Composition and Dynamics of Lipids in Biomembranes

  • T. E. Thompson
  • C. Huang

Abstract

The basic idea underlying much of today’s research on biological membranes was formulated by Singer and Nicholson in 1972.(1) This construct, known as the fluid mosaic hypothesis, contains two essential elements. The first of these, a derivative of the Danielle and Davson model,(2) requires that the lipid component of the membrane be a bilayer in structure and con-tribute to the membrane its basic barrier properties. Although the lipid molecules are confined to the bilayer, they are free to exhibit a variety of motional modes such as vibration, rotation, and translation. The second element of the fluid mosaic hypothesis deals with the disposition of the protein components of the membrane. These components are immersed to varying degrees in the lipid bilayer. Some may be only superficially associated with the polar faces of the bilayer, some embedded in its hydro-phobic core, and others may completely span the bilayer. The fluid nature of the bilayer permits the protein components to move in both rotational and translational modes. These diffusional motions of the individual protein components may give rise to time-dependent patterns in the compositional mosaic.

Keywords

Permeability Entropy Migration Glycerol Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singer, S. J., and G. L. Nicholson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.PubMedCrossRefGoogle Scholar
  2. 2.
    Danielle, J. F., and H. Davson. 1935. A contribution to the theory of the permeability of thin films. J. Cell. Comp. Physiol. 5: 495–508.CrossRefGoogle Scholar
  3. 3.
    Silbert, D. F. 1975. Genetic modification of membrane lipid. Annu. Rev. Biochem. 44: 315.PubMedCrossRefGoogle Scholar
  4. 4.
    Sandermann, H. 1978. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515: 209–237.PubMedGoogle Scholar
  5. 5.
    Bangham, A. D., M. M. Standish, and J. C. Watkins. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13: 238–252.PubMedCrossRefGoogle Scholar
  6. 6.
    Mueller, P., D. O. Rudin, H. T. Tien, and W. C. Wescott. 1962. Reconstitution of excitable cell membrane structure in vitro. Circulation 26: 1167–1171.Google Scholar
  7. 7.
    Huang, C. 1969. Studies on phosphatidylcholine vesicles: Formation and physical characteristics. Biochemistry 8: 344–352.PubMedCrossRefGoogle Scholar
  8. 8.
    Barenholz, Y., D. Gibbes, B. J. Litman, J. Goll, T. E. Thompson, and F. D. Carlson. 1977. Photon correlation spectroscopic study of the size distribution of phospholipid vesicles. Biochemistry 16: 2806–2810.PubMedCrossRefGoogle Scholar
  9. 9.
    Papahadjopoulos, D., W. J. Vail, K. Jacobson, and G. Poste. 1975. Cochleate lipid cylinders: Formation by fusion of uni-lamellar lipid vesicle. Biochim. Biophys. Acta 394: 483–491.PubMedCrossRefGoogle Scholar
  10. 10.
    Deamer, D., and A. D. Bangham. 1976. Large volume liposomes by an ether-vaporization method. Biochim. Biophys. Acta 443: 629–634.PubMedCrossRefGoogle Scholar
  11. 11.
    Enoch, H. G., and P. Strittmatter. 1979. Formation and properties of 1000-A-diameter, single-bilayer phospholipid vesicles. Proc. Natl. Acad. Sci. USA 76: 145–149.PubMedCrossRefGoogle Scholar
  12. 12.
    Rhoden, U., and S. M. Goldin. 1979. Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis, Biochemistry 18: 4173–4176.PubMedCrossRefGoogle Scholar
  13. 13.
    Mimms, L. T., G. Zampighi, Y. Nozaki, C. Tanford, and J. A. Reynolds. 1981. Phospholipid vesicle formation and trans-membrane protein incorporation using octyl glucoside. Biochemistry 20: 833–840.PubMedCrossRefGoogle Scholar
  14. 14.
    Nordlund, J. R., C. F. Schmidt, and T. E. Thompson. 1981. Transbilayer distribution in small unilamellar phosphatidylglycer- ol-phosphatidylcholine vesicles. Biochemistry 20: 6415–6420.PubMedCrossRefGoogle Scholar
  15. 15.
    Pagano, R. E., and J. N. Weinstein. 1978. Interactions of liposomes with mammalian cells. Annu. Rev. Biophys. Bioeng. 7: 435–468.PubMedCrossRefGoogle Scholar
  16. 16.
    Szoka, F., and D. Papahadjopoulos. 1980. Comparative proper-ties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9: 467–508.PubMedCrossRefGoogle Scholar
  17. 17.
    Ansell, G. B., J. N. Hawthorne, and R. M. C. Dawson. 1973. Form and Function of Phospholipids. Elsevier, Amsterdam, pp. 205–483.Google Scholar
  18. 18.
    Sweeley, C. C., and B. Siddiqui, 1977. Chemistry of mammalian glycolipids. In: The Glycoconjugates, Volume I. M. I. Horowitz and W. Pigman, eds. Academic Press, New York. pp. 459–540.Google Scholar
  19. 19.
    Nelson, G. J. 1967. Lipid composition of erythrocytes in various mammalian species. Biochim. Biophys. Acta 144: 221–232.PubMedGoogle Scholar
  20. 20.
    van Deenen,L. L. M., and J. de Gier. 1974. Lipids of the red cell membrane. In: The Red Blood Cell, Volume I. D. N. Surgenor, ed. Academic Press, New York. pp. 147–211.Google Scholar
  21. 21.
    Colbeau, A., J. Nachbar, and P. M. Vignois. 1971. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim. Biophys. Acta 249: 462–492.PubMedCrossRefGoogle Scholar
  22. 22.
    Keenan, T. W., and D. J. Moore. 1970. Phospholipid class and fatty acid composition of Golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry 9: 19–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Kleinig, H. 1970. Nuclear membranes from mammalian liver. J. Cell Biol. 46: 396–402.PubMedCrossRefGoogle Scholar
  24. 24.
    Bretscher, M. S. 1972. Phosphatidylethanolamine: Differential labeling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent. J. Mol. Biol. 71: 523–528.PubMedCrossRefGoogle Scholar
  25. 25.
    Bretscher, M. S. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature New Biol. 236: 11–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Godesky, S. E., and G. V. Marinetti. 1973. The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem. Biophys. Res. Commun. 50: 1027–1031.CrossRefGoogle Scholar
  27. 27.
    Verkleij, A. J., R. F. A. Zwaal, B. Roelofsen, P. Comfurius, D. Kostelijn, and L. L. M. van Deenen. 1973. The asymmetric distribution of phospholipids in the human red cell membrane: A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323: 178–193.PubMedCrossRefGoogle Scholar
  28. 28.
    Renooij, W., L. M. G. vanGolde, R. F. A. Zwaall, andL. L. M. van Deenen. 1976. Topological asymmetry of phospholipid me¬tabolism in rat erythrocyte membranes: Evidence for flip-flop of lecithin. Eur. J. Biochem. 61: 53–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Bloj, B., and D. B. Zilversmit. 1976. Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts. Biochemistry 15: 1277–1283.PubMedCrossRefGoogle Scholar
  30. 30.
    Rothman, J. E., D. K. Tsai, E. A. Dawidowicz, and J. Lenard. 1976. Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus. Biochemistry 15: 2361–2370.PubMedCrossRefGoogle Scholar
  31. 31.
    Michell, R. H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81–147.PubMedGoogle Scholar
  32. 32.
    Michell, R. H., S. S. Jafferji, andL. M. Jones. 1977. The possible involvement of phosphatidylinositol breakdown in the mechanism of stimulus-response coupling at receptors which control cell- surface calcium gates. Adv. Exp. Biol. Med. 83: 447–464.Google Scholar
  33. 33.
    Hawthorne, J.N. 1973. Phospholipid metabolism and transport of materials across the cell membrane. In: Form and Function of Phospholipids. G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds. Elsevier, Amsterdam, pp. 423–440.Google Scholar
  34. 34.
    Steck, T. L., and R. M. C. Dawson. 1974. Topographical distribution of complex carbohydrates in the erythrocyte membrane. J. Biol. Chem. 249: 2135–2142.PubMedGoogle Scholar
  35. 35.
    Dawson, R. M. C. 1978. Glycolipid biosynthesis. In: The Glycoconjugates, Volume II. M. I. Horowitz and W. Pigman, eds. Academic Press, New York. pp. 255–284.Google Scholar
  36. 36.
    Hanson, H. A., J. Holmgren, and L. Svennerholm. 1977. Ultra- structural localization of cell membrane GMj ganglioside by cholera toxin. Proc. Natl. Acad. Sci. USA 74: 3782–3786.CrossRefGoogle Scholar
  37. 37.
    Horowitz, M. I. 1978. Immunological aspects. In: The Glycoconjugates, Volume II. M. I. Horowitz and W. Pigman, eds. Academic Press, New York. pp. 387–436.Google Scholar
  38. 38.
    Hakomori, S. 1981. Glyolipids in cellular interaction, differentiation and oncogenesis. Annu. Rev. Biochem. 50: 733–764.PubMedCrossRefGoogle Scholar
  39. 39.
    Fishman, P. H., and R. O. Brady. 1976. Biosynthesis and function of gangliosides. Science 194: 906–915.PubMedCrossRefGoogle Scholar
  40. 40.
    Moss, J., and Vaughan, M. 1979. Activation of adenylate cyclase by choleragen. Annu. Rev. Biochem. 48: 581–600.PubMedCrossRefGoogle Scholar
  41. 41.
    Rodgers,T.B., and S.H.Snyder. 1981. High affinity binding of tetanus toxin to mammalian brain membranes. J. Biol. Chem. 256: 2402–2407.Google Scholar
  42. 42.
    Holmgren, J., L. Svennerholm, H. Elwing, P. Fredman, and O. Stannegrade. 1980. Sendai virus receptor: Proposed recognition structure based on binding to plastic-adsorbed ganglioside. Proc. Natl. Acad. Sci. USA 77: 1947–1950.PubMedCrossRefGoogle Scholar
  43. 43.
    Yamakawa, T., and Y. Nagai. 1978. Glycolipids at the cell surface and their biological function. Trends Biochem. Sci. 3: 128–131.CrossRefGoogle Scholar
  44. 44.
    Patton, S. 1970. Correlative relationship of cholesterol and sphingomyelin in cell membranes. J. Theor. Biol. 29: 489–491.PubMedCrossRefGoogle Scholar
  45. 45.
    Luzzati, V. 1968. X-ray diffraction studies on lipid-water systems. In: Biological Membranes. D. Chapman, ed. Academic Press, New York. pp. 71–123.Google Scholar
  46. 46.
    Tanford, C. 1973. The Hydrophobic Effect. Wiley, New York, pp. 1–94.Google Scholar
  47. 47.
    Israelachvili, J. N., D. J. Mitchell, and B. W. Ninham. 1976. Theory of self-assembly of hydrocarbon amphiphiles into miscelles and bilayers. J. Chem. Soc. Faraday Trans. 2 72: 1525–1568.CrossRefGoogle Scholar
  48. 48.
    Huang, C. 1976. Roles of carbonyl oxygens at the bilayer interface in phospholipid-sterol interaction. Nature (London) 259: 242–244.CrossRefGoogle Scholar
  49. 49.
    Dickerson, R. E., and I. Geis. 1969. The Structure and Action of Proteins. Harper, New York. pp. 8–13.Google Scholar
  50. 50.
    Flory, P. J. 1969. Statistical Mechanics of Chain Molecules. Wiley-Interscience, New York. pp. 192–196.Google Scholar
  51. 51.
    Lagaly, G., and A. Weiss. 1971. Experimental evidence for kink formation. Angew. Chem. Int. Ed. Engl. 10: 558–559.CrossRefGoogle Scholar
  52. 52.
    Lord, R. C., and R. Mendelsohn. 1981. Raman spectroscopy of membrane constituents and related molecules. In: Membrane Spectroscopy. E. Grell, ed. Springer-Verlag, Berlin, pp. 377–436.Google Scholar
  53. 53.
    Lippert, J. L., and W. L. Peticolas. 1972. Raman active vibrations in long-chain fatty acids and phospholipid sonicates. Biochim. Biophys. Acta 282: 8–17.PubMedCrossRefGoogle Scholar
  54. 54.
    Lippert, J. L., L. E. Gorczyca, and G. Meiklejohn. 1975. A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts. Biochim. Biophys. Acta 382: 51–57.PubMedCrossRefGoogle Scholar
  55. 55.
    Mendelsohn, R., S. Sunder, and H. J. Bernstein. 1976. The effect of sonication on the hydrocarbon chain conformation in model membrane systems: A Raman spectroscopic study. Biochim. Biophys. Acta 419: 563–569.PubMedCrossRefGoogle Scholar
  56. 56.
    Horwitz, A. F., M. P. Klein, D. M. Michaelson, andS. J. Kohler. 1972. Magnetic resonance studies of membrane and model membrane systems. Ann. N.Y. Acad. Sci. 222: 468–487.CrossRefGoogle Scholar
  57. 57.
    Seelig, A., and J. Seelig. 1974. The dynamic structure of fatty acyl chains in a phospholipid bilayer. Biochemistry 13: 4839–4845.PubMedCrossRefGoogle Scholar
  58. 58.
    Seelig, J., and A. Seelig. 1980. Lipid conformation in model membranes and biological membranes. Q. Rev. Biophys. 13: 19–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Edholm, O. 1981. Hydrocarbon chain dynamics in lipid bilayers. Chem. Phys. Lipids 29: 213–224.CrossRefGoogle Scholar
  60. 60.
    Abe, A., R. L. Jernigan, and P. J. Flory. 1966. Conformational energies of n-alkanes and the random configuration of higher ho- mologs including poly methylene. J. Am. Chem. Soc. 88: 631–639.CrossRefGoogle Scholar
  61. 61.
    Kondo, S., E. Hirota, and Y. Morino. 1968. Microwave spectrum and rotational isomerism in butene-1. J. Mol. Spectrosc. 28: 471–489.CrossRefGoogle Scholar
  62. 62.
    Kohler, S. J., A. F. Horwitz, and M. P. Klein. 1972. Magnetic resonance studies of membrane and model membrane systems: A comparison of yeast and egg lecithin dispersions. Biochem. Biophys. Res. Commun. 49: 1414–1421.PubMedCrossRefGoogle Scholar
  63. 63.
    Barton, P. G., and F. D. Gunstone. 1975. Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. J. Biol. Chem. 256: 4470–4476.Google Scholar
  64. 64.
    Shapiro, E., and S. Ohki. 1974. The interaction energy between hydrocarbon chains. J. Colloid Interface Sci. 47: 38–49.CrossRefGoogle Scholar
  65. 65.
    Huang, C. 1977. A structural model for the cholesterol-phos- phatidylcholine complexes in bilayer membranes. Lipids 12: 348–356.PubMedCrossRefGoogle Scholar
  66. 66.
    Batchelor, J. G., J. H. Prestegard, R. J. Cushley, and S. R. Lipsky. 1972. Conformational analysis of lecithin in vesicles by 13C-NMR. Biochem. Biophys. Res. Commun. 48: 70–75.PubMedCrossRefGoogle Scholar
  67. 67.
    Breitmair, E., K-H. Spohn, and S. Berger. 1975. 13C spin-lattice relaxation times and the mobility of organic molecules in solution. Angew. Chem. Int. Ed. Engl. 14: 144–159.Google Scholar
  68. 68.
    Doddrell, D., and A. Allerhand. 1971. Segmental motion in liquid 1-decanol: Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc. 93: 1558–1559.CrossRefGoogle Scholar
  69. 69.
    Levine, Y. K., N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe. 1972. 13C-NMR relaxation measurements of synthetic lecithins and the effect of spin-labelled lipids. Biochemistry 11: 1416–1421.Google Scholar
  70. 70.
    Sears, B. 1975. 13C-NMR studies of egg phosphatidylcholine. J. Membr. Biol. 20: 59–73.Google Scholar
  71. 71.
    Gent, M. P. N., and J. H. Prestegard. 1974. Comparison of 13C spin-lattice relaxation times in phospholipid vesicles and multilayers. Biochem. Biophys. Res. Commun. 58: 549–555.PubMedCrossRefGoogle Scholar
  72. 72.
    Sears, B., W. Hutton, and T. E. Thompson. 1974. 13C-NMR studies on bilayers formed from synthetic di-10-methyl-stear- oylphosphatidylcholine enriched with 13C in the N-methyl carbons. Biochem. Biophys. Res. Commun. 60: 1141–1147.Google Scholar
  73. 73.
    Davis, J. H. 1983. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim. Biophys. Acta 737: 117–171.PubMedGoogle Scholar
  74. 74.
    Taylor, M. G., T. Akiyama, H. Saito, and I. C. P. Smith. 1982. Direct observation of the properties of cholesterol in membranes by deuterium NMR. Chem. Phys. Lipids 31: 359–379.PubMedCrossRefGoogle Scholar
  75. 75.
    Hitchock, P. B., R. Mason, M. Thomas, andG. G. Shipley. 1974. Structural chemistry of 1,2-dilauroyl-DL-phosphatidylethano- lamine: Molecular conformation and intermolecular packing of phospholipids. Proc. Natl. Acad. Sci. USA 71: 3036–3039.CrossRefGoogle Scholar
  76. 76.
    Zull, J. E., and A. J. Hopfinger. 1969. Potential energy fields about nitrogen in choline and ethanolamine: Biological function of cellular surfaces. Science 165: 512–513.PubMedCrossRefGoogle Scholar
  77. 77.
    Pearson, R. H., and I. Pascher. 1979. The molecular structure of lecithin dihydrate. Nature (London) 281: 499–501.CrossRefGoogle Scholar
  78. 78.
    Pauling, P. 1968. The structure of molecules active in cholinergic systems. In: Structural Chemistry and Molecular Biology. A. Rich and N. Davidson, eds. Freeman, San Francisco, pp. 555–565.Google Scholar
  79. 79.
    Brown, M. F., and J. Seelig. 1977. Ion-induced changes in head group conformation of lecithin bilayers. Nature (London) 269: 721–723.CrossRefGoogle Scholar
  80. 80.
    Gaily, H.-V., W. Niederberger, and J. Seelig. 1975. Conformation and motion of the choline head group in bilayers of di- pahnitoy 1-3-sn-phosphatidylcholine. Biochemistry 14: 3647–3652.CrossRefGoogle Scholar
  81. 81.
    Yeagle, P. L., W. C. Hutton, C. Huang, andR. B. Martin. 1975. Headgroup conformation and lipid-cholesterol association in phosphatidylcholine vesicles: A 31P{1H{ nuclear Overhauser effect study. Proc. Natl. Acad. Sci. USA 72: 3477–3481.PubMedCrossRefGoogle Scholar
  82. 82.
    Jacobs, R., and E. Oldfield. 1981. NMR of membranes. In: Progress in NMR Spectroscopy, Volume 14. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, eds. Academic Press, New York. pp. 113–136.Google Scholar
  83. 83.
    Siminovitch, D. J., M. Ranee, andK. R. Jeffrey. 1980. The use of wide-line [14N] nitrogen NMR as a probe in model membranes. FEBS Lett. 112: 79–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Rothgeb, T. M., and E. Oldfield. 1981. Nitrogen-14 NMR spec-troscopy as a probe of lipid head group structure. J. Biol. Chem. 256: 6004–6009.PubMedGoogle Scholar
  85. 85.
    Seelig, J., and H.-V. Gaily. 1976. Investigation of phos- phatidylethanolamine bilayers by 2H- and 31P-NMR. Biochemistry 15: 5199–5204.PubMedCrossRefGoogle Scholar
  86. 86.
    Seelig, J., H.-V. Gaily, and R. Wohlgemuth. 1977. Orientation and flexibility of the choline headgroup in phosphatidylcholine bilayers. Biochim. Biophys. Acta 467: 109–119.PubMedCrossRefGoogle Scholar
  87. 87.
    Cain, J., G. Santillan, and J. K. Blasie. 1972. Molecular motion in membranes as indicated by X-ray diffraction. In: Membrane Research. C. F. Fox, ed. Academic Press, New York. pp. 3–14.Google Scholar
  88. 88.
    Griffin, R. G. 1976. Observation of the effect of water on the 31P nuclear magnetic resonance spectra of dipalmitoyllecithin. J. Am. Chem. Soc. 98: 851–853.PubMedCrossRefGoogle Scholar
  89. 89.
    Jendrasiak, G. L., and J. H. Hasty. 1974. The hydration of phospholipids. Biochim. Biophys. Acta 337: 79–91.PubMedGoogle Scholar
  90. 90.
    Jendrasiak, G. L., and J. H. Hasty. 1974. The electrical conductivity of hydrated phospholipids. Biochim. Biophys. Acta 348: 45–54.PubMedGoogle Scholar
  91. 91.
    Demel, R. A., K. R. Bruckdorfer, and L. L. M. van Deenen. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and RB +. Biochim. Biophys. Acta 255: 321–330.PubMedCrossRefGoogle Scholar
  92. 92.
    Ghosh, D., M. A. Williams, and J. Tinoco. 1973. The influence of lecithin structure on their monolayer behavior and interactions with cholesterol. Biochim. Biophys. Acta 291: 351–362.PubMedCrossRefGoogle Scholar
  93. 93.
    Marsh, D. 1980. Molecular motion in phospholipid bilayers in the gel phase: Long axis rotation. Biochemistry 19: 1632–1637.PubMedCrossRefGoogle Scholar
  94. 94.
    Devaux, P., and H. M. McConnell. 1972. Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J. Am. Chem. Soc. 94: 4475–4481.PubMedCrossRefGoogle Scholar
  95. 95.
    Trauble, H., and E. Sackmann. 1972. Studies on the crystalline- liquid crystalline phase transaction of lipid model membranes. III. Structural studies of a steroid lecithin system below and above the lipid-phase transition. J. Am. Chem. Soc. 94: 4499–4510.PubMedCrossRefGoogle Scholar
  96. 96.
    Brulet, P., and H. M. McConnell. 1975. Kinetics of phase equilibrium in a binary mixture of phospholipids. Proc. Natl. Acad. Sci. USA 72: 1451–1455.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee, A. G., N. J. M. Birdsall, and J. C. Metcalfe. 1973. Measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by 1-NMR. Biochemistry 12: 1650–1659.PubMedCrossRefGoogle Scholar
  98. 98.
    Rubenstein, J. L. R., B. A. Smith, and H. M. McConnell. 1979. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. USA 76: 15–18.PubMedCrossRefGoogle Scholar
  99. 99.
    Kao, A.-L., and C. G. Wade. 1979. Lipid lateral diffusion by pulsed NMR. Biochemistry 18: 2300–2308.CrossRefGoogle Scholar
  100. 100.
    Wu, W., and C. Huang. 1981. Effect of water mobility on lateral diffusion of phospholipids in liposomes. Lipids 16: 820–822.CrossRefGoogle Scholar
  101. 101.
    Saffman, P. G., and M. Delbruck. 1975. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA 72: 3111–3113.PubMedCrossRefGoogle Scholar
  102. 102.
    Ulmius, J., H. Wennerstrom, G. Lindblom, and G. Arvidson. 1975. Proton NMR bandshape studies of lamellar liquid crystals and gel phases containing lecithins and cholesterol. Biochim. Biophys. Acta 389: 197–202.PubMedCrossRefGoogle Scholar
  103. 103.
    Smith, H. G., R. Fager, and B. J. Litman. 1977. Light activated calcium release from sonicated bovine retinal rod outer segment discs. Biochemistry 16: 1399–1405.PubMedCrossRefGoogle Scholar
  104. 104.
    Rothman, J. E., and E. P. Kennedy. 1977. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J. Mol. Biol. 110: 603–618.PubMedCrossRefGoogle Scholar
  105. 105.
    Etemadi, A. H. 1980. Membrane asymmetry: A survey and critical appraisal of the methodology. Biochim. Biophys. Acta 604: 423–475.PubMedCrossRefGoogle Scholar
  106. 106.
    Kornberg, R. D., and H. M. McConnell. 1971. Inside-outside transitions of phospholipid in vesicle membranes. Biochemistry 10: 1111–1120.PubMedCrossRefGoogle Scholar
  107. 107.
    Roseman, M., B. J. Litman, and T. E. Thompson. 1975. Trans- bilayer exchange of phosphatidylethanolamine for phos-phatidylcholine and N-acetimidoyl-phosphatidylethanolamine in single-walled bilayer vesicles. Biochemistry 14: 4826–4830.PubMedCrossRefGoogle Scholar
  108. 108.
    Johnson, L. W., M. E. Hughes, andD. B. Zilversmith. 1975. Use of phospholipid exchange protein to measure inside-outside transposition in phosphatidylcholine liposomes. Biochim. Biophys. Acta 375: 176–185.PubMedCrossRefGoogle Scholar
  109. 109.
    Rothman, J. E., and E. A. Dawidowicz. 1975. Asymmetric ex-change of vesicle phospholipids catalyzed by the phos-phatidylcholine exchange protein measurement of inside-outside transitions. Biochemistry 14: 2809–2816.PubMedCrossRefGoogle Scholar
  110. 110.
    Wirtz, K. W. A., H. H. Kamp, and L. L. M. van Deenen. 1972. Isolation of a protein from beef liver which specifically stimulates the exchange of phosphatidylcholine. Biochim. Biophys. Acta 274: 606–617.PubMedCrossRefGoogle Scholar
  111. 111.
    Kamp, H. H., K. W. A., Wirtz, andL. L. M. van Deenen. 1973. Some properties of phosphatidylcholine exchange protein purified from beef liver. Biochim. Biophys. Acta 318: 313–325.Google Scholar
  112. 112.
    Shaw, J. M., B. Lentz, and T. E. Thompson. 1977. Proton NMR study of the decay of bilayer compositional asymmetry generated by a phosphatidylcholine exchange protein. Biochemistry 16: 4156–4163.PubMedCrossRefGoogle Scholar
  113. 113.
    Op den Kamp, J. A. F. 1979. Lipid asymmetry in membranes. Annu. Rev. Biochem. 48: 47–71.PubMedCrossRefGoogle Scholar
  114. 114.
    Kramer, R. M., H. J. Hasselbach, and J. Semenza. 1981. Rapid transmembrane movement of phosphatidylcholine in small uni-lameller lipid vesicles formed by detergent removal. Biochim. Biophys. Acta 643: 233–242.PubMedCrossRefGoogle Scholar
  115. 115.
    de Kruijff, B., and K. W. A. Wirtz. 1977. Induction of a relatively fast transbilayer movement of phosphatidylcholine in vesicles: A 13C NMR study. Biochim. Biophys. Acta 468: 318–325.PubMedCrossRefGoogle Scholar
  116. 116.
    de Kruijff, B., and P, Baker. 1978. Transbilayer movement of cholesterol in phospholipid vesicles under equilibrium and non- equilibrium conditions. Biochim. Biophys. Acta 506: 256–264.CrossRefGoogle Scholar
  117. 117.
    de Kruijff, B., and E. J. J. van Zoelen. 1978. Effect of the phase transition on the transbilayer movement of dimyristoyl phosphatidylcholine in unilamellar vesicles. Biochim. Biophys. Acta 511: 105–115.PubMedCrossRefGoogle Scholar
  118. 118.
    Noorddam, P. C., C. J. A. van Echteld, B. de Kruijff, and J. de Gier. 1981. Rapid transbilayer movement of phosphatidylcholine in unsaturated phosphatidylethanolamine containing model membranes. Biochim. Biophys. Acta 646: 483–487.Google Scholar
  119. 119.
    de Kruijff, B., E. J. J. van Zoelen, and L. L. M. van Deenen. 1978. Glycophorin facilitates the transbilayer movement of phosphatidylcholine in vesicles. Biochim. Biophys. Acta 509: 537–542.PubMedCrossRefGoogle Scholar
  120. 120.
    Gerritsen, W. J., P. A. J. Hendricks, B. de Kruijff, and L. L. M. van Deenen. 1980. The transmembrane movement of phosphatidylcholine in vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane. Biochim. Biophys. Acta 400: 607–619.Google Scholar
  121. 121.
    Rothman, J. E., D. K. Tsai, E. A. Dawidowicz, and J. Lenard. 1976. Transbilayer phospholipid asymmetry and its maintenance in the membranes of influenza virus. Biochemistry 15: 2361–2370.PubMedCrossRefGoogle Scholar
  122. 122.
    Sandra, A., and R. Pagano. 1978. Phospholipid asymmetry in LM cell plasma membrane derivatives: Polar head group and acyl chain distributions. Biochemistry 17: 332–338.PubMedCrossRefGoogle Scholar
  123. 123.
    Shaw, J. M., N. F. Moore, E. J. Patzer, M. C. Freire, R. R. Wagner, and T. E. Thompson. 1979. Compositional asymmetry and transmembrane movement of phosphatidylcholine in vesicular stomatitis virus membranes. Biochemistry 18: 538–543.PubMedCrossRefGoogle Scholar
  124. 124.
    Rousellet, A., C. Guthman, J. Matricon, A. Bierwenne, and P. F. Devaux. 1976. Study of the transverse diffusion of spin labelled phospholipids in biological membranes. I. Biochim. Biophys. Acta 426: 357–371.CrossRefGoogle Scholar
  125. 125.
    Renooij, W., L. M. van Golde, R. F. Zwaal, and L. L. M. van Deenen. 1976. Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes: Evidence for flip-flop of lecithin. Eur. J. Biochem. 61: 53–58.PubMedCrossRefGoogle Scholar
  126. 126.
    Bloj, B., and D. B. Zilversmit. 1976. Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts. Biochemistry 15: 1237–1283.CrossRefGoogle Scholar
  127. 127.
    Rousellet, A., A. Colbeau, P. M. Vignais, and P. F. Devaux. 1976. Study of the transverse diffusion of spin-labeled phospholipids in biological membranes. II. Biochim. Biophys. Acta 426: 372–384.CrossRefGoogle Scholar
  128. 128.
    McNamee, M., and H. M. McConnell. 1973. Transmembrane potentials and phospholipid flip-flop in excitable membrane vesicles. Biochemistry 12: 2951–2958.PubMedCrossRefGoogle Scholar
  129. 129.
    Grant, C. W. M., and H. M. McConnell. 1973. Fusion of phospholipid vesicles with viable Acholeplasma laidlawii. Proc. Natl. Acad. Sci USA 70: 1238–1240.PubMedCrossRefGoogle Scholar
  130. 130.
    Zilversmit, D. B., and M. E. Hughs. 1977. Extensive exchange of rat liver microsomal phospholipids. Biochim. Biophys. Acta 469: 99–110.PubMedCrossRefGoogle Scholar
  131. 131.
    van den Besselar, A. M. A. P., B. de Kruijff, H. van den Borsch, and L. L. M. van Deenen. 1978. Phosphatidylcholine mobility in microsomal membranes. Biochim. Biophys. Acta 510: 242–255.Google Scholar
  132. 132.
    Shaw, J. M., N. F. Moore, E. J. Patzer, M. Correa-Freire, R. R. Wagner, and T. E. Thompson. 1979. Compositional asymmetry and transmembrane movement of phosphatidylcholine in vesicular stomatitis virus membranes. Biochemistry 18: 538–543.PubMedCrossRefGoogle Scholar
  133. 133.
    Poznansky, M., and Y. Lange. 1976. Transbilayer movement of cholesterol in dipalmitoyllecithin-cholesterol vesicles. Nature (London) 259: 420–421.CrossRefGoogle Scholar
  134. 134.
    Bruckdorfer, K. R., P. A. Edwards, and C. Green. 1968. Properties of aqueous dispersions of phospholipid and cholesterol. Eur. J. Biochem. 4: 506–511.PubMedCrossRefGoogle Scholar
  135. 135.
    Bloj, B., and D. B. Zilversmit. 1977. Complete exchangeability of cholesterol in phosphatidylcholine/cholesterol vesicles of different degrees of unsaturation. Biochemistry 16: 3943–3948.PubMedCrossRefGoogle Scholar
  136. 136.
    Bloj, B., and D. B. Zilversmit. 1977. Transposition and distribution of cholesterol in rat erythrocytes. Proc. Soc. Exp. Biol. Med. 156: 539–543.PubMedGoogle Scholar
  137. 137.
    Backer, J. M., and E. A. Dawidowicz. 1979. The rapid transmembrane movement of cholesterol in small unilamellar vesicles. Biochim. Biophys. Acta 551: 260–270.PubMedGoogle Scholar
  138. 138.
    Jonas, A., and G. T. Maine. 1979. Kinetics and mechanism of phosphatidylcholine and cholesterol exchange between single bilayer vesicles and bovine serum high-density lipoproteins. Biochemistry 18: 1722–1728.PubMedCrossRefGoogle Scholar
  139. 139.
    Nakagawa, Y., K. Inoue, and S. Nojuna. 1979. Transfer of cholesterol between liposomal membranes. Biochim. Biophys. Acta 553: 307–319.PubMedCrossRefGoogle Scholar
  140. 140.
    Lange, Y., C. M. Cohen, and M. J. Poznansky. 1977. Transmembrane movement of cholesterol in human erythrocytes. Proc. Natl. Acad. Sci. USA 74: 1538–1542.PubMedCrossRefGoogle Scholar
  141. 141.
    Kirby, C. J., and C. Green. 1977. Transmembrane migration (flip-flop) of cholesterol in erythrocyte membranes. Biochem. J. 168: 575–577.PubMedGoogle Scholar
  142. 142.
    Patzer, E. J., J. M. Shaw, N. F. Moore, T. E. Thompson, and R. R. Wagner. 1978. Transmembrane movement and distribution of cholesterol in the membrane of vesicular stomatitis virus. Biochemistry 17: 4192–4200.PubMedCrossRefGoogle Scholar
  143. 143.
    Sefton, B. M., and B. J. Gaffney. 1979. Complete exchange of viral cholesterol. Biochemistry 18: 436–442.PubMedCrossRefGoogle Scholar
  144. 144.
    Lenard, J., and J. E. Rothman. 1976. Transbilayer distribution and movement of cholesterol and phospholipid in the membrane of influenza virus. Proc. Natl. Acad. Sci. USA 73: 391–395.PubMedCrossRefGoogle Scholar
  145. 145.
    Rottem, S., G. M. Slutsky, and R. Bittman. 1978. Cholesterol distribution and movement in the Mycoplasma gallisepticum cell membrane. Biochemistry 17: 2723–2726.PubMedCrossRefGoogle Scholar
  146. 146.
    Tanford, C. 1961. Physical Chemistry of Macromolecules. Wiley, New York. pp. 325–328.Google Scholar
  147. 147.
    Shinitzky, M., and Y. Barenholz. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515: 367–394.PubMedGoogle Scholar
  148. 148.
    Shinitzky, M., and Y. Barenholz. 1974. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J. Biol. Chem. 249: 2651–2657.Google Scholar
  149. 149.
    Shinitzky, M., A. C. Dianoux, C. Gitler, and G. Weber. 1971. Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. I. Synthetic micelles. Biochemistry 10: 2106–2113.PubMedCrossRefGoogle Scholar
  150. 150.
    Cogan, U., M. Shinitzky, G. Weber, and T. Nishida. 1973. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry 12: 521–528.PubMedCrossRefGoogle Scholar
  151. 151.
    Lakowicz, J. 1981. Fluorescence spectroscopy. In: Spectroscopy in Biochemistry, Volume 1. J. E. Bell, ed. CRC Press, Boca Raton, Fla., pp. 195–245.Google Scholar
  152. 152.
    Lentz, B. R., Y. Barenholz, andT. E. Thompson. 1976. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. I. Single component phosphatidylcholine liposomes. Biochemistry 15: 4521–4528.PubMedCrossRefGoogle Scholar
  153. 153.
    Lentz, B. R., Y. Barenholz, andT. E. Thompson. 1976. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. II. Two-component phosphatidylcholine liposomes. Biochemistry 15: 4529–4537.PubMedCrossRefGoogle Scholar
  154. 154.
    Lee, A. G. 1975. Functional properties of biological membranes: A physical-chemical approach. Prog. Biophys. Mol. Biol. 29: 3–56.PubMedCrossRefGoogle Scholar
  155. 155.
    Shinitzky, M., and M. Inbar. 1974. Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J. Mol. Biol. 85: 603–615.PubMedCrossRefGoogle Scholar
  156. 156.
    Soloman, A. K. 1974. Apparent viscosity of human red cell membranes. Biochim. Biophys. Acta 373: 145–149.CrossRefGoogle Scholar
  157. 157.
    Cone, R. A. 1972. Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol. 236: 39–43.PubMedGoogle Scholar
  158. 158.
    Poo, M., and R. A. Cone. 1974. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature (London) 247: 438–441.CrossRefGoogle Scholar
  159. 159.
    Silvius, J. 1982. Thermotropic phase transitions of pure lipids in model membranes and their modification by membrane proteins. In: Lipid Protein Interactions, Volume 2. P. Jost and O. H. Griffith, eds. Wiley, New York. pp. 239–281.Google Scholar
  160. 160.
    Mabrey-Gaud, S. 1981. Differential scanning calorimetry of liposomes. In: Liposomes: From Physical Structure to Therapeutic Applications. C. G. Knight, ed. Elsevier/North-Hol-land, Amsterdam, pp. 105–138.Google Scholar
  161. 161.
    Levin, I. W. 1984. Vibrational spectroscopy of membrane assemblies. In: Advances in Infrared and Raman Spectroscopy, Volume 11. R. J. H. Clark and R. E. Hester, eds. Heyden, London, pp. 1–48.Google Scholar
  162. 162.
    Huang, C., J. R. Lapides, and I. R. Levin. 1982. Phase-transitional behavior of saturated: symmetric chain phospholipid bilayer dispersions determined by Raman spectroscopy: Correlation between spectral and thermodynamic parameters. J. Am. Chem. Soc. 104: 5926–5930.CrossRefGoogle Scholar
  163. 163.
    Phillips, M. C., R. M. Williams, and D. Chapman. 1969. On the nature of hydrocarbon chain motions in lipid liquid crystals. Chem. Phys. Lipids 3: 234–244.CrossRefGoogle Scholar
  164. 164.
    Mabrey, S., and J. M. Sturtevant. 1976. Investigation of phase transitions of lipids and lipid mixtures by high-sensitivity differential scanning calorimetry. Proc. Natl. Acad. Sci. USA 73: 3862–3866.PubMedCrossRefGoogle Scholar
  165. 165.
    Albon, N., and J. M. Sturtevant. 1978. Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines. Proc. Natl. Acad. Sci. USA 75: 2258–2260.PubMedCrossRefGoogle Scholar
  166. 166.
    Mason, J. T., and C. Huang. 1981. Chain length dependent thermodynamics of saturated symmetric-chain phosphatidylcholine bilayers. Lipids 16: 604–608.CrossRefGoogle Scholar
  167. 167.
    Huang, C., and I. W. Levin. 1983. Effect of lipid chain length inequivalence on the packing characteristics of bilayer assemblies: Raman spectroscopic study of phospholipid dispersions in the gel state. J. Phys. Chem. 87: 1509–1513.CrossRefGoogle Scholar
  168. 168.
    Quinn, P. J. 1981. The fluidity of cell membranes and its regulation. Prog. Biophys. Mol. Biol. 38: 1–104.PubMedCrossRefGoogle Scholar
  169. 169.
    Mason, J. T., C. Huang, and R. L. Biltonen. 1981. Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry 20: 6086–6092.PubMedCrossRefGoogle Scholar
  170. 170.
    Chong, P. L.-G., and A. R. Cossins. 1983. A differential polarized phase fluorometric study of the effects of high hydrostatic pressure upon the fluidity of cellular membranes. Biochemistry 22: 409–414.PubMedCrossRefGoogle Scholar
  171. 171.
    Chapman, D., R. M. Williams, and B. D. Ladbrooke. 1967. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacylphosphatidylcholines (lecithins). Chem. Phys. Lipids I, 445–475.Google Scholar
  172. 172.
    Chen, S. C., J. M. Sturtevant, and B. J. Gaffney. 1980. Scanning calorimetric evidence for a third phase transition in phos-phatidylcholine bilayers. Proc. Natl. Acad. Sci. USA 77: 5060–5063.PubMedCrossRefGoogle Scholar
  173. 173.
    Janiak, M. J., D. M. Small, and G. G. Shipley. 1976. Nature of the thermal pretransition of synthetic phospholipids: Dimyristoyl- and dipalmitoyllecithin. Biochemistry 15: 4575–4580.PubMedCrossRefGoogle Scholar
  174. 174.
    Verkleij, A. J., and J. de Gier. 1981. Freeze fracture studies on aqueous dispersions of membrane lipids. In: Liposomes: From Physical Structure to Therapeutic Applications. C. G. Knight, ed. Elsevier/North-Holland, Amsterdam, pp. 83–103.Google Scholar
  175. 175.
    Ruocco, M. J., and G. G. Shipley. 1982. Characterization of the sub-transition of hydrated dipalmitoylphosphatidylcholine bilayers. Biochim. Biophys. Acta 691: 309–320.CrossRefGoogle Scholar
  176. 176.
    Chang, H., and R. M. Epand. 1983. The existence of a highly ordered phase in fully hydrated dilauroylphosphatidylethano- lamine. Biochim. Biophys. Acta 728: 319–324.PubMedCrossRefGoogle Scholar
  177. 177.
    Mantsch, H. H., S. C. Hsi, K. W. Butler, and D. G. Cameron. 1983. Studies on the thermotropic behavior of aqueous phos- phatidylethanolamines. Biochim. Biophys. Acta 728: 325–330.PubMedCrossRefGoogle Scholar
  178. 178.
    Seddon, J. M., K. Harlos, and D. Marsh. 1983. Metastability and polymorphism in the gel and fluid bilayer phases of di- lauroylphosphatidylethanolamine: Two crystalline forms in ex-cess water. J. Biol. Chem. 258: 3850–3854.PubMedGoogle Scholar
  179. 179.
    Cullis, P. R., and B. de Kruijff. 1979. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559: 399–420.PubMedGoogle Scholar
  180. 180.
    Mantsch, H. H., A. Martin, and D. G. Cameron. 1981. Characterization by infrared spectroscopy of the bilayer to nonbilayer phase transition of phosphatidylethanolamines. Biochemistry 20: 3138–3145.PubMedCrossRefGoogle Scholar
  181. 181.
    Epand, R. M., and R. F. Epand. 1980. Studies of thermotropic phospholipid phase transitions using scanning densitometry. Chem. Phys. Lipids 27: 139–150.CrossRefGoogle Scholar
  182. 182.
    Larsson, K., K. Fontell, and N. Krog. 1980. Structural relationships between lamellar, cubic and hexagonal phases in monoglyceride-water systems: Possibility of cubic structures in biological systems. Chem. Phys. Lipids 27: 321–328.CrossRefGoogle Scholar
  183. 183.
    Boni, L. T., andS. W. Hui. 1983. Polymorphic phase behavior of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphos- phatidylcholine mixtures: Structural changes between hexagonal, cubic and bilayer phases. Biochim. Biophys. Acta 731: 177–185.PubMedCrossRefGoogle Scholar
  184. 184.
    Wu, W., and C. Huang. 1983. Kinetic studies of the micellar lamellar phase transition of 1-stearoyllysophosphatidylcholine dispersions. Biochemistry 22: 5068–5073.CrossRefGoogle Scholar
  185. 185.
    Wu, W., C. Huang, T. G. Conley, R. B. Martin, and I. W. Levin. 1982. Lamellar-micellar transition of 1-stearoyllysophosphati- dylcholine assemblies in excess water. Biochemistry 21: 5957–5961.PubMedCrossRefGoogle Scholar
  186. 186.
    Barenholz, Y., J. Suurkuusk, D. Mountcastle, T. E. Thompson, and R. Biltonen. 1976. A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins. Biochemistry 15: 2441–2447.PubMedCrossRefGoogle Scholar
  187. 187.
    Barenholz, Y., and T. E. Thompson. 1980. Sphingomyelins in bilayers and biological membranes. Biochim. Biophys. Acta 604: 129–158.PubMedCrossRefGoogle Scholar
  188. 188.
    Bunow, M. R. 1979. Two gel states of cerebrosides: Calorimetric and Raman spectroscopic evidence. Biochim. Biophys. Acta 574: 542–546.PubMedGoogle Scholar
  189. 189.
    Bunow, M. R., and I. R. Levin. 1980. Molecular conformations of cerebrosides in bilayers determined by Raman spectroscopy. Biophys. J. 32: 1007–1021.PubMedCrossRefGoogle Scholar
  190. 190.
    Friere, E., D. Bach, M. Correa-Freire, I. Miller, and Y. Barenholz. 1980. Calorimetric investigation of the complex phase behavior of glucocerebroside dispersions. Biochemistry 19: 3662–3665.CrossRefGoogle Scholar
  191. 191.
    Curatolo, W. 1982. Thermal behavior of fractionated and unfractionated bovine brain cerebrosides. Biochemistry 21: 1761–1764.PubMedCrossRefGoogle Scholar
  192. 192.
    Ruocco, M. J., D. Atkinson, D. M. Small, R. P. Skarjune, E. Oldfield, and G. G. Shipley. 1981. X-ray diffraction and calorimetric study of anhydrous and hydrated N-palmitoylgalac- tosylsphingosine (cerebroside). Biochemistry 20: 5957–5966.PubMedCrossRefGoogle Scholar
  193. 193.
    Barenholz, Y., B. Ceastaro, D. Lichtenberg, E. Freire, T. E. Thompson, and S. Gatt. 1980. Characterization of micellar and liposomal dispersions of gangliosides and phospholipids. In: Structure and Function of the Gangliosides. L. Svennerholm, P. Mandel, H. Dreyfus, and P.-F. Urban, eds. Plenum Press, New York. pp. 105–123.Google Scholar
  194. 194.
    Formisano, S., M. L. Johnson, G. Lee, S. M. Aloj, and H. Edelhoch. 1979. Critical micelle concentrations of gangliosides. Biochemistry 18: 1119–1124.PubMedCrossRefGoogle Scholar
  195. 195.
    Corti, M., and V. Degiorgio. 1980. Laser-light scattering investigation of the micellar properties of gangliosides. Chem. Phys. Lipids 26: 225–238.PubMedCrossRefGoogle Scholar
  196. 196.
    Shimshick, E. J., and H. M. McConnell. 1973. Lateral phase separation in phospholipid membranes. Biochemistry 12: 2351–2360.PubMedCrossRefGoogle Scholar
  197. 197.
    McConnell, H. M. 1975. Coupling between lateral and perpen-dicular motion in biological membranes. In: Functional Linkage in Biomolecular Systems. F. O. Schmitt, V.M. Schneider, and D. M. Crothers, eds. Raven Press, New York. pp. 123–131.Google Scholar
  198. 198.
    Phillips, M. C. 1972. The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes. Prog. Membr. Surf. Sci 5: 139–221.Google Scholar
  199. 199.
    Chapman, D. 1973. Some recent studies of lipids, lipid cholesterol and membrane systems. In: Biological Membranes. D. Chapman and D. F. H. Wallach, eds. Academic Press, New York. pp. 91–144.Google Scholar
  200. 200.
    Jain, M. K. 1975. Role of cholesterol in biomembranes and related systems. Curr. Top. Membr. Transp. 6: 1–57.Google Scholar
  201. 201.
    Demel, R. A., and B. de Kruijff. 1976. The function of sterols in membranes. Biochim. Biophys. Acta 457: 109–132.PubMedGoogle Scholar
  202. 202.
    Brockerhoff, H. 1974. Model of interaction of polar lipids, choles¬terol and proteins in biological membranes. Lipids 9: 645–650.PubMedCrossRefGoogle Scholar
  203. 203.
    Lecuyer, H., and D. G. Derivichian. 1969. Structure of aqueous mixtures of lecithin and cholesterol. J. Mol. Biol. 45: 39–57.PubMedCrossRefGoogle Scholar
  204. 204.
    Levine, Y. K., andM. H. F., Wilkins. 1971. Structure of oriented lipid bilayers. Nature New Biol 230: 69–72.Google Scholar
  205. 205.
    Chapman, D., and S. A. Plenkett. 1966. Nuclear magnetic reso-nance spectroscopic studies of the interaction of phospholipids with cholesterol. Nature (London) 211: 1304–1305.CrossRefGoogle Scholar
  206. 206.
    Darke, A., E. G. Finer, A. G. Flook, and M. C. Phillips. 1972. Nuclear magnetic resonance study of lecithin-cholesterol interactions. J. Mol. Biol. 63: 265–279.PubMedCrossRefGoogle Scholar
  207. 207.
    Stoffel, W., B. P. Tunggal, O. Zierenberg, E. Schreiber, and E. Brinczek. 1974. 13C NMR studies of lipid interactions in single and multicomponent lipid vesicles. Hoppe-Seylers Z. Physiol. Chem. 355: 1367–1380.Google Scholar
  208. 208.
    Godici, P. E., and F. R. Landsberger. 1975.,3C NMR studies of the dynamic structure of lecithin-cholesterol membranes and the position of stearic acid spin labels. Biochemistry 14: 3927–3933.Google Scholar
  209. 209.
    Brainard, J. R., and E. H. Cordes. 1981. Carbon-13 NMR studies of cholesterol-egg yolk phosphatidylcholine vesicles. Biochemistry 20: 4607–4617.PubMedCrossRefGoogle Scholar
  210. 210.
    Brainard, J. R., and A. Szabo. 1981. Theory for nuclear magnetic relaxation of probes in anisotropic systems: Application to cholesterol in phospholipid vesicles. Biochemistry 20: 4618–4628.PubMedCrossRefGoogle Scholar
  211. 211.
    Gaily, H. U., A. Seelig, and J. Seelig. 1976. Cholesterol-induced rod-like motion of fatty acyl chains in lipid bilayers: A 2H-NMR study. Hoppe-Seylers Z. Physiol. Chem. 357: 1447–1450.Google Scholar
  212. 212.
    Mantsch, H. H., H. Saito, and I. C. P. Smith. 1977. Deuterium magnetic resonance, applications in chemistry, physics and biolo¬gy. In: Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 11. Pergamon Press, Elmsford, N.Y. pp. 211–271.Google Scholar
  213. 213.
    Cullis, P. R. 1976. Lateral diffusion rates of phosphatidylcholine in vesicle membranes: Effects of cholesterol and hydrocarbon phase transitions. FEBS Lett. 70: 223–228.PubMedCrossRefGoogle Scholar
  214. 214.
    Fahey, P. F., D. E. Koppel, L. S. Barak, D. E. Wolf, E. L. Elson, and W. W. Webb. 1976. Lateral diffusion in planar lipid bilayers. Science 195: 305–306.CrossRefGoogle Scholar
  215. 215.
    Mendelsohn, R. 1972. Laser-Raman spectroscopic study of egg lecithin and egg lecithin-cholesterol mixtures. Biochim. Biophys. Acta 290: 15–21.PubMedCrossRefGoogle Scholar
  216. 216.
    Huang, C., and J. T. Mason. 1982. Complementary packing of phosphoglyceride and cholesterol molecules in the bilayer. In: Membranes and Transport, Volume 1. A. N. Martonosi, ed. Plen¬um Press, New York. pp. 15–23.Google Scholar
  217. 217.
    Spiker, R. C., and I. W. Levin. 1976. Phase transitions of phos-pholipid single-wall vesicles and multilayers: Measurement by vibrational Raman spectroscopic frequency differences. Biochim. Biophys. Acta 455: 560–575.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • T. E. Thompson
    • 1
  • C. Huang
    • 1
  1. 1.Department of BiochemistryUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations