–2545.PubMedCrossRefGoogle Scholar
  52. 51.
    Perisic, O., and J. A. Traugh. 1983. Protease-activated kinase II as the potential mediator of insulin-stimulated phosphorylation of ribosomal protein S6. J. Biol. Chem. 258: 9589–9592.PubMedGoogle Scholar
  53. 52.
    Seals, J. R., and M. P. Czech. 1982. Production by plasma membranes of a chemical mediator of insulin action. Fed. Proc. 41: 2730–2735.PubMedGoogle Scholar
  54. 53.
    Jarret, L., F. L. Kiechle, and J. C. Parker. 1982. Chemical mediator or mediators of insulin action: Response to insulin and mode of action. Fed. Proc. 41: 2736–2741.Google Scholar
  55. 54.
    Goldfine, I. D., and G. J. Smith. 1976. Binding of insulin to isolated nuclei. Proc. Natl. Acad. Sci. USA 73: 1427–1431.PubMedCrossRefGoogle Scholar
  56. 55.
    Kuhn, H., J. H. Cook, and J. W. Dreyer. 1973. Phosphorylation of rhodopsin in bovine photoreceptor membranes: A dark reaction after illumination. Biochemistry 12: 2495–2502.PubMedCrossRefGoogle Scholar
  57. 56.
    Weller, M., N. Virmaux, and P. Mandel. 1975. Light-stimulated phosphorylation of rhodopsin in the retina: The presence of a protein kinase that is specific for photobleached rhodopsin. Proc. Natl. Acad. Sci. USA 72: 381–385.PubMedCrossRefGoogle Scholar
  58. 57.
    Jacobs, S., F. C. Kull, Jr., H. S. Earp, M. E. Svoboda, J. J. VanWyk, and P. Cuatrecasas. 1983. Somatomedin-C stimulates the phosphorylation of the p-subunit of its own receptor. J. Biol. Chem. 258: 9581–9584.PubMedGoogle Scholar
  59. 58.
    Hollenberg, M. D. 1982. Receptor mediated phosphorylation reactions. Trends Pharm. Sci. 3: 271–273.CrossRefGoogle Scholar
  60. 59.
    Levitzki, A. 1982. Activation and inhibition of adenylate cyclase by hormones: Mechanistic aspects. Trends Pharm. Sci. 3: 203–208.CrossRefGoogle Scholar
  61. 60.
    Michel, T., B. B. Hoffman, and R. J. Lefkowitz. 1980. Differential regulation of the α2_adrenergic receptor by Na + and guanine nucleotides. Nature (London) 288: 709–711.CrossRefGoogle Scholar
  62. 61.
    Jacobs, K. H., K. Aktories, and G. Schultz. 1983. A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature (London) 303: 177–178.CrossRefGoogle Scholar
  63. 62.
    Gil, D. W., S. A. Brown, S. H. Seeholzer, and G. M. Widley. 1983. Minisymposium: I. Introduction: Phosphatidylinositol turnover and cellular function. Life Sci. 32: 2043–2046.PubMedCrossRefGoogle Scholar
  64. 63.
    Serhan, C. N., J. Fridovich, E. J. Goetzl, P. B. Dunham, and G. Weissmann. 1982. Leukotriene B4 and phosphatidic acid are calcium ionophores. J. Biol. Chem. 257: 4746–4752.PubMedGoogle Scholar
  65. 64.
    Rhodes, D., V. Prpic, J. H. Eaton, and P. F. Blackmore. 1983. Stimulation of phosphatidyl-4,5-bisphosphate hydrolysis in hepatocytes by vasopressin. J. Biol. Chem. 258: 2770–2773.PubMedGoogle Scholar
  66. 65.
    Prpic, V., P. F. Blackmore, and J. H. Eaton. 1982. Phosphatidylinositol breakdown induced by vasopressin and epinephrine in hepatocytes is calcium-dependent. J. Biol. Chem. 257. 11323–11331.PubMedGoogle Scholar
  67. 66.
    Guillon, G., P.-O. Couraud, D. Butlen, and S. Jard. 1980. Size of vasopressin receptors from rat liver and kidney. Eur. J. Biochem. 111: 287–294.PubMedCrossRefGoogle Scholar
  68. 67.
    Cantau, B., S. Keppens, H. DeWulf, and S. Jard. 1980. [3H]- Vasopressin binding to isolated rat hepatocytes and liver membranes: Relation to glycogen and phosphorylase activation. J. Receptor Res. 1: 137–168.Google Scholar
  69. 68.
    Keppens, S., and H. DeWulf. 1979. The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochim. Biophys. Acta 588: 63–69.PubMedGoogle Scholar
  70. 69.
    Fan, J. Y., J.-L. Carpenter, P. Gordon, E. VanObberghen, N. M. Blackett, C. Grunfeld, and L. Orci. 1982. Receptor-mediatedendocytosis of insulin: Role of microvilli, coated pits and coated vesicles. Proc. Natl. Acad. Sci. USA 79: 7788–7791.PubMedCrossRefGoogle Scholar
  71. 70.
    Smith, R. M., and L. Jarett. 1983. Quantitative ultrastructural analysis of receptor-mediated insulin uptake into adipocytes. J. Cell. Physiol. 115: 119–207.CrossRefGoogle Scholar
  72. 71.
    Khan, M. N., B. I. Posner, A. K. Verma, R. J. Khan, and J. J. M. Bergeron. 1981. Intracellular hormone receptors: Evidence for insulin and lactogen receptors in a unique vesicle sedimenting in lysosome fractions of rat liver. Proc. Natl. Acad. Sci. USA 78: 4980–4984.PubMedCrossRefGoogle Scholar
  73. 72.
    Marshall, S., and J. M. Olefsky. 1980. The endocytic-internalization pathway of insulin metabolism: Relationship to insulin degradation and activation of glucose transport. Endocrinology 107: 1937–1945.PubMedCrossRefGoogle Scholar
  74. 73.
    Baldwin, D., Jr., M. Prince, S. Marshall, P. Davies, and J. M. Olefsky. 1980. Regulation of insulin receptors: Evidence for involvement of an endocytic internalization pathway. Proc. Natl. Acad. Sci. USA 77: 5975–5978.PubMedCrossRefGoogle Scholar
  75. 74.
    Dautry-Varsat, A., A. Ciechanover, and H. F. Lodish. 1983. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 80: 2258–2262.Google Scholar
  76. 75.
    Ciechanover, A., A. L. Schwartz, A. Dautry-Varsat, and H. F. Lodish. 1983. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. J. Biol. Chem. 258: 9681–9689.PubMedGoogle Scholar
  77. 76.
    Olefsky, J. M., S. Marshall, P. Berhanu, M. Saekow, K. Heindenreich, and A. Green. 1982. Internalization and intracellular processing of insulin and insulin receptors in adipocytes. Metabolism 31: 670–690.PubMedCrossRefGoogle Scholar
  78. 77.
    Brown, M. S., R. G. W. Anderson, and J. L. Goldstein. 1983. Recycling receptors: The round-trip itinerary of migrant membrane proteins. Cell 32: 663–667.PubMedCrossRefGoogle Scholar
  79. 78.
    Kassis, J. A., and J. Gorski. 1981. Estrogen receptor replenishment. J. Biol. Chem. 256: 7378–7382.PubMedGoogle Scholar
  80. 79.
    Kassis, J. A., and J. Gorski. 1983. On the mechanism of estrogen receptor replenishment: Recycling, resynthesis and/or processing. Mol. Cell. Biochem. 52: 27–36.PubMedCrossRefGoogle Scholar
  81. 80.
    Gavin, J. R., Ill, J. Roth, D. M. Neville, Jr., P. DeMeyts, and D. N. Buell. 1974. Insulin-dependent regulation of insulin receptor concentrations: A direct demonstration in cell culture. Proc. Natl. Acad. Sci. USA 71: 84–88.PubMedCrossRefGoogle Scholar
  82. 81.
    Krupp, M., and M. D. Lane. 1981. On the mechanism of ligand- induced down-regulation of insulin receptor level in the liver cell. J. Biol. Chem. 256: 1689–1694.PubMedGoogle Scholar
  83. 82.
    Williams, L. T., R. J. Lefkovitz, A. M. Watanabe, D. R. Hathaway, and H. R. Besch, Jr. 1977. Thyroid hormone regulation of β-adrenergic receptor number. J. Biol. Chem. 252: 2787–2789.PubMedGoogle Scholar
  84. 83.
    Roy, C., A. S. Preston, and J. S. Handler. 1980. Insulin and serum increase the number of receptors for vasopressin in a kidney-derived line of cells grown in a defined medium. Proc. Natl. Acad. Sci. USA 77: 5979–5983.PubMedCrossRefGoogle Scholar
  85. 84.
    Fantus, I. G., G. A. Saviolakis, J. A. Hedo, and P. Gordon. 1982. Mechanism of glucocorticoid-induced increases in insulin receptors of cultured human lymphocytes. J. Biol. Chem. 257: 8277–8283.PubMedGoogle Scholar
  86. 85.
    Michell, R. H. 1983. Polyphosphoinositide breakdown as the ini-tiating reaction in receptor-stimulated inositol phospholipid metabolism. Life Sci. 32: 2083–2085.PubMedCrossRefGoogle Scholar
  87. 86.
    Beaumont, K., and D. D. Fanestil. 1983. Characterization of rat brain aldosterone receptors reveals high affinity for corticosterone. Endocrinology 113: 2043–2051.PubMedCrossRefGoogle Scholar
  88. 87.
    Fanestil, D. D., and J. Kipnowski. 1982. Molecular action of aldosterone. Klin. Wochenschr. 60: 1180–1185.PubMedCrossRefGoogle Scholar
  89. 88.
    Fain, J. N., S.-H. Lin, I. Litosch, and M. Wallace. 1983. Hormonal regulation of phosphatidylinositol breakdown. Life Sci. 32: 2055–2067.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Darrell D. Fanestil
    • 1
  1. 1.Division of NephrologyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations