Skip to main content

Composition and Dynamics of Lipids in Biomembranes

  • Chapter
Physiology of Membrane Disorders

Abstract

The basic idea underlying much of today’s research on biological membranes was formulated by Singer and Nicholson in 1972.(1) This construct, known as the fluid mosaic hypothesis, contains two essential elements. The first of these, a derivative of the Danielle and Davson model,(2) requires that the lipid component of the membrane be a bilayer in structure and con-tribute to the membrane its basic barrier properties. Although the lipid molecules are confined to the bilayer, they are free to exhibit a variety of motional modes such as vibration, rotation, and translation. The second element of the fluid mosaic hypothesis deals with the disposition of the protein components of the membrane. These components are immersed to varying degrees in the lipid bilayer. Some may be only superficially associated with the polar faces of the bilayer, some embedded in its hydro-phobic core, and others may completely span the bilayer. The fluid nature of the bilayer permits the protein components to move in both rotational and translational modes. These diffusional motions of the individual protein components may give rise to time-dependent patterns in the compositional mosaic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singer, S. J., and G. L. Nicholson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.

    Article  PubMed  CAS  Google Scholar 

  2. Danielle, J. F., and H. Davson. 1935. A contribution to the theory of the permeability of thin films. J. Cell. Comp. Physiol. 5: 495–508.

    Article  Google Scholar 

  3. Silbert, D. F. 1975. Genetic modification of membrane lipid. Annu. Rev. Biochem. 44: 315.

    Article  PubMed  CAS  Google Scholar 

  4. Sandermann, H. 1978. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515: 209–237.

    PubMed  CAS  Google Scholar 

  5. Bangham, A. D., M. M. Standish, and J. C. Watkins. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13: 238–252.

    Article  PubMed  CAS  Google Scholar 

  6. Mueller, P., D. O. Rudin, H. T. Tien, and W. C. Wescott. 1962. Reconstitution of excitable cell membrane structure in vitro. Circulation 26: 1167–1171.

    CAS  Google Scholar 

  7. Huang, C. 1969. Studies on phosphatidylcholine vesicles: Formation and physical characteristics. Biochemistry 8: 344–352.

    Article  PubMed  CAS  Google Scholar 

  8. Barenholz, Y., D. Gibbes, B. J. Litman, J. Goll, T. E. Thompson, and F. D. Carlson. 1977. Photon correlation spectroscopic study of the size distribution of phospholipid vesicles. Biochemistry 16: 2806–2810.

    Article  PubMed  CAS  Google Scholar 

  9. Papahadjopoulos, D., W. J. Vail, K. Jacobson, and G. Poste. 1975. Cochleate lipid cylinders: Formation by fusion of uni-lamellar lipid vesicle. Biochim. Biophys. Acta 394: 483–491.

    Article  PubMed  CAS  Google Scholar 

  10. Deamer, D., and A. D. Bangham. 1976. Large volume liposomes by an ether-vaporization method. Biochim. Biophys. Acta 443: 629–634.

    Article  PubMed  CAS  Google Scholar 

  11. Enoch, H. G., and P. Strittmatter. 1979. Formation and properties of 1000-A-diameter, single-bilayer phospholipid vesicles. Proc. Natl. Acad. Sci. USA 76: 145–149.

    Article  PubMed  CAS  Google Scholar 

  12. Rhoden, U., and S. M. Goldin. 1979. Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis, Biochemistry 18: 4173–4176.

    Article  PubMed  CAS  Google Scholar 

  13. Mimms, L. T., G. Zampighi, Y. Nozaki, C. Tanford, and J. A. Reynolds. 1981. Phospholipid vesicle formation and trans-membrane protein incorporation using octyl glucoside. Biochemistry 20: 833–840.

    Article  PubMed  CAS  Google Scholar 

  14. Nordlund, J. R., C. F. Schmidt, and T. E. Thompson. 1981. Transbilayer distribution in small unilamellar phosphatidylglycer- ol-phosphatidylcholine vesicles. Biochemistry 20: 6415–6420.

    Article  PubMed  CAS  Google Scholar 

  15. Pagano, R. E., and J. N. Weinstein. 1978. Interactions of liposomes with mammalian cells. Annu. Rev. Biophys. Bioeng. 7: 435–468.

    Article  PubMed  CAS  Google Scholar 

  16. Szoka, F., and D. Papahadjopoulos. 1980. Comparative proper-ties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9: 467–508.

    Article  PubMed  CAS  Google Scholar 

  17. Ansell, G. B., J. N. Hawthorne, and R. M. C. Dawson. 1973. Form and Function of Phospholipids. Elsevier, Amsterdam, pp. 205–483.

    Google Scholar 

  18. Sweeley, C. C., and B. Siddiqui, 1977. Chemistry of mammalian glycolipids. In: The Glycoconjugates, Volume I. M. I. Horowitz and W. Pigman, eds. Academic Press, New York. pp. 459–540.

    Google Scholar 

  19. Nelson, G. J. 1967. Lipid composition of erythrocytes in various mammalian species. Biochim. Biophys. Acta 144: 221–232.

    PubMed  CAS  Google Scholar 

  20. van Deenen,L. L. M., and J. de Gier. 1974. Lipids of the red cell membrane. In: The Red Blood Cell, Volume I. D. N. Surgenor, ed. Academic Press, New York. pp. 147–211.

    Google Scholar 

  21. Colbeau, A., J. Nachbar, and P. M. Vignois. 1971. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim. Biophys. Acta 249: 462–492.

    Article  PubMed  CAS  Google Scholar 

  22. Keenan, T. W., and D. J. Moore. 1970. Phospholipid class and fatty acid composition of Golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry 9: 19–25.

    Article  PubMed  CAS  Google Scholar 

  23. Kleinig, H. 1970. Nuclear membranes from mammalian liver. J. Cell Biol. 46: 396–402.

    Article  PubMed  CAS  Google Scholar 

  24. Bretscher, M. S. 1972. Phosphatidylethanolamine: Differential labeling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent. J. Mol. Biol. 71: 523–528.

    Article  PubMed  CAS  Google Scholar 

  25. Bretscher, M. S. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature New Biol. 236: 11–12.

    Article  PubMed  CAS  Google Scholar 

  26. Godesky, S. E., and G. V. Marinetti. 1973. The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem. Biophys. Res. Commun. 50: 1027–1031.

    Article  Google Scholar 

  27. Verkleij, A. J., R. F. A. Zwaal, B. Roelofsen, P. Comfurius, D. Kostelijn, and L. L. M. van Deenen. 1973. The asymmetric distribution of phospholipids in the human red cell membrane: A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323: 178–193.

    Article  PubMed  CAS  Google Scholar 

  28. Renooij, W., L. M. G. vanGolde, R. F. A. Zwaall, andL. L. M. van Deenen. 1976. Topological asymmetry of phospholipid me¬tabolism in rat erythrocyte membranes: Evidence for flip-flop of lecithin. Eur. J. Biochem. 61: 53–58.

    Article  PubMed  CAS  Google Scholar 

  29. Bloj, B., and D. B. Zilversmit. 1976. Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts. Biochemistry 15: 1277–1283.

    Article  PubMed  CAS  Google Scholar 

  30. Rothman, J. E., D. K. Tsai, E. A. Dawidowicz, and J. Lenard. 1976. Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus. Biochemistry 15: 2361–2370.

    Article  PubMed  CAS  Google Scholar 

  31. Michell, R. H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81–147.

    PubMed  CAS  Google Scholar 

  32. Michell, R. H., S. S. Jafferji, andL. M. Jones. 1977. The possible involvement of phosphatidylinositol breakdown in the mechanism of stimulus-response coupling at receptors which control cell- surface calcium gates. Adv. Exp. Biol. Med. 83: 447–464.

    CAS  Google Scholar 

  33. Hawthorne, J.N. 1973. Phospholipid metabolism and transport of materials across the cell membrane. In: Form and Function of Phospholipids. G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds. Elsevier, Amsterdam, pp. 423–440.

    Google Scholar 

  34. Steck, T. L., and R. M. C. Dawson. 1974. Topographical distribution of complex carbohydrates in the erythrocyte membrane. J. Biol. Chem. 249: 2135–2142.

    PubMed  CAS  Google Scholar 

  35. Dawson, R. M. C. 1978. Glycolipid biosynthesis. In: The Glycoconjugates, Volume II. M. I. Horowitz and W. Pigman, eds. Academic Press, New York. pp. 255–284.

    Google Scholar 

  36. Hanson, H. A., J. Holmgren, and L. Svennerholm. 1977. Ultra- structural localization of cell membrane GMj ganglioside by cholera toxin. Proc. Natl. Acad. Sci. USA 74: 3782–3786.

    Article  Google Scholar 

  37. Horowitz, M. I. 1978. Immunological aspects. In: The Glycoconjugates, Volume II. M. I. Horowitz and W. Pigman, eds. Academic Press, New York. pp. 387–436.

    Google Scholar 

  38. Hakomori, S. 1981. Glyolipids in cellular interaction, differentiation and oncogenesis. Annu. Rev. Biochem. 50: 733–764.

    Article  PubMed  CAS  Google Scholar 

  39. Fishman, P. H., and R. O. Brady. 1976. Biosynthesis and function of gangliosides. Science 194: 906–915.

    Article  PubMed  CAS  Google Scholar 

  40. Moss, J., and Vaughan, M. 1979. Activation of adenylate cyclase by choleragen. Annu. Rev. Biochem. 48: 581–600.

    Article  PubMed  CAS  Google Scholar 

  41. Rodgers,T.B., and S.H.Snyder. 1981. High affinity binding of tetanus toxin to mammalian brain membranes. J. Biol. Chem. 256: 2402–2407.

    Google Scholar 

  42. Holmgren, J., L. Svennerholm, H. Elwing, P. Fredman, and O. Stannegrade. 1980. Sendai virus receptor: Proposed recognition structure based on binding to plastic-adsorbed ganglioside. Proc. Natl. Acad. Sci. USA 77: 1947–1950.

    Article  PubMed  CAS  Google Scholar 

  43. Yamakawa, T., and Y. Nagai. 1978. Glycolipids at the cell surface and their biological function. Trends Biochem. Sci. 3: 128–131.

    Article  CAS  Google Scholar 

  44. Patton, S. 1970. Correlative relationship of cholesterol and sphingomyelin in cell membranes. J. Theor. Biol. 29: 489–491.

    Article  PubMed  CAS  Google Scholar 

  45. Luzzati, V. 1968. X-ray diffraction studies on lipid-water systems. In: Biological Membranes. D. Chapman, ed. Academic Press, New York. pp. 71–123.

    Google Scholar 

  46. Tanford, C. 1973. The Hydrophobic Effect. Wiley, New York, pp. 1–94.

    Google Scholar 

  47. Israelachvili, J. N., D. J. Mitchell, and B. W. Ninham. 1976. Theory of self-assembly of hydrocarbon amphiphiles into miscelles and bilayers. J. Chem. Soc. Faraday Trans. 2 72: 1525–1568.

    Article  Google Scholar 

  48. Huang, C. 1976. Roles of carbonyl oxygens at the bilayer interface in phospholipid-sterol interaction. Nature (London) 259: 242–244.

    Article  CAS  Google Scholar 

  49. Dickerson, R. E., and I. Geis. 1969. The Structure and Action of Proteins. Harper, New York. pp. 8–13.

    Google Scholar 

  50. Flory, P. J. 1969. Statistical Mechanics of Chain Molecules. Wiley-Interscience, New York. pp. 192–196.

    Google Scholar 

  51. Lagaly, G., and A. Weiss. 1971. Experimental evidence for kink formation. Angew. Chem. Int. Ed. Engl. 10: 558–559.

    Article  CAS  Google Scholar 

  52. Lord, R. C., and R. Mendelsohn. 1981. Raman spectroscopy of membrane constituents and related molecules. In: Membrane Spectroscopy. E. Grell, ed. Springer-Verlag, Berlin, pp. 377–436.

    Google Scholar 

  53. Lippert, J. L., and W. L. Peticolas. 1972. Raman active vibrations in long-chain fatty acids and phospholipid sonicates. Biochim. Biophys. Acta 282: 8–17.

    Article  PubMed  CAS  Google Scholar 

  54. Lippert, J. L., L. E. Gorczyca, and G. Meiklejohn. 1975. A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts. Biochim. Biophys. Acta 382: 51–57.

    Article  PubMed  CAS  Google Scholar 

  55. Mendelsohn, R., S. Sunder, and H. J. Bernstein. 1976. The effect of sonication on the hydrocarbon chain conformation in model membrane systems: A Raman spectroscopic study. Biochim. Biophys. Acta 419: 563–569.

    Article  PubMed  CAS  Google Scholar 

  56. Horwitz, A. F., M. P. Klein, D. M. Michaelson, andS. J. Kohler. 1972. Magnetic resonance studies of membrane and model membrane systems. Ann. N.Y. Acad. Sci. 222: 468–487.

    Article  Google Scholar 

  57. Seelig, A., and J. Seelig. 1974. The dynamic structure of fatty acyl chains in a phospholipid bilayer. Biochemistry 13: 4839–4845.

    Article  PubMed  CAS  Google Scholar 

  58. Seelig, J., and A. Seelig. 1980. Lipid conformation in model membranes and biological membranes. Q. Rev. Biophys. 13: 19–61.

    Article  PubMed  CAS  Google Scholar 

  59. Edholm, O. 1981. Hydrocarbon chain dynamics in lipid bilayers. Chem. Phys. Lipids 29: 213–224.

    Article  CAS  Google Scholar 

  60. Abe, A., R. L. Jernigan, and P. J. Flory. 1966. Conformational energies of n-alkanes and the random configuration of higher ho- mologs including poly methylene. J. Am. Chem. Soc. 88: 631–639.

    Article  CAS  Google Scholar 

  61. Kondo, S., E. Hirota, and Y. Morino. 1968. Microwave spectrum and rotational isomerism in butene-1. J. Mol. Spectrosc. 28: 471–489.

    Article  CAS  Google Scholar 

  62. Kohler, S. J., A. F. Horwitz, and M. P. Klein. 1972. Magnetic resonance studies of membrane and model membrane systems: A comparison of yeast and egg lecithin dispersions. Biochem. Biophys. Res. Commun. 49: 1414–1421.

    Article  PubMed  CAS  Google Scholar 

  63. Barton, P. G., and F. D. Gunstone. 1975. Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. J. Biol. Chem. 256: 4470–4476.

    Google Scholar 

  64. Shapiro, E., and S. Ohki. 1974. The interaction energy between hydrocarbon chains. J. Colloid Interface Sci. 47: 38–49.

    Article  CAS  Google Scholar 

  65. Huang, C. 1977. A structural model for the cholesterol-phos- phatidylcholine complexes in bilayer membranes. Lipids 12: 348–356.

    Article  PubMed  CAS  Google Scholar 

  66. Batchelor, J. G., J. H. Prestegard, R. J. Cushley, and S. R. Lipsky. 1972. Conformational analysis of lecithin in vesicles by 13C-NMR. Biochem. Biophys. Res. Commun. 48: 70–75.

    Article  PubMed  CAS  Google Scholar 

  67. Breitmair, E., K-H. Spohn, and S. Berger. 1975. 13C spin-lattice relaxation times and the mobility of organic molecules in solution. Angew. Chem. Int. Ed. Engl. 14: 144–159.

    Google Scholar 

  68. Doddrell, D., and A. Allerhand. 1971. Segmental motion in liquid 1-decanol: Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc. 93: 1558–1559.

    Article  Google Scholar 

  69. Levine, Y. K., N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe. 1972. 13C-NMR relaxation measurements of synthetic lecithins and the effect of spin-labelled lipids. Biochemistry 11: 1416–1421.

    Google Scholar 

  70. Sears, B. 1975. 13C-NMR studies of egg phosphatidylcholine. J. Membr. Biol. 20: 59–73.

    Google Scholar 

  71. Gent, M. P. N., and J. H. Prestegard. 1974. Comparison of 13C spin-lattice relaxation times in phospholipid vesicles and multilayers. Biochem. Biophys. Res. Commun. 58: 549–555.

    Article  PubMed  CAS  Google Scholar 

  72. Sears, B., W. Hutton, and T. E. Thompson. 1974. 13C-NMR studies on bilayers formed from synthetic di-10-methyl-stear- oylphosphatidylcholine enriched with 13C in the N-methyl carbons. Biochem. Biophys. Res. Commun. 60: 1141–1147.

    Google Scholar 

  73. Davis, J. H. 1983. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim. Biophys. Acta 737: 117–171.

    PubMed  CAS  Google Scholar 

  74. Taylor, M. G., T. Akiyama, H. Saito, and I. C. P. Smith. 1982. Direct observation of the properties of cholesterol in membranes by deuterium NMR. Chem. Phys. Lipids 31: 359–379.

    Article  PubMed  CAS  Google Scholar 

  75. Hitchock, P. B., R. Mason, M. Thomas, andG. G. Shipley. 1974. Structural chemistry of 1,2-dilauroyl-DL-phosphatidylethano- lamine: Molecular conformation and intermolecular packing of phospholipids. Proc. Natl. Acad. Sci. USA 71: 3036–3039.

    Article  Google Scholar 

  76. Zull, J. E., and A. J. Hopfinger. 1969. Potential energy fields about nitrogen in choline and ethanolamine: Biological function of cellular surfaces. Science 165: 512–513.

    Article  PubMed  CAS  Google Scholar 

  77. Pearson, R. H., and I. Pascher. 1979. The molecular structure of lecithin dihydrate. Nature (London) 281: 499–501.

    Article  CAS  Google Scholar 

  78. Pauling, P. 1968. The structure of molecules active in cholinergic systems. In: Structural Chemistry and Molecular Biology. A. Rich and N. Davidson, eds. Freeman, San Francisco, pp. 555–565.

    Google Scholar 

  79. Brown, M. F., and J. Seelig. 1977. Ion-induced changes in head group conformation of lecithin bilayers. Nature (London) 269: 721–723.

    Article  CAS  Google Scholar 

  80. Gaily, H.-V., W. Niederberger, and J. Seelig. 1975. Conformation and motion of the choline head group in bilayers of di- pahnitoy 1-3-sn-phosphatidylcholine. Biochemistry 14: 3647–3652.

    Article  Google Scholar 

  81. Yeagle, P. L., W. C. Hutton, C. Huang, andR. B. Martin. 1975. Headgroup conformation and lipid-cholesterol association in phosphatidylcholine vesicles: A 31P{1H{ nuclear Overhauser effect study. Proc. Natl. Acad. Sci. USA 72: 3477–3481.

    Article  PubMed  CAS  Google Scholar 

  82. Jacobs, R., and E. Oldfield. 1981. NMR of membranes. In: Progress in NMR Spectroscopy, Volume 14. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, eds. Academic Press, New York. pp. 113–136.

    Google Scholar 

  83. Siminovitch, D. J., M. Ranee, andK. R. Jeffrey. 1980. The use of wide-line [14N] nitrogen NMR as a probe in model membranes. FEBS Lett. 112: 79–82.

    Article  PubMed  CAS  Google Scholar 

  84. Rothgeb, T. M., and E. Oldfield. 1981. Nitrogen-14 NMR spec-troscopy as a probe of lipid head group structure. J. Biol. Chem. 256: 6004–6009.

    PubMed  CAS  Google Scholar 

  85. Seelig, J., and H.-V. Gaily. 1976. Investigation of phos- phatidylethanolamine bilayers by 2H- and 31P-NMR. Biochemistry 15: 5199–5204.

    Article  PubMed  CAS  Google Scholar 

  86. Seelig, J., H.-V. Gaily, and R. Wohlgemuth. 1977. Orientation and flexibility of the choline headgroup in phosphatidylcholine bilayers. Biochim. Biophys. Acta 467: 109–119.

    Article  PubMed  CAS  Google Scholar 

  87. Cain, J., G. Santillan, and J. K. Blasie. 1972. Molecular motion in membranes as indicated by X-ray diffraction. In: Membrane Research. C. F. Fox, ed. Academic Press, New York. pp. 3–14.

    Google Scholar 

  88. Griffin, R. G. 1976. Observation of the effect of water on the 31P nuclear magnetic resonance spectra of dipalmitoyllecithin. J. Am. Chem. Soc. 98: 851–853.

    Article  PubMed  CAS  Google Scholar 

  89. Jendrasiak, G. L., and J. H. Hasty. 1974. The hydration of phospholipids. Biochim. Biophys. Acta 337: 79–91.

    PubMed  CAS  Google Scholar 

  90. Jendrasiak, G. L., and J. H. Hasty. 1974. The electrical conductivity of hydrated phospholipids. Biochim. Biophys. Acta 348: 45–54.

    PubMed  CAS  Google Scholar 

  91. Demel, R. A., K. R. Bruckdorfer, and L. L. M. van Deenen. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and RB +. Biochim. Biophys. Acta 255: 321–330.

    Article  PubMed  CAS  Google Scholar 

  92. Ghosh, D., M. A. Williams, and J. Tinoco. 1973. The influence of lecithin structure on their monolayer behavior and interactions with cholesterol. Biochim. Biophys. Acta 291: 351–362.

    Article  PubMed  CAS  Google Scholar 

  93. Marsh, D. 1980. Molecular motion in phospholipid bilayers in the gel phase: Long axis rotation. Biochemistry 19: 1632–1637.

    Article  PubMed  CAS  Google Scholar 

  94. Devaux, P., and H. M. McConnell. 1972. Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J. Am. Chem. Soc. 94: 4475–4481.

    Article  PubMed  CAS  Google Scholar 

  95. Trauble, H., and E. Sackmann. 1972. Studies on the crystalline- liquid crystalline phase transaction of lipid model membranes. III. Structural studies of a steroid lecithin system below and above the lipid-phase transition. J. Am. Chem. Soc. 94: 4499–4510.

    Article  PubMed  CAS  Google Scholar 

  96. Brulet, P., and H. M. McConnell. 1975. Kinetics of phase equilibrium in a binary mixture of phospholipids. Proc. Natl. Acad. Sci. USA 72: 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  97. Lee, A. G., N. J. M. Birdsall, and J. C. Metcalfe. 1973. Measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by 1-NMR. Biochemistry 12: 1650–1659.

    Article  PubMed  CAS  Google Scholar 

  98. Rubenstein, J. L. R., B. A. Smith, and H. M. McConnell. 1979. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. USA 76: 15–18.

    Article  PubMed  CAS  Google Scholar 

  99. Kao, A.-L., and C. G. Wade. 1979. Lipid lateral diffusion by pulsed NMR. Biochemistry 18: 2300–2308.

    Article  Google Scholar 

  100. Wu, W., and C. Huang. 1981. Effect of water mobility on lateral diffusion of phospholipids in liposomes. Lipids 16: 820–822.

    Article  CAS  Google Scholar 

  101. Saffman, P. G., and M. Delbruck. 1975. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA 72: 3111–3113.

    Article  PubMed  CAS  Google Scholar 

  102. Ulmius, J., H. Wennerstrom, G. Lindblom, and G. Arvidson. 1975. Proton NMR bandshape studies of lamellar liquid crystals and gel phases containing lecithins and cholesterol. Biochim. Biophys. Acta 389: 197–202.

    Article  PubMed  CAS  Google Scholar 

  103. Smith, H. G., R. Fager, and B. J. Litman. 1977. Light activated calcium release from sonicated bovine retinal rod outer segment discs. Biochemistry 16: 1399–1405.

    Article  PubMed  CAS  Google Scholar 

  104. Rothman, J. E., and E. P. Kennedy. 1977. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J. Mol. Biol. 110: 603–618.

    Article  PubMed  CAS  Google Scholar 

  105. Etemadi, A. H. 1980. Membrane asymmetry: A survey and critical appraisal of the methodology. Biochim. Biophys. Acta 604: 423–475.

    Article  PubMed  CAS  Google Scholar 

  106. Kornberg, R. D., and H. M. McConnell. 1971. Inside-outside transitions of phospholipid in vesicle membranes. Biochemistry 10: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  107. Roseman, M., B. J. Litman, and T. E. Thompson. 1975. Trans- bilayer exchange of phosphatidylethanolamine for phos-phatidylcholine and N-acetimidoyl-phosphatidylethanolamine in single-walled bilayer vesicles. Biochemistry 14: 4826–4830.

    Article  PubMed  CAS  Google Scholar 

  108. Johnson, L. W., M. E. Hughes, andD. B. Zilversmith. 1975. Use of phospholipid exchange protein to measure inside-outside transposition in phosphatidylcholine liposomes. Biochim. Biophys. Acta 375: 176–185.

    Article  PubMed  CAS  Google Scholar 

  109. Rothman, J. E., and E. A. Dawidowicz. 1975. Asymmetric ex-change of vesicle phospholipids catalyzed by the phos-phatidylcholine exchange protein measurement of inside-outside transitions. Biochemistry 14: 2809–2816.

    Article  PubMed  CAS  Google Scholar 

  110. Wirtz, K. W. A., H. H. Kamp, and L. L. M. van Deenen. 1972. Isolation of a protein from beef liver which specifically stimulates the exchange of phosphatidylcholine. Biochim. Biophys. Acta 274: 606–617.

    Article  PubMed  CAS  Google Scholar 

  111. Kamp, H. H., K. W. A., Wirtz, andL. L. M. van Deenen. 1973. Some properties of phosphatidylcholine exchange protein purified from beef liver. Biochim. Biophys. Acta 318: 313–325.

    CAS  Google Scholar 

  112. Shaw, J. M., B. Lentz, and T. E. Thompson. 1977. Proton NMR study of the decay of bilayer compositional asymmetry generated by a phosphatidylcholine exchange protein. Biochemistry 16: 4156–4163.

    Article  PubMed  CAS  Google Scholar 

  113. Op den Kamp, J. A. F. 1979. Lipid asymmetry in membranes. Annu. Rev. Biochem. 48: 47–71.

    Article  PubMed  CAS  Google Scholar 

  114. Kramer, R. M., H. J. Hasselbach, and J. Semenza. 1981. Rapid transmembrane movement of phosphatidylcholine in small uni-lameller lipid vesicles formed by detergent removal. Biochim. Biophys. Acta 643: 233–242.

    Article  PubMed  CAS  Google Scholar 

  115. de Kruijff, B., and K. W. A. Wirtz. 1977. Induction of a relatively fast transbilayer movement of phosphatidylcholine in vesicles: A 13C NMR study. Biochim. Biophys. Acta 468: 318–325.

    Article  PubMed  Google Scholar 

  116. de Kruijff, B., and P, Baker. 1978. Transbilayer movement of cholesterol in phospholipid vesicles under equilibrium and non- equilibrium conditions. Biochim. Biophys. Acta 506: 256–264.

    Article  Google Scholar 

  117. de Kruijff, B., and E. J. J. van Zoelen. 1978. Effect of the phase transition on the transbilayer movement of dimyristoyl phosphatidylcholine in unilamellar vesicles. Biochim. Biophys. Acta 511: 105–115.

    Article  PubMed  Google Scholar 

  118. Noorddam, P. C., C. J. A. van Echteld, B. de Kruijff, and J. de Gier. 1981. Rapid transbilayer movement of phosphatidylcholine in unsaturated phosphatidylethanolamine containing model membranes. Biochim. Biophys. Acta 646: 483–487.

    Google Scholar 

  119. de Kruijff, B., E. J. J. van Zoelen, and L. L. M. van Deenen. 1978. Glycophorin facilitates the transbilayer movement of phosphatidylcholine in vesicles. Biochim. Biophys. Acta 509: 537–542.

    Article  PubMed  Google Scholar 

  120. Gerritsen, W. J., P. A. J. Hendricks, B. de Kruijff, and L. L. M. van Deenen. 1980. The transmembrane movement of phosphatidylcholine in vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane. Biochim. Biophys. Acta 400: 607–619.

    Google Scholar 

  121. Rothman, J. E., D. K. Tsai, E. A. Dawidowicz, and J. Lenard. 1976. Transbilayer phospholipid asymmetry and its maintenance in the membranes of influenza virus. Biochemistry 15: 2361–2370.

    Article  PubMed  CAS  Google Scholar 

  122. Sandra, A., and R. Pagano. 1978. Phospholipid asymmetry in LM cell plasma membrane derivatives: Polar head group and acyl chain distributions. Biochemistry 17: 332–338.

    Article  PubMed  CAS  Google Scholar 

  123. Shaw, J. M., N. F. Moore, E. J. Patzer, M. C. Freire, R. R. Wagner, and T. E. Thompson. 1979. Compositional asymmetry and transmembrane movement of phosphatidylcholine in vesicular stomatitis virus membranes. Biochemistry 18: 538–543.

    Article  PubMed  CAS  Google Scholar 

  124. Rousellet, A., C. Guthman, J. Matricon, A. Bierwenne, and P. F. Devaux. 1976. Study of the transverse diffusion of spin labelled phospholipids in biological membranes. I. Biochim. Biophys. Acta 426: 357–371.

    Article  Google Scholar 

  125. Renooij, W., L. M. van Golde, R. F. Zwaal, and L. L. M. van Deenen. 1976. Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes: Evidence for flip-flop of lecithin. Eur. J. Biochem. 61: 53–58.

    Article  PubMed  CAS  Google Scholar 

  126. Bloj, B., and D. B. Zilversmit. 1976. Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts. Biochemistry 15: 1237–1283.

    Article  Google Scholar 

  127. Rousellet, A., A. Colbeau, P. M. Vignais, and P. F. Devaux. 1976. Study of the transverse diffusion of spin-labeled phospholipids in biological membranes. II. Biochim. Biophys. Acta 426: 372–384.

    Article  Google Scholar 

  128. McNamee, M., and H. M. McConnell. 1973. Transmembrane potentials and phospholipid flip-flop in excitable membrane vesicles. Biochemistry 12: 2951–2958.

    Article  PubMed  CAS  Google Scholar 

  129. Grant, C. W. M., and H. M. McConnell. 1973. Fusion of phospholipid vesicles with viable Acholeplasma laidlawii. Proc. Natl. Acad. Sci USA 70: 1238–1240.

    Article  PubMed  CAS  Google Scholar 

  130. Zilversmit, D. B., and M. E. Hughs. 1977. Extensive exchange of rat liver microsomal phospholipids. Biochim. Biophys. Acta 469: 99–110.

    Article  PubMed  CAS  Google Scholar 

  131. van den Besselar, A. M. A. P., B. de Kruijff, H. van den Borsch, and L. L. M. van Deenen. 1978. Phosphatidylcholine mobility in microsomal membranes. Biochim. Biophys. Acta 510: 242–255.

    Google Scholar 

  132. Shaw, J. M., N. F. Moore, E. J. Patzer, M. Correa-Freire, R. R. Wagner, and T. E. Thompson. 1979. Compositional asymmetry and transmembrane movement of phosphatidylcholine in vesicular stomatitis virus membranes. Biochemistry 18: 538–543.

    Article  PubMed  CAS  Google Scholar 

  133. Poznansky, M., and Y. Lange. 1976. Transbilayer movement of cholesterol in dipalmitoyllecithin-cholesterol vesicles. Nature (London) 259: 420–421.

    Article  CAS  Google Scholar 

  134. Bruckdorfer, K. R., P. A. Edwards, and C. Green. 1968. Properties of aqueous dispersions of phospholipid and cholesterol. Eur. J. Biochem. 4: 506–511.

    Article  PubMed  CAS  Google Scholar 

  135. Bloj, B., and D. B. Zilversmit. 1977. Complete exchangeability of cholesterol in phosphatidylcholine/cholesterol vesicles of different degrees of unsaturation. Biochemistry 16: 3943–3948.

    Article  PubMed  CAS  Google Scholar 

  136. Bloj, B., and D. B. Zilversmit. 1977. Transposition and distribution of cholesterol in rat erythrocytes. Proc. Soc. Exp. Biol. Med. 156: 539–543.

    PubMed  CAS  Google Scholar 

  137. Backer, J. M., and E. A. Dawidowicz. 1979. The rapid transmembrane movement of cholesterol in small unilamellar vesicles. Biochim. Biophys. Acta 551: 260–270.

    PubMed  CAS  Google Scholar 

  138. Jonas, A., and G. T. Maine. 1979. Kinetics and mechanism of phosphatidylcholine and cholesterol exchange between single bilayer vesicles and bovine serum high-density lipoproteins. Biochemistry 18: 1722–1728.

    Article  PubMed  CAS  Google Scholar 

  139. Nakagawa, Y., K. Inoue, and S. Nojuna. 1979. Transfer of cholesterol between liposomal membranes. Biochim. Biophys. Acta 553: 307–319.

    Article  PubMed  CAS  Google Scholar 

  140. Lange, Y., C. M. Cohen, and M. J. Poznansky. 1977. Transmembrane movement of cholesterol in human erythrocytes. Proc. Natl. Acad. Sci. USA 74: 1538–1542.

    Article  PubMed  CAS  Google Scholar 

  141. Kirby, C. J., and C. Green. 1977. Transmembrane migration (flip-flop) of cholesterol in erythrocyte membranes. Biochem. J. 168: 575–577.

    PubMed  CAS  Google Scholar 

  142. Patzer, E. J., J. M. Shaw, N. F. Moore, T. E. Thompson, and R. R. Wagner. 1978. Transmembrane movement and distribution of cholesterol in the membrane of vesicular stomatitis virus. Biochemistry 17: 4192–4200.

    Article  PubMed  CAS  Google Scholar 

  143. Sefton, B. M., and B. J. Gaffney. 1979. Complete exchange of viral cholesterol. Biochemistry 18: 436–442.

    Article  PubMed  CAS  Google Scholar 

  144. Lenard, J., and J. E. Rothman. 1976. Transbilayer distribution and movement of cholesterol and phospholipid in the membrane of influenza virus. Proc. Natl. Acad. Sci. USA 73: 391–395.

    Article  PubMed  CAS  Google Scholar 

  145. Rottem, S., G. M. Slutsky, and R. Bittman. 1978. Cholesterol distribution and movement in the Mycoplasma gallisepticum cell membrane. Biochemistry 17: 2723–2726.

    Article  PubMed  CAS  Google Scholar 

  146. Tanford, C. 1961. Physical Chemistry of Macromolecules. Wiley, New York. pp. 325–328.

    Google Scholar 

  147. Shinitzky, M., and Y. Barenholz. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515: 367–394.

    PubMed  CAS  Google Scholar 

  148. Shinitzky, M., and Y. Barenholz. 1974. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J. Biol. Chem. 249: 2651–2657.

    Google Scholar 

  149. Shinitzky, M., A. C. Dianoux, C. Gitler, and G. Weber. 1971. Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. I. Synthetic micelles. Biochemistry 10: 2106–2113.

    Article  PubMed  CAS  Google Scholar 

  150. Cogan, U., M. Shinitzky, G. Weber, and T. Nishida. 1973. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry 12: 521–528.

    Article  PubMed  CAS  Google Scholar 

  151. Lakowicz, J. 1981. Fluorescence spectroscopy. In: Spectroscopy in Biochemistry, Volume 1. J. E. Bell, ed. CRC Press, Boca Raton, Fla., pp. 195–245.

    Google Scholar 

  152. Lentz, B. R., Y. Barenholz, andT. E. Thompson. 1976. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. I. Single component phosphatidylcholine liposomes. Biochemistry 15: 4521–4528.

    Article  PubMed  CAS  Google Scholar 

  153. Lentz, B. R., Y. Barenholz, andT. E. Thompson. 1976. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. II. Two-component phosphatidylcholine liposomes. Biochemistry 15: 4529–4537.

    Article  PubMed  CAS  Google Scholar 

  154. Lee, A. G. 1975. Functional properties of biological membranes: A physical-chemical approach. Prog. Biophys. Mol. Biol. 29: 3–56.

    Article  PubMed  CAS  Google Scholar 

  155. Shinitzky, M., and M. Inbar. 1974. Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J. Mol. Biol. 85: 603–615.

    Article  PubMed  CAS  Google Scholar 

  156. Soloman, A. K. 1974. Apparent viscosity of human red cell membranes. Biochim. Biophys. Acta 373: 145–149.

    Article  Google Scholar 

  157. Cone, R. A. 1972. Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol. 236: 39–43.

    PubMed  CAS  Google Scholar 

  158. Poo, M., and R. A. Cone. 1974. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature (London) 247: 438–441.

    Article  CAS  Google Scholar 

  159. Silvius, J. 1982. Thermotropic phase transitions of pure lipids in model membranes and their modification by membrane proteins. In: Lipid Protein Interactions, Volume 2. P. Jost and O. H. Griffith, eds. Wiley, New York. pp. 239–281.

    Google Scholar 

  160. Mabrey-Gaud, S. 1981. Differential scanning calorimetry of liposomes. In: Liposomes: From Physical Structure to Therapeutic Applications. C. G. Knight, ed. Elsevier/North-Hol-land, Amsterdam, pp. 105–138.

    Google Scholar 

  161. Levin, I. W. 1984. Vibrational spectroscopy of membrane assemblies. In: Advances in Infrared and Raman Spectroscopy, Volume 11. R. J. H. Clark and R. E. Hester, eds. Heyden, London, pp. 1–48.

    Google Scholar 

  162. Huang, C., J. R. Lapides, and I. R. Levin. 1982. Phase-transitional behavior of saturated: symmetric chain phospholipid bilayer dispersions determined by Raman spectroscopy: Correlation between spectral and thermodynamic parameters. J. Am. Chem. Soc. 104: 5926–5930.

    Article  CAS  Google Scholar 

  163. Phillips, M. C., R. M. Williams, and D. Chapman. 1969. On the nature of hydrocarbon chain motions in lipid liquid crystals. Chem. Phys. Lipids 3: 234–244.

    Article  CAS  Google Scholar 

  164. Mabrey, S., and J. M. Sturtevant. 1976. Investigation of phase transitions of lipids and lipid mixtures by high-sensitivity differential scanning calorimetry. Proc. Natl. Acad. Sci. USA 73: 3862–3866.

    Article  PubMed  CAS  Google Scholar 

  165. Albon, N., and J. M. Sturtevant. 1978. Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines. Proc. Natl. Acad. Sci. USA 75: 2258–2260.

    Article  PubMed  CAS  Google Scholar 

  166. Mason, J. T., and C. Huang. 1981. Chain length dependent thermodynamics of saturated symmetric-chain phosphatidylcholine bilayers. Lipids 16: 604–608.

    Article  CAS  Google Scholar 

  167. Huang, C., and I. W. Levin. 1983. Effect of lipid chain length inequivalence on the packing characteristics of bilayer assemblies: Raman spectroscopic study of phospholipid dispersions in the gel state. J. Phys. Chem. 87: 1509–1513.

    Article  CAS  Google Scholar 

  168. Quinn, P. J. 1981. The fluidity of cell membranes and its regulation. Prog. Biophys. Mol. Biol. 38: 1–104.

    Article  PubMed  CAS  Google Scholar 

  169. Mason, J. T., C. Huang, and R. L. Biltonen. 1981. Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry 20: 6086–6092.

    Article  PubMed  CAS  Google Scholar 

  170. Chong, P. L.-G., and A. R. Cossins. 1983. A differential polarized phase fluorometric study of the effects of high hydrostatic pressure upon the fluidity of cellular membranes. Biochemistry 22: 409–414.

    Article  PubMed  CAS  Google Scholar 

  171. Chapman, D., R. M. Williams, and B. D. Ladbrooke. 1967. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacylphosphatidylcholines (lecithins). Chem. Phys. Lipids I, 445–475.

    Google Scholar 

  172. Chen, S. C., J. M. Sturtevant, and B. J. Gaffney. 1980. Scanning calorimetric evidence for a third phase transition in phos-phatidylcholine bilayers. Proc. Natl. Acad. Sci. USA 77: 5060–5063.

    Article  PubMed  CAS  Google Scholar 

  173. Janiak, M. J., D. M. Small, and G. G. Shipley. 1976. Nature of the thermal pretransition of synthetic phospholipids: Dimyristoyl- and dipalmitoyllecithin. Biochemistry 15: 4575–4580.

    Article  PubMed  CAS  Google Scholar 

  174. Verkleij, A. J., and J. de Gier. 1981. Freeze fracture studies on aqueous dispersions of membrane lipids. In: Liposomes: From Physical Structure to Therapeutic Applications. C. G. Knight, ed. Elsevier/North-Holland, Amsterdam, pp. 83–103.

    Google Scholar 

  175. Ruocco, M. J., and G. G. Shipley. 1982. Characterization of the sub-transition of hydrated dipalmitoylphosphatidylcholine bilayers. Biochim. Biophys. Acta 691: 309–320.

    Article  CAS  Google Scholar 

  176. Chang, H., and R. M. Epand. 1983. The existence of a highly ordered phase in fully hydrated dilauroylphosphatidylethano- lamine. Biochim. Biophys. Acta 728: 319–324.

    Article  PubMed  CAS  Google Scholar 

  177. Mantsch, H. H., S. C. Hsi, K. W. Butler, and D. G. Cameron. 1983. Studies on the thermotropic behavior of aqueous phos- phatidylethanolamines. Biochim. Biophys. Acta 728: 325–330.

    Article  PubMed  CAS  Google Scholar 

  178. Seddon, J. M., K. Harlos, and D. Marsh. 1983. Metastability and polymorphism in the gel and fluid bilayer phases of di- lauroylphosphatidylethanolamine: Two crystalline forms in ex-cess water. J. Biol. Chem. 258: 3850–3854.

    PubMed  CAS  Google Scholar 

  179. Cullis, P. R., and B. de Kruijff. 1979. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559: 399–420.

    PubMed  CAS  Google Scholar 

  180. Mantsch, H. H., A. Martin, and D. G. Cameron. 1981. Characterization by infrared spectroscopy of the bilayer to nonbilayer phase transition of phosphatidylethanolamines. Biochemistry 20: 3138–3145.

    Article  PubMed  CAS  Google Scholar 

  181. Epand, R. M., and R. F. Epand. 1980. Studies of thermotropic phospholipid phase transitions using scanning densitometry. Chem. Phys. Lipids 27: 139–150.

    Article  CAS  Google Scholar 

  182. Larsson, K., K. Fontell, and N. Krog. 1980. Structural relationships between lamellar, cubic and hexagonal phases in monoglyceride-water systems: Possibility of cubic structures in biological systems. Chem. Phys. Lipids 27: 321–328.

    Article  CAS  Google Scholar 

  183. Boni, L. T., andS. W. Hui. 1983. Polymorphic phase behavior of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphos- phatidylcholine mixtures: Structural changes between hexagonal, cubic and bilayer phases. Biochim. Biophys. Acta 731: 177–185.

    Article  PubMed  CAS  Google Scholar 

  184. Wu, W., and C. Huang. 1983. Kinetic studies of the micellar lamellar phase transition of 1-stearoyllysophosphatidylcholine dispersions. Biochemistry 22: 5068–5073.

    Article  CAS  Google Scholar 

  185. Wu, W., C. Huang, T. G. Conley, R. B. Martin, and I. W. Levin. 1982. Lamellar-micellar transition of 1-stearoyllysophosphati- dylcholine assemblies in excess water. Biochemistry 21: 5957–5961.

    Article  PubMed  CAS  Google Scholar 

  186. Barenholz, Y., J. Suurkuusk, D. Mountcastle, T. E. Thompson, and R. Biltonen. 1976. A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins. Biochemistry 15: 2441–2447.

    Article  PubMed  CAS  Google Scholar 

  187. Barenholz, Y., and T. E. Thompson. 1980. Sphingomyelins in bilayers and biological membranes. Biochim. Biophys. Acta 604: 129–158.

    Article  PubMed  CAS  Google Scholar 

  188. Bunow, M. R. 1979. Two gel states of cerebrosides: Calorimetric and Raman spectroscopic evidence. Biochim. Biophys. Acta 574: 542–546.

    PubMed  CAS  Google Scholar 

  189. Bunow, M. R., and I. R. Levin. 1980. Molecular conformations of cerebrosides in bilayers determined by Raman spectroscopy. Biophys. J. 32: 1007–1021.

    Article  PubMed  CAS  Google Scholar 

  190. Friere, E., D. Bach, M. Correa-Freire, I. Miller, and Y. Barenholz. 1980. Calorimetric investigation of the complex phase behavior of glucocerebroside dispersions. Biochemistry 19: 3662–3665.

    Article  Google Scholar 

  191. Curatolo, W. 1982. Thermal behavior of fractionated and unfractionated bovine brain cerebrosides. Biochemistry 21: 1761–1764.

    Article  PubMed  CAS  Google Scholar 

  192. Ruocco, M. J., D. Atkinson, D. M. Small, R. P. Skarjune, E. Oldfield, and G. G. Shipley. 1981. X-ray diffraction and calorimetric study of anhydrous and hydrated N-palmitoylgalac- tosylsphingosine (cerebroside). Biochemistry 20: 5957–5966.

    Article  PubMed  CAS  Google Scholar 

  193. Barenholz, Y., B. Ceastaro, D. Lichtenberg, E. Freire, T. E. Thompson, and S. Gatt. 1980. Characterization of micellar and liposomal dispersions of gangliosides and phospholipids. In: Structure and Function of the Gangliosides. L. Svennerholm, P. Mandel, H. Dreyfus, and P.-F. Urban, eds. Plenum Press, New York. pp. 105–123.

    Google Scholar 

  194. Formisano, S., M. L. Johnson, G. Lee, S. M. Aloj, and H. Edelhoch. 1979. Critical micelle concentrations of gangliosides. Biochemistry 18: 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  195. Corti, M., and V. Degiorgio. 1980. Laser-light scattering investigation of the micellar properties of gangliosides. Chem. Phys. Lipids 26: 225–238.

    Article  PubMed  CAS  Google Scholar 

  196. Shimshick, E. J., and H. M. McConnell. 1973. Lateral phase separation in phospholipid membranes. Biochemistry 12: 2351–2360.

    Article  PubMed  CAS  Google Scholar 

  197. McConnell, H. M. 1975. Coupling between lateral and perpen-dicular motion in biological membranes. In: Functional Linkage in Biomolecular Systems. F. O. Schmitt, V.M. Schneider, and D. M. Crothers, eds. Raven Press, New York. pp. 123–131.

    Google Scholar 

  198. Phillips, M. C. 1972. The physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes. Prog. Membr. Surf. Sci 5: 139–221.

    CAS  Google Scholar 

  199. Chapman, D. 1973. Some recent studies of lipids, lipid cholesterol and membrane systems. In: Biological Membranes. D. Chapman and D. F. H. Wallach, eds. Academic Press, New York. pp. 91–144.

    Google Scholar 

  200. Jain, M. K. 1975. Role of cholesterol in biomembranes and related systems. Curr. Top. Membr. Transp. 6: 1–57.

    CAS  Google Scholar 

  201. Demel, R. A., and B. de Kruijff. 1976. The function of sterols in membranes. Biochim. Biophys. Acta 457: 109–132.

    PubMed  CAS  Google Scholar 

  202. Brockerhoff, H. 1974. Model of interaction of polar lipids, choles¬terol and proteins in biological membranes. Lipids 9: 645–650.

    Article  PubMed  CAS  Google Scholar 

  203. Lecuyer, H., and D. G. Derivichian. 1969. Structure of aqueous mixtures of lecithin and cholesterol. J. Mol. Biol. 45: 39–57.

    Article  PubMed  CAS  Google Scholar 

  204. Levine, Y. K., andM. H. F., Wilkins. 1971. Structure of oriented lipid bilayers. Nature New Biol 230: 69–72.

    CAS  Google Scholar 

  205. Chapman, D., and S. A. Plenkett. 1966. Nuclear magnetic reso-nance spectroscopic studies of the interaction of phospholipids with cholesterol. Nature (London) 211: 1304–1305.

    Article  CAS  Google Scholar 

  206. Darke, A., E. G. Finer, A. G. Flook, and M. C. Phillips. 1972. Nuclear magnetic resonance study of lecithin-cholesterol interactions. J. Mol. Biol. 63: 265–279.

    Article  PubMed  CAS  Google Scholar 

  207. Stoffel, W., B. P. Tunggal, O. Zierenberg, E. Schreiber, and E. Brinczek. 1974. 13C NMR studies of lipid interactions in single and multicomponent lipid vesicles. Hoppe-Seylers Z. Physiol. Chem. 355: 1367–1380.

    Google Scholar 

  208. Godici, P. E., and F. R. Landsberger. 1975.,3C NMR studies of the dynamic structure of lecithin-cholesterol membranes and the position of stearic acid spin labels. Biochemistry 14: 3927–3933.

    Google Scholar 

  209. Brainard, J. R., and E. H. Cordes. 1981. Carbon-13 NMR studies of cholesterol-egg yolk phosphatidylcholine vesicles. Biochemistry 20: 4607–4617.

    Article  PubMed  CAS  Google Scholar 

  210. Brainard, J. R., and A. Szabo. 1981. Theory for nuclear magnetic relaxation of probes in anisotropic systems: Application to cholesterol in phospholipid vesicles. Biochemistry 20: 4618–4628.

    Article  PubMed  CAS  Google Scholar 

  211. Gaily, H. U., A. Seelig, and J. Seelig. 1976. Cholesterol-induced rod-like motion of fatty acyl chains in lipid bilayers: A 2H-NMR study. Hoppe-Seylers Z. Physiol. Chem. 357: 1447–1450.

    Google Scholar 

  212. Mantsch, H. H., H. Saito, and I. C. P. Smith. 1977. Deuterium magnetic resonance, applications in chemistry, physics and biolo¬gy. In: Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 11. Pergamon Press, Elmsford, N.Y. pp. 211–271.

    Google Scholar 

  213. Cullis, P. R. 1976. Lateral diffusion rates of phosphatidylcholine in vesicle membranes: Effects of cholesterol and hydrocarbon phase transitions. FEBS Lett. 70: 223–228.

    Article  PubMed  CAS  Google Scholar 

  214. Fahey, P. F., D. E. Koppel, L. S. Barak, D. E. Wolf, E. L. Elson, and W. W. Webb. 1976. Lateral diffusion in planar lipid bilayers. Science 195: 305–306.

    Article  Google Scholar 

  215. Mendelsohn, R. 1972. Laser-Raman spectroscopic study of egg lecithin and egg lecithin-cholesterol mixtures. Biochim. Biophys. Acta 290: 15–21.

    Article  PubMed  CAS  Google Scholar 

  216. Huang, C., and J. T. Mason. 1982. Complementary packing of phosphoglyceride and cholesterol molecules in the bilayer. In: Membranes and Transport, Volume 1. A. N. Martonosi, ed. Plen¬um Press, New York. pp. 15–23.

    Google Scholar 

  217. Spiker, R. C., and I. W. Levin. 1976. Phase transitions of phos-pholipid single-wall vesicles and multilayers: Measurement by vibrational Raman spectroscopic frequency differences. Biochim. Biophys. Acta 455: 560–575.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Thompson, T.E., Huang, C. (1986). Composition and Dynamics of Lipids in Biomembranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics