Advertisement

Anion Transport in Erythrocytes

  • Philip A. Knauf

Abstract

Twenty years ago a book such as this would probably not have included a chapter on anion transport. At that time, there was little interest in anions, since it was felt that most important physiological processes involved transport of cations, and that anions simply went along with cations to maintain electroneutrality. Most anion transport was felt to involve passive diffusion and, with the exception of special cases such as the CI − /HCO3− exchanges in the red cell and kidney, to be of little physiological significance.

Keywords

Human Erythrocyte Anion Transport Regulatory Volume Decrease Ehrlich Ascites Tumor Cell Niflumic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hunter, M.J. 1971. A quantitative estimate of the non-exchange- restricted chloride permeability of the human red cell. J. Physiol. (London) 218: 49P – 50 P.Google Scholar
  2. 2.
    Cabantchik, Z. I., and A. Rothstein. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol. 15: 207 – 226.PubMedGoogle Scholar
  3. 3.
    Passow, H., H. Fasold, L. Zaki, B. Schuhmann, and S. Lepke. 1975. Membrane proteins and anion exchange in human erythrocytes. In: Biomembranes: Structure and Function. G. Gardos and I. Szasz, eds. North-Holland, Amsterdam, pp. 197 – 214.Google Scholar
  4. 4.
    Haspel, H. C., R. E. Corin, and M. Sonnenberg. 1982. Gossypol, an oral male contraceptive: Effects on human erythrocyte membrane function. Fed. Proc. 41: 671.Google Scholar
  5. 5.
    Deuticke, B. 1982. Monocarboxylate transport in erythrocytes. J. Membr. Biol. 70: 89 – 103.PubMedGoogle Scholar
  6. 6.
    Murer, H. 1982. Membrane transport of anions across epithelia of mammalian small intestine and kidney proximal tubule. Rev. Physiol. Biochem. Pharmacol. 96: 1 – 51.Google Scholar
  7. 7.
    Zadunaisky, J. A., ed. 1982. Chloride Transport in Biological Membranes. Academic Press, New York.Google Scholar
  8. 8.
    Macara, I. G., and L. C. Cantley. 1983. The structure and function of band 3. In: Cell Membranes: Methods and Reviews. E. Elson, W. Frazier, and L. Glaser, eds. Plenum Press, New York, pp. 41 – 87.Google Scholar
  9. 8.
    Macara, I. G., and L. C. Cantley. 1983. The structure and function of band 3. In: Cell Membranes: Methods and Reviews. E. Elson, W. Frazier, and L. Glaser, eds. Plenum Press, New York, pp. 41 – 87.Google Scholar
  10. 10.
    Keynes, R. D., and J. C. Ellory, eds. 1982. The Binding and Transport of Anions in Living Tissues. Philos. Trans. R. Soc. London Ser. B 299: 365 – 607.Google Scholar
  11. 11.
    Lowe, A. G., and A. Lambert. 1983. Chloride-bicarbonate exchange and related transport processes. Biochim. Biophys. Acta 694: 353 – 374.Google Scholar
  12. 12.
    Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27: 37 – 60.PubMedGoogle Scholar
  13. 13.
    Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 108: 37 – 77.Google Scholar
  14. 14.
    Wieth, J. O., O. S. Andersen, J. Brahm, P. J. Bjerrum, and C. L. Borders, Jr. 1982. Chloride-bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites. Philos. Trans. R. Soc. London Ser. B 299: 383 – 399.Google Scholar
  15. 15.
    Brahm, J. 1977. Temperature-dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70:283– 306.PubMedGoogle Scholar
  16. 16.
    Knauf, P. A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure. Curr. Top. Membr. Transp. 12: 249 – 363.Google Scholar
  17. 17.
    Fairbanks, G. L., T. L. Steck, and D. F. H. Wallach. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606 – 2617.PubMedGoogle Scholar
  18. 18.
    Hunter, M.J. 1977. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J. Physiol. (London) 268: 35 – 49.Google Scholar
  19. 19.
    Knauf, P. A., G. F. Fuhrmann, S. Rothstein, and A. Rothstein. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69: 363 – 386.PubMedGoogle Scholar
  20. 20.
    Dalmark, M. 1976. Effects of halides and bicarbonate on chloride transport in human red blood cells. J. Gen. Physiol. 67: 223 – 234.PubMedGoogle Scholar
  21. 21.
    Patlak, C. S. 1957. Contributions to the theory of active transport. II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull. Math. Biophys. 19: 209 – 235.Google Scholar
  22. 22.
    Gunn, R. B. 1978. Considerations of the titratable carrier model for sulfate transport in human red blood cells. In: Membrane Transport Processes. J. F. Hoffman, ed. Raven Press, New York, pp. 61 – 77.Google Scholar
  23. 23.
    Cass, A., and M. Dalmark. 1973. Equilibrium dialysis of ions in nystatin-treated red cells. Nature New Biol. 244: 47 – 49.PubMedGoogle Scholar
  24. 24.
    Schnell, K. F., E. Besl, and A. Manz. 1978. Asymmetry of the chloride transport system in human erythrocyte ghosts. Pfluegers Arch. Gesamte Physiol. 375: 87 – 95.Google Scholar
  25. 25.
    Schnell, K. F. 1979. The anion transport system of the red blood cell. In: Proceedings of the Fifth Winter School on Biophysics of Membrane Transport. Agricultural University of Wroclaw, Wroclaw, Poland. Part II, pp. 215 – 252.Google Scholar
  26. 26.
    Gunn, R. B., and O. Fröhlich. 1979. Asymmetry in the mechanism for anion exchange in human red blood cell membranes: Evidence for reciprocating sites that react with one transported anion at a time. J. Gen. Physiol. 74: 351 – 374.PubMedGoogle Scholar
  27. 27.
    Knauf, P. A., S. Ship, W. Breuer, L. McCulloch, and A. Rothstein. 1978. Asymmetry of the red cell anion exchange system: Different mechanisms of reversible inhibition by N-(4-azido-2-(nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane. J. Gen. Physiol. 72: 607 – 630.PubMedGoogle Scholar
  28. 28.
    Wieth, J. O., and P. J. Bjerrum. 1982. Titration of transport and modifier sites in the red cell anion transport system. J. Gen. Physiol. 79: 253 – 282.PubMedGoogle Scholar
  29. 29.
    Knauf, P., and M. Ramjeesingh. 1982. Techniques for studying the anion transporting protein. In: Red Cell Membranes. J. C. Ellory, ed. Academic Press, New York. pp. 275 – 300.Google Scholar
  30. 30.
    Fröhlich, O. 1982. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. J. Membr. Biol. 65: 111 – 123.PubMedGoogle Scholar
  31. 31.
    Barzilay, M., and Z. I. Cabantchik. 1979. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Membr. Biochem. 2: 255 – 281.PubMedGoogle Scholar
  32. 32.
    Schnell, K. F., W. Elbe, J. Kasbauer, and E. Kaufmann. 1983. Electron spin resonance studies on the inorganic anion transport system of the human red blood cell: Binding of the disulfonatostilbene spin label, NDS-TEMPO, and inhibition of anion transport. Biochim. Biophys. Acta 732: 266 – 275.PubMedGoogle Scholar
  33. 33.
    Passow, H., L. Kampmann, H. Fasold, M. Jennings, and S. Lepke. 1980. Mediation of anion transport across the red cell membrane by means of conformational changes in the band 3 protein. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 345 – 367.Google Scholar
  34. 34.
    Shami, Y., A. Rothstein, and P. A. Knauf. 1978. Identification of the CI − transport site of human red blood cells by a kinetic analysis of the inhibitory effects of a chemical probe. Biochim. Biophys. Acta 508: 357 – 363.PubMedGoogle Scholar
  35. 35.
    Halestrap, A. P. 1976. Transport of pyruvate and lactate into human erythrocytes: Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem. J. 156:193– 207.PubMedGoogle Scholar
  36. 36.
    Cousin, J. L., and Motais, R. 1979. Inhibition of anion permeability by amphiphilic compounds in human red cell: Evidence for an interaction of niflumic acid with the band 3 protein. J. Membr. Biol. 46: 125 – 153.PubMedGoogle Scholar
  37. 37.
    Gunn, R. B., and J. A. Cooper, Jr. 1975. Effect of local anesthetics on chloride transport in erythrocytes. J. Membr. Biol. 25:311– 326.PubMedGoogle Scholar
  38. 38.
    Fröhlich, O., and R. B. Gunn. 1982. Mutual interactions of reversible inhibitors on the red cell anion transporter. Biophys. J. 37: 213a.Google Scholar
  39. 39.
    Macara, I. G., and L. C. Cantley. 1981. The mechanism of anion exchange across the red cell membrane by band 3: Interactions between stilbene disulfonates and NAP-taurine binding sites. Biochemistry 20: 5695 – 5701.PubMedGoogle Scholar
  40. 40.
    Cabantchik, Z., P. Knauf, T. Ostwald, H. Markus, L. Davidson, W. Breuer, and A. Rothstein. 1976. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood ceil. Biochim. Biophys. Acta 455: 526 – 537.PubMedGoogle Scholar
  41. 41.
    Kempf, C., C. Brock, H. Sigrist, M. J. A. Tanner, and P. Zahler. 1981. Interaction of phenylisothiocyanate with human erythrocyte band 3 protein. II. Topology of phenylisothiocyanate binding sites and influence of p-sulfophenylisothiocyanate on phenylisothiocyanate modification. Biochim. Biophys. Acta 641: 88 – 98.PubMedGoogle Scholar
  42. 42.
    Nigg, E. A., C. Bron, M. Girardet, and R. J. Cherry. 1980. Band 3-glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with antibody-induced cross-linking. Biochemistry 19: 1887 – 1893.PubMedGoogle Scholar
  43. 43.
    Verkman, A. S., J. A. Dix, and A. K. Solomon. 1983. Anion transport inhibitor binding to band 3 in red blood cell membranes. J. Gen. Physiol. 81: 421 – 449.PubMedGoogle Scholar
  44. 44.
    Macara, I. G., S. Kuo, and L. C. Cantley. 1983. Evidence that inhibitors of anion exchange induce a transmembrane conformational change in band 3. J. Biol. Chem. 258: 1785 – 1792.PubMedGoogle Scholar
  45. 45.
    Macara, I. G., and L. C. Cantley. 1981. Interactions between transport inhibitors at the anion binding sites of the band 3 dimer. Biochemistry 20: 5095 – 5105.PubMedGoogle Scholar
  46. 46.
    Rao, A., P. Martin, R. A. F. Reithmeier, and L. C. Cantley. 1979. Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry 18: 4505 – 4516.PubMedGoogle Scholar
  47. 47.
    Nigg, E., M. Kessler, and R. J. Cherry. 1979. Labeling of human erythrocyte membranes with eosin probes used for protein diffusion measurements: Inhibition of anion transport and photo-oxidative inactivation of acetylcholinesterase. Biochim. Biophys. Acta 550: 328 – 340.PubMedGoogle Scholar
  48. 48.
    Rothstein, A., P. A. Knauf, and Z. I. Cabantchik. 1977. NAP- taurine, a photoaffinity probe for the anion transport system of the red blood cell. In: Biochemistry of Membrane Transport. G. Semenza and E. Carafoli, eds. Springer-Verlag, Berlin, pp. 316– 327.Google Scholar
  49. 49.
    Funder, J., and Wieth, J. 1976. Chloride transport in human erythrocytes and ghosts: A quantitative comparison. J. Physiol. (London) 262: 679 – 698.Google Scholar
  50. 50.
    Gunn, R. B. 1972. A titratable carrier model for both mono- and di-valent anion transport in human red blood cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. RRørth and P. Astrup, eds. Munksgaard, Copenhagen, pp. 823 – 827.Google Scholar
  51. 51.
    Lepke, S., and H. Passow. 1971. The permeability of the human red blood cell to sulfate ions. J. Membr. Biol. 6: 158 – 182.Google Scholar
  52. 52.
    Schnell, K. F., S. Gerhardt, and A. Schoppe-Fredenburg. 1977. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. J. Membr. Biol. 30:319– 350.PubMedGoogle Scholar
  53. 53.
    Ku, C. P., M. L. Jennings, and H. Passow. 1979. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red blood cell membrane. Biochim. Biophys. Acta 553: 132 – 141.PubMedGoogle Scholar
  54. 54.
    Jennings, M. 1976. Proton fluxes associated with erythrocyte membrane anion exchange. J. Membr. Biol. 28: 187 – 205.PubMedGoogle Scholar
  55. 55.
    Milanick, M. A., and R. B. Gunn. 1982. Proton-sulfate co-transport: Mechanism of H + and sulfate addition to the chloride transporter of human red blood cells. J. Gen. Physiol. 79: 87 – 113.PubMedGoogle Scholar
  56. 56.
    Milanick, M. A., and R. B. Gunn. 1982. Interactions between external protons and the anion transporter of human erythrocytes. Biophys. J. 37: 213a.Google Scholar
  57. 57.
    Dalmark, M. 1975. Chloride transport in human red cells. J. Physiol. (London) 250: 39 – 64.Google Scholar
  58. 58.
    Wieth, J. O., J. Brahm, and J. Funder. 1980. Transport and interactions of anions and protons in the red blood cell membrane. Ann. N.Y. Acad. Sci. 341: 394 – 418.PubMedGoogle Scholar
  59. 59.
    Milanick, M. A., and R. B. Gunn. 1984. Proton-sulfate co-transport: External proton activation of sulfate influx into human red blood cells. Am. J. Physiol. 247 (Cell Physiol. 16): C247 – C259.PubMedGoogle Scholar
  60. 60.
    Jennings, M. L. 1978. Characteristics of C02-independent pH equilibration in human red blood cells. J. Membr. Biol. 40:365– 391.PubMedGoogle Scholar
  61. 61.
    Legrum, B., H. Fasold, and H. Passow. 1980. Enhancement of anion equilibrium exchange by dansylation of the red blood cell membrane. Hoppe-Seyler’s Z. Physiol. Chem. 361: 1573 – 1590.PubMedGoogle Scholar
  62. 62.
    Lepke, S.,and H. Passow. 1982. Inverse effects of dansylation of red blood cell membrane on band 3 protein-mediated transport of sulphate and chloride. J. Physiol. (London) 328: 27 – 48.Google Scholar
  63. 63.
    Gunn, R. B., and O. Fröhlich. 1980. The kinetics of the titratable carrier for anion exchange in erythrocytes. Ann. N.Y. Acad. Sci. 341: 384 – 393.PubMedGoogle Scholar
  64. 64.
    Gunn, R., J. Wieth, and D. Tosteson. 1975. Some effects of low pH on chloride exchange in human red blood cells. J. Gen. Physiol. 65: 731 – 749.PubMedGoogle Scholar
  65. 65.
    Bjerrum, P. J., J. Tranum-Jensen, and K. Møllgard. 1980. Morphology of erythrocyte membranes and their transport function following aggregation of membrane proteins. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 51 – 67.Google Scholar
  66. 66.
    Gunn, R. B. 1973. A titratable carrier for monovalen: and divalent inorganic anions in red blood cells. In: Erythrocytes, Thrombocytes, Leucocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds. Thieme, Stuttgart, pp. 77 – 79.Google Scholar
  67. 67.
    Wieth, J. O., P. J. Bjerrum, and C. L. Borders, Jr. 1982. Irreversible inactivation of red cell chloride exchange with phenylglyoxal, an arginine-specific reagent. J. Gen. Physiol. 79: 283 – 312.PubMedGoogle Scholar
  68. 68.
    Bjerrum, P. J., J. O. Wieth, and C. L. Borders, Jr. 1983. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein. J. Gen. Physiol. 81: 453 – 484.PubMedGoogle Scholar
  69. 69.
    Zaki, L. 1981. Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione. Biochem. Biophys. Res. Commun. 99: 243 – 251.PubMedGoogle Scholar
  70. 70.
    Sachs, J. R. 1977. Kinetic evaluation of the Na-K pump reaction mechanism. J. Physiol. (London) 273: 489 – 514.Google Scholar
  71. 71.
    Cleland, W. W. 1963. The kinetics of enzyme-catalysed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67: 104 – 137.PubMedGoogle Scholar
  72. 72.
    Jennings, M. L. 1980. Apparent “recruitment” of S04 transport sites by the CI gradient across the human erythrocyte membrane. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 450 – 463.Google Scholar
  73. 73.
    Rothstein, A., Z. I. Cabantchik, and P. Knauf. 1976. Mechanism of anion transport in red blood cells: Role of membrane proteins. Fed. Proc. 35: 3 – 10.PubMedGoogle Scholar
  74. 74.
    Cabantchik, Z. I., M. Baishin, W. Breuer, and A. Rothstein. 1975. Pyridoxal phosphate: An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells. J. Biol. Chem. 250: 5130–5136.PubMedGoogle Scholar
  75. 75.
    Nari, H., N. Hamasaki, and S. Minakami. 1983. Affinity labeling of erythrocyte band 3 protein with pyridoxal-5-phosphate. J. Biol. Chem. 258: 5985 – 5989.Google Scholar
  76. 76.
    Passow, H., H. Fasold, E. M. Gartner, B. Legrum, W. Ruffing, and L. Zaki. 1980. Anion transport across the red blood cell membrane and the conformation of the protein in band 3. Ann. N.Y. Acad. Sci. 341: 361 – 383.PubMedGoogle Scholar
  77. 77.
    Passow, H., and L. Zaki. 1978. Studies on the molecular mechanism of anion transport across the red blood cell membrane. In: Molecular Specialization and Symmetry in Membrane Function. A. K. Solomon and M. Karnovsky, eds. Harvard University Press, Cambridge, Mass. pp. 229 – 250.Google Scholar
  78. 78.
    Grinstein, S., L. McCulloch, and A. Rothstein. 1979. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells: Evidence for mobile transport sites. J. Gen. Physiol. 73: 493 – 514.PubMedGoogle Scholar
  79. 79.
    Knauf, P. A., T. Tarshis, S. Grinstein, and W. Furuya. 1980. Spontaneous and induced asymmetry of the human erythrocyte anion exchange system as detected by chemical probes. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 389 – 403.Google Scholar
  80. 80.
    Furuya, W., T. Tarshis, F.-Y. Law, and P. A. Knauf. 1984. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS: Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J. Gen. Physiol. 83: 657 – 681.PubMedGoogle Scholar
  81. 81.
    Jennings. M. L. 1982. Stoichiometry of a half-turnover of band 3, the chloride-transport protein of human erythrocytes. J. Gen. Physiol. 79: 169 – 185.PubMedGoogle Scholar
  82. 82.
    Salhany, J. M., and E. D. Gaines. 1981. Steady state kinetics of erythrocyte anion exchange: Evidence for site-site interactions. J. Biol. Chem. 256: 11080 – 11085.PubMedGoogle Scholar
  83. 83.
    Schnell, K. F., E. Besl, and R. von der Mosel. 1981. Phosphate transport in human RBC: Concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. J. Membr. Biol. 61: 173 – 192.PubMedGoogle Scholar
  84. 84.
    Salhany, J. M., and P. B. Rauenbuehler. 1983. Kinetics and mechanisms of erythrocyte anion exchange. J. Biol. Chem. 258: 245 – 249.PubMedGoogle Scholar
  85. 85.
    Segel, I. H. 1975. Enzyme Kinetics. Wiley, New York. p. 274 ff.Google Scholar
  86. 86.
    Knauf, P. A., F.-Y. Law, T. Tarshis, and W. Furuya. 1984. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system: Evidence for intrinsic asymmetry. J. Gen. Physiol. 83: 683 – 701.PubMedGoogle Scholar
  87. 87.
    Knauf, P. A. 1982. Kinetic asymmetry of the red cell anion exchange system. In: Membranes and Transport, Volume 2. A. N. Martonsoi, ed. Plenum Press, New York. pp. 441 – 449.Google Scholar
  88. 88.
    Knauf, P. A., N. Mann, and F.-Y. Law. 1981. Niflumic acid senses the conformation of the transport site of the human red cell anion exchange system. Biophys. J. 33: 49a.Google Scholar
  89. 89.
    Knauf, P. A., and N. Mann. 1984. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J. Gen. Physiol. 83: 703 – 725.PubMedGoogle Scholar
  90. 90.
    Knauf, P. A., and N. Mann. 1982. Use of niflumic acid (NA) to probe the asymmetry of the human erythrocyte anion exchange system. Fed. Proc. 41: 975.Google Scholar
  91. 91.
    Eidelman, O., and Z. I. Cabantchik. 1983. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate. II. Kinetic properties of NBD- taurine transfer in asymmetric conditions. J. Membr. Biol. 71: 149 – 161.PubMedGoogle Scholar
  92. 92.
    Gunn, R. B., and O. Fröhlich. 1982. Arguments in support of a single transport site on each anion transporter in human red cells. In: Chloride Transport in Biological Membranes. J. Zadunaisky, ed. Academic Press, New York. pp. 33 – 59.Google Scholar
  93. 93.
    Rothstein, A., and M. Ramjeesingh. 1982. The red cell band 3 protein: Its role in anion transport. Philos. Trans. R. Soc. London Ser. B 299: 497 – 507.Google Scholar
  94. 94.
    Steck, T. L. 1978. The band 3 protein of the human red cell membrane: A review. J. Supramol. Struct. 8: 311 – 324.PubMedGoogle Scholar
  95. 95.
    Steck, T. L., B. Ramos, and E. Strapazon. 1976. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry 15:1154– 1161.Google Scholar
  96. 96.
    Grinstein, S., S. Ship, and A. Rothstein. 1978. Anion transport in relation to proteolytic dissection of band 3 protein. Biochim. Biophys. Acta 507: 294 – 304.PubMedGoogle Scholar
  97. 97.
    Williams. D. G., R. E. Jenkins, and M. J. A. Tanner. 1979. Structure of the anion-transport protein of the human erythrocyte membrane. Biochem. J. 181: 477 – 493.PubMedGoogle Scholar
  98. 98.
    Yu, J., and T. L. Steck. 1975. Associations of band 3, the predominant polypeptide of the human erythrocyte membrane. J. Biol. Chem. 250: 9176 – 9184.Google Scholar
  99. 99.
    Strapazon, E., and T. L. Steck. 1977. Interaction of the aldolase and the membrane of human erythrocytes. Biochemistry 16:2966– 2971.PubMedGoogle Scholar
  100. 100.
    Karadsheh, N. S., and K. Uyeda. 1977. Changes in allosteric properties of phosphofructokinase bound to erythrocyte membranes. J. Biol. Chem. 252: 7418 – 7420.PubMedGoogle Scholar
  101. 101.
    Salhany, J. M., and K. C. Gaines. 1981. Connections between cytoplasmic proteins and the erythrocyte membrane. Trends Biochem. Sci. 6: 13 – 15.Google Scholar
  102. 102.
    Salhany, J. M., K. A. Cordes, and E. D. Gaines. 1980. Light- scattering measurements of hemoglobin binding to the erythrocyte membrane: Evidence for transmembrane effects related to a disulfonic stilbene binding to band 3. Biochemistry 19: 1447–1454.PubMedGoogle Scholar
  103. 103.
    Sayare, M., and M. Fikiet. 1981. Cross-linking of hemoglobin to the cytoplasmic surface of human erythrocyte membranes. J. Biol. Chem. 256: 13152 – 13158.PubMedGoogle Scholar
  104. 104.
    Eisinger, J., J. Flores, and J. M. Salhany. 1982. Association of cytosol hemoglobin with the membrane in intact erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 79: 408 – 412.PubMedGoogle Scholar
  105. 105.
    Kirschner-Zilber, I., and N. Shaklai. 1982. The specificity of hemoglobin for band 3 membrane sites. Biochem. Int. 3: 309 – 316.Google Scholar
  106. 106.
    Cassoly, R. 1983. Quantitative analysis of the association of human hemoglobin with the cytoplasmic fragment of band 3 protein. J. Biol. Chem. 258: 3859 – 3864.PubMedGoogle Scholar
  107. 107.
    Bennett, V., and P. J. Stenbuck. 1980. Association between an- kyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J. Biol. Chem. 255: 6424 – 6432.PubMedGoogle Scholar
  108. 108.
    Bennett, V. 1982. Isolation of an ankyrin-band 3 oligomer from human erythrocyte membrane. Biochim. Biophys. Acta 689:475– 484.PubMedGoogle Scholar
  109. 109.
    Golan, D. E., and W. Veatch. 1980. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: Evidence for control by cytoskeletal interactions. Proc. Natl. Acad. Sci. U.S.A. 77: 2537 – 2541.PubMedGoogle Scholar
  110. 110.
    Nigg, E. A., and R. J. Cherry. 1980. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: Protein rotational diffusion measurements. Proc. Natl. Acad. Sci. U.S.A. 77: 4702 – 4706.PubMedGoogle Scholar
  111. 111.
    Sakaki, T., A. Tsuji, C.-H. Chang, and S. Ohnishi. 1982. Rotational mobility of an erythrocyte membrane integral protein band 3 in dimyristoylphosphatidylcholine reconstituted vesicles and effect of binding of cytoskeletal peripheral proteins. Biochemistry 21: 2306 – 2312.Google Scholar
  112. 112.
    Jenkins, J. D., and T. L. Steck. 1983. Inactivation of phosphofructokinase by human erythrocyte membrane band 3. Fed. Proc. 42: 2079.Google Scholar
  113. 113.
    Murthy, S. N. P., T. Liu, R. K. Kaul, H. Kohler, and T. L. Steck. 1981. The aldolase-binding site of the human erythrocyte membrane is at the NH2 terminus of band 3. J. Biol. Chem. 256:11203– 11208.PubMedGoogle Scholar
  114. 114.
    Amone, A., R. Chatterjee, P. Rogers, G. F. Musso, E. T. Kaiser, T. L. Steck, and J. Walder. 1983. Hemoglobin’s binding site for the NH2-terminal peptide of the erythrocyte band 3 protein. Fed. Proc. 42: 2196.Google Scholar
  115. 115.
    Simpson, R. J., K. M. Brindle, and J. D. Campbell. 1983. Centrifugal analysis of undiluted packed human erythrocyte lysates: Studies of the association of glyceraldehyde-phosphate dehydrogenase with the membrane fraction. Biochim. Biophys. Acta 758: 187 – 190.PubMedGoogle Scholar
  116. 116.
    Jay, D. G. 1983. Characterization of the chicken erythrocyte anion exchange protein. J. Biol. Chem. 258: 9431 – 9436.PubMedGoogle Scholar
  117. 117.
    Kaul, R. K., S. N. P. Murthy, A. G. Reddy, T. L. Steck, and H. Kohler. 1983. Amino acid sequence of the Na-terminal 201 residues of human erythrocyte membrane band 3. J. Biol. Chem. 258: 7981 – 7990.PubMedGoogle Scholar
  118. 118.
    Dekowski, S. A., A. Rybicki, and K. Drickamer. 1983. A tyrosine kinase associated with the red cell membrane phosphorylates band 3. J. Biol. Chem. 258: 2750 – 2753.PubMedGoogle Scholar
  119. 119.
    Mueller, T. J., and M. Morrison. 1977. Detection of variants of protein 3, the major transmembrane protein of the human erythrocyte. J. Biol. Chem. 252: 6573 – 6576.PubMedGoogle Scholar
  120. 120.
    Appell, K. C., and P. S. Low. 1981. Partial structural characterization of the cytoplasmic domain of the erythrocyte membrane protein, band 3. J. Biol. Chem. 256: 11104 – 11111.PubMedGoogle Scholar
  121. 121.
    Appell, K. C., and P. S. Low. 1982. Evaluation of structural interdependence of membrane-spanning and cytoplasmic domains of band 3. Biochemistry 21: 2151 – 2157.PubMedGoogle Scholar
  122. 122.
    Hsu, L., and M. Morrison. 1983. The interaction of human erythrocyte band 3 with cytoskeletal components. Arch. Biochem. Biophys. 227: 31 – 38.PubMedGoogle Scholar
  123. 123.
    Cabantchik, Z. I., and A. Rothstein. 1974. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J. Membr. Biol 15: 227 – 248.PubMedGoogle Scholar
  124. 124.
    Ramjeesingh, M., S. Grinstein, and A. Rothstein. 1980. Intrinsic segments of band 3 that are associated with anion transport across red blood cell membranes. J. Membr. Biol. 57: 95 – 102.PubMedGoogle Scholar
  125. 125.
    Ramjeesingh, M., and A. Rothstein. 1982. The location of a chymotrypsin cleavage site and of other sites in the primary structure of the 17,000-dalton transmembrane segment of band 3, the anion transport protein of red cell. Membr. Biochem. 4:259– 269.PubMedGoogle Scholar
  126. 126.
    Ramjeesingh, M., A. Gaarn, and A. Rothstein. 1980. The location of a disulfonic stilbene binding site in band 3, the anion transport protein of the red blood cell membrane. Biochim. Biophys. Acta 599: 127 – 139.PubMedGoogle Scholar
  127. 127.
    Knauf, P. A., W. Breuer, L. McCulloch, and A. Rothstein. 1978. NAP-taurine as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system. J. Gen. Physiol. 72: 631 – 649.PubMedGoogle Scholar
  128. 128.
    Markowitz, S., and V. Marchesi. 1981. The carboxyl terminal domain of human erythrocyte band 3: Description, isolation and location in the bilayer. J. Biol. Chem. 256: 6463 – 6468.PubMedGoogle Scholar
  129. 129.
    Drickamer, L. K. 1976. Fragmentation of the 95,000-dalton transmembrane polypeptide in human erythrocyte membranes: Arrangement of the fragments in the lipid bilayer. J. Biol. Chem. 251: 5115 – 5123.PubMedGoogle Scholar
  130. 130.
    Drickamer, L. K. 1977. Fragmentation of the band 3 polypeptide from human erythrocyte membranes: Identification of regions likely to interact with the lipid bilayer. J. Biol. Chem. 252:6909– 6917.PubMedGoogle Scholar
  131. 131.
    Ramjeesingh, M., A. Gaarn, and A. Rothstein. 1981. The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) with band 3 protein from human red blood cell membranes. Biochim. Biophys. Acta 641: 173 – 182.PubMedGoogle Scholar
  132. 132.
    Mawby, M. J., and J. B. C. Findlay. 1982. Characterization and partial sequence of diiodosulphophenyl isothiocyanate-binding peptide from human erythrocyte anion-transport protein. Biochem. J. 205: 465 – 475.PubMedGoogle Scholar
  133. 133.
    Waxman, L. 1979. The phosphorylation of the major proteins of the human erythrocyte membrane. Arch. Biochem. Biophys. 195: 300 – 314.PubMedGoogle Scholar
  134. 134.
    Romano, L., and H. Passow. 1983. Characterization of the anion transport system in the red blood cell of the trout. Am. J. Physiol. 246: C330 – C338.Google Scholar
  135. 135.
    Badea, M. G., and M. Morrison. 1980. Position of band 3 in erythrocyte membrane determined by use of fluorescent probes. Fed. Proc. 39: 1713.Google Scholar
  136. 136.
    Boxer, D. H., R. E. Jenkins, and M. J. A. Tanner. 1974. The organization of the major protein of the human erythrocyte membrane. Biochem. J. 137: 531 – 534.PubMedGoogle Scholar
  137. 137.
    Bender, W. W., H. Garen, and H. C. Berg. 1971. Proteins of the human erythrocyte membrane as modified by Pronase. J. Mol. Biol. 58: 783 – 797.PubMedGoogle Scholar
  138. 138.
    Jenkins, R. E., and M. J. A. Tanner. 1977. The structure of the major protein of the human erythrocyte membrane: Characterization of the intact protein and major fragments. Biochem. J. 161: 139 – 147.PubMedGoogle Scholar
  139. 139.
    Jennings, M. L., and H. Passow. 1979. Anion transport across the red cell membrane, in situ proteolysis of band 3 protein, and crosslinking of proteolytic fragments by 4,4′-diisothiocyanodihy- drostilbene-2,2′-disulfonate (H2DIDS). Biochim. Biophys. Acta 554: 498 – 519.PubMedGoogle Scholar
  140. 140.
    Jennings, M. L. 1982. Reductive methylation of the two 4,4′- diisothiocyanodihydrostilbene-2,2′ -disulfonate-binding lysine residues of band 3, the human erythrocyte anion transport protein. J. Biol. Chem. 257: 7554 – 7559.PubMedGoogle Scholar
  141. 141.
    Cabantchik, Z. I., W. Breuer, H. Markus, M. Balshin, and A. Rothstein. 1975. A comparison of intact human red blood cells and resealed and leaky ghosts with respect to their interactions with surface labelling agents and proteolytic enzymes. Biochim. Biophys. Acta 382: 621 – 633.PubMedGoogle Scholar
  142. 142.
    Jennings, M. L., and M. F. Adams. 1981. Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Biochemistry 20: 7118 – 7123.PubMedGoogle Scholar
  143. 143.
    Jennings, M. L., M. Adams-Lackey, and G. H. Denney. 1983. Peptides of erythrocyte band 3 protein produced by extracellular papain cleavage. Biophys. J. 41: 242a.Google Scholar
  144. 144.
    Cousin, J.-L., and R. Motais. 1982. Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds. I. Determination of the flufenamate-binding site by proteolytic dissection of the band 3 protein. Biochim. Biophys. Acta 687: 147 – 155.PubMedGoogle Scholar
  145. 145.
    Rao, A., and R. A. F. Reithmeier. 1979. Reactive sulfhydryl groups of the band 3 polypeptide from human erythrocyte membrane: Location in the primary structure. J. Biol. Chem. 254: 6144 – 6150.PubMedGoogle Scholar
  146. 146.
    Rao, A. 1979. Disposition of the band 3 polypeptide in the human erythrocyte membrane: The reactive sulfhydryl groups. J. Biol. Chem. 254: 3503 – 3511.PubMedGoogle Scholar
  147. 147.
    Ramjeesingh, M., A. Gaarn, and A. Rothstein. 1981. The sulfhydryl groups of the 35,000 dalton C-terminal segment of band 3 are located in a 9,000-dalton fragment produced by chymotrypsin treatment of red cell ghosts. J. Bioenerg. Biomembr. 13: 411 – 423.PubMedGoogle Scholar
  148. 148.
    Ramjeesingh, M., A. Gaarn, and A. Rothstein. 1983. The locations of the three cysteine residues in the primary structure of the intrinsic segments of band 3 protein, and implications concerning the arrangement of band 3 protein in the bilayer. Biochim. Biophys. Acta 729: 150 – 160.PubMedGoogle Scholar
  149. 149.
    Brock, C. J., M. J. A. Tanner, and C. Kempf. 1983. The human erythrocyte anion transport protein: Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange. Biochem. J. 213: 577 – 586.PubMedGoogle Scholar
  150. 150.
    Tanner, M. J. A., D.G.Williams, and D.Kyle. 1979. The anion- transport protein of the human erythrocyte membrane: Studies on fragments produced by pepsin digestion. Biochem. J. 183:417– 427.PubMedGoogle Scholar
  151. 151.
    Sigrist, H., C. Kempf, and P. Zahler. 1980. Interactions of phenylisothiocyanate with human erythrocyte band 3. Biochim. Biophys. Acta 597: 137 – 144.PubMedGoogle Scholar
  152. 152.
    Drickamer, K. 1978. Orientation of the band 3 polypeptide from human erythrocyte membranes: Identification of NH2-terminal sequence and site of carbohydrate attachment. J. Biol. Chem. 253: 7242 – 7248.PubMedGoogle Scholar
  153. 153.
    Tsuji, T., T. Irimura, and T. Osawa. 1980. The carbohydrate moiety of band-3 glycoprotein of human erythrocyte membranes. Biochem. J. 187: 677 – 686.PubMedGoogle Scholar
  154. 154.
    Tsuji, T., T. Irimura, and T. Osawa. 1981. The carbohydrate moiety of band-3 glycoprotein of human erythrocyte membranes: Structure of lower molecular weight oligosaccharides. J. Biol. Chem. 256: 10497–10502.PubMedGoogle Scholar
  155. 155.
    Tanner, M. J. A., R. E. Jenkins, D. J. Anstee, and J. R. Clamp. 1976. Abnormal carbohydrate composition of the major penetrating membrane protein of En(a-) human erythrocytes. Biochem. J. 155: 701 – 703.PubMedGoogle Scholar
  156. 156.
    Guidotti, G. 1980. The structure of the band 3 polypeptide. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 300 – 308.Google Scholar
  157. 157.
    Ramjeesingh, M., A. Gaarn, and A. Rothstein. 1984. Pepsin cleavage of band 3 produces its membrane-crossing domains. Biochim. Biophys. Acta 769: 381 – 389.PubMedGoogle Scholar
  158. 158.
    Brunner, J., and G. Semenza. 1981. Selective labeling of the hydrophobic core of membranes with 3-(trifluoromethyl)-3-(m-[125I]-iodophenyl)diazirine, a carbene-generating re-agent. Biochemistry 20: 7174 – 7182.PubMedGoogle Scholar
  159. 159.
    Guidotti, G. 1977. The structure of intrinsic membrane proteins. J. Supramol. Struct. 7: 489 – 497.PubMedGoogle Scholar
  160. 160.
    Reithmeier, R. A. 1979. Fragmentation of the band 3 polypeptide from human erythrocyte membranes: Size and detergent binding of the membrane associated domain. J. Biol. Chem. 254:3054– 3060.PubMedGoogle Scholar
  161. 161.
    Steck, T. L., J. J. Koziarz, M. K. Singh, G. Reddy, and H. Kohler. 1978. Preparation and analysis of seven major, topographically defined fragments of band 3, the predominant transmembrane polypeptide of human erythrocyte membranes. Biochemistry 17: 1216 – 1222.PubMedGoogle Scholar
  162. 162.
    Cabantchik, Z. I., P. A. Knauf, and A. Rothstein. 1978. The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of ‘probes.’ Biochim. Biophys. Acta 515: 239 – 302.PubMedGoogle Scholar
  163. 163.
    Motais, R., and J.-L. Cousin. 1978. A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: Influence of ring substituents. In: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach. R. W. Straub and L. Bolis, eds. Raven Press, New York. pp. 219 – 225.Google Scholar
  164. 164.
    Motais, R., F. Sola, and J.-L. Cousin. 1978. Uncouplers of oxidative phosphorylation: A structure-activity study of their inhibitory effect on passive chloride permeability. Biochim. Biophys. Acta 510: 201 – 207.PubMedGoogle Scholar
  165. 165.
    Barzilay, M., S. Ship, and Z. I. Cabantchik. 1979. Anion transport in red blood cells. I. Chemical properties of anion recognition sites as revealed by structure-activity relationships of aromatic sulfonic acids. Membr. Biochem. 2: 227 – 254.PubMedGoogle Scholar
  166. 166.
    Frohlich, O., and R. B. Gunn. 1980. Chloride transport kinetics of the human red blood cell studied with a reversible stilbene inhibitor. Fed. Proc. 39: 1714.Google Scholar
  167. 167.
    Kampmann, L., S. Lepke, H. Fasold, G. Fritzsch, and H. Passow. 1982. The kinetics of intramolecular cross-linking of the band 3 protein in the red blood cell membrane by 4,4′-diisothio- cyanodihydrostilbene-2,2′-disulfonic acid (H2DIDS). J. Membr. Biol. 70: 199 – 216.PubMedGoogle Scholar
  168. 168.
    Kleinfeld, A. M., E. D. Matayoshi, and A. K. Solomon. 1980. Use of band 3 vesicles from human erythrocytes to study protein structural changes associated with anion transport. Fed. Proc. 39: 1714.Google Scholar
  169. 169.
    Verkman, A. S., J. A. Dix, and A. K. Solomon. 1982. A noncompetitive ‘shunt’ pathway for the effect of chloride on the band 3-DBDS conformational change in red cell membranes. Biophys. J. 37: 216a.Google Scholar
  170. 170.
    Kaplan, J. H., K. Scorah, H. Fasold, and H. Passow. 1976. Sidedness of the inhibitory action of disulfonic acids on chloride equilibrium exchange and net transport across the human erythrocyte membrane. FEBS Lett. 62: 182 – 185.PubMedGoogle Scholar
  171. 171.
    Pappert, G., and D. Schubert. 1983. The state of association of band 3 protein of the human erythrocyte membrane in solutions of nonionic detergents. Biochim. Biophys. Acta 730: 32 – 40.PubMedGoogle Scholar
  172. 172.
    Cherry, R. J., and E. Nigg. 1979. Dimeric association of band 3 in the erythrocyte membrane demonstrated by protein diffusion measurements. Nature (London) 277: 493 – 494.Google Scholar
  173. 173.
    Nakashima, H., Y, Nakagawa, and S. Makino. 1981. Detection of the associated state of membrane proteins by polyacrylamide gradient gel electrophoresis with non-denaturing detergents. Biochim. Biophys. Acta 643: 509 – 518.PubMedGoogle Scholar
  174. 174.
    Wang, K., and F. M. Richards. 1974. Reaction of dimethy 1-3,3′- dithiobispropionimidate with intact human erythrocytes. J. Biol. Chem. 249: 8005 – 8018.PubMedGoogle Scholar
  175. 175.
    Staros, J. V., and B. P. Kakkad. 1983. Cross-linking and chymotryptic digestion of the extracytoplasmic domain of the anion exchange channel in intact human erythrocytes. J. Membr. Biol. 74: 247 – 254.PubMedGoogle Scholar
  176. 176.
    Weinstein, R. S., J. K. Khodadad, and T. L. Steck. 1980. The band 3 protein intramembrane particle of the human red blood cell. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 35– 46.Google Scholar
  177. 177.
    Dissing, S., A. J. Jesaitis, and P. A. G. Fortes. 1979. Fluorescence labeling of the human erythrocyte anion transport system: Subunit structure studied with energy transfer. Biochim. Biophys. Acta 553: 66 – 83.PubMedGoogle Scholar
  178. 178.
    Muhlebach, T., and R. Cherry. 1982. Influence of cholesterol on the rotation and self-association of band 3 in the human erythrocyte membrane. Biochemistry 21: 4225 – 4228.PubMedGoogle Scholar
  179. 179.
    Dorst, H.-J., and D. Schubert. 1979. Self-association of band 3- protein from human erythrocyte membranes in aqueous solution. Hoppe-Seyler’s Z. Physiol Chem. 360: 1605 – 1618.PubMedGoogle Scholar
  180. 180.
    Schubert, D., and K. Boss. 1982. Band three protein-cholesterol interactions in erythrocyte membranes: Possible role in anion transport and dependency on membrane phospholipid. FEBS Lett. 150: 4 – 8.PubMedGoogle Scholar
  181. 181.
    Aubert, L., and R. Motais. 1975. Molecular features of organic anion permeability in ox red blood cell. J. Physiol. (London) 246: 159 – 179.Google Scholar
  182. 182.
    Ship. S., Y. Shami, W. Breuer, and A. Rothstein. 1977. Synthesis of tritiated 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid ((3H2)DIDS) and its covalent reaction with sites related to anion transport in red blood cells. J. Membr. Biol. 33: 311 – 324.PubMedGoogle Scholar
  183. 183.
    Wieth, J. O., P. J. Bjerrum, J. Brahm, and O. S. Andersen. 1982. The anion transport protein of the red cell membrane: A zipper mechanism of anion exchange. Tokai J. Exp. Clin. Med. 7 (Suppl.): 91 – 101.PubMedGoogle Scholar
  184. 184.
    Davio, S. R., and P. S. Low. 1982. Characterization of the calorimetric C transition of the human erythrocyte membrane. Biochemistry 21: 3585 – 3593.PubMedGoogle Scholar
  185. 185.
    Ginsburg, H., S. E. O’Connor, and C. M. Grisham. 1981. Evidence from electron paramagnetic resonance for function-related conformation changes in the anion-transport protein of human erythrocytes. Eur. J. Biochem. 114: 533 – 538.PubMedGoogle Scholar
  186. 186.
    Kaplan, J. H., M. Pring, and H. Passow. 1983. Band 3 protein- mediated anion conductance of the red cell membrane: Slippage versus ionic diffusion. FEBS Lett. 156: 175 – 179.PubMedGoogle Scholar
  187. 187.
    Fröhlich, O., C. Leibson, and R. B. Gunn. 1983. Chloride net efflux from intact erythrocytes under slippage conditions: Evidence for a positive charge on the anion binding/transport site. J. Gen. Physiol. 81: 127 – 152.PubMedGoogle Scholar
  188. 188.
    Knauf, P. A., F.-Y. Law, and P. J. Marchant. 1983. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J. Gen. Physiol. 81: 95 – 126.PubMedGoogle Scholar
  189. 189.
    Passow, H. 1977. Passive anion transport. Proc. Int. Union Physiol Sci. 12: 86–87.Google Scholar
  190. 190.
    Knauf, P. A., N. Mann, and J. E. Kalwas. 1983. Net chloride transport across the human erythrocyte membrane into low chloride media: Evidence against a slippage mechanism. Biophys. J. 41: 164a.Google Scholar
  191. 191.
    Fröhlich, O. 1983. Contributions of slippage and tunneling to anion net transport across the human red cell membrane. Biophys. J. 41: 63a.Google Scholar
  192. 192.
    Knauf, P. A., and F.-Y. Law. 1980. Relationship of net anion flow to the anion exchange system. In: Membrane Transport in Erythrocytes. U.V. Lassen, H.H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 488 – 493.Google Scholar
  193. 193.
    Kregenow, F. M. 1971. The response of duck erythrocytes to nonhemolytic hypotonic media: Evidence for a volume-controlling mechanism. J. Gen. Physiol 58: 372 – 395.PubMedGoogle Scholar
  194. 194.
    Kregenow, F. M. 1971. The response of duck erythrocytes to hypertonic media: Further evidence for a volume-controlling mechanism. J. Gen. Physiol 58: 396 – 412.PubMedGoogle Scholar
  195. 195.
    Parker, J. C. 1983. Hemolytic action of potassium salts on dog red blood cells. Am. J. Physiol 244: C313 – C317.PubMedGoogle Scholar
  196. 196.
    Lauf, P. K. 1982. Evidence for chloride dependent potassium and water transport induced by hyposmotic stress in erythrocytes of the marine teleost, Opsanus tau. J. Comp. Physiol 146:9– 16.Google Scholar
  197. 197.
    Dunham, P. B., and J. C. Ellory. 1981. Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride. J. Physiol (London) 318: 511 – 530.Google Scholar
  198. 198.
    Kregenow, F. M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media. Annu. Rev. Physiol 43: 493 – 505.PubMedGoogle Scholar
  199. 199.
    Frizzell, R. A., M. Field, and S. G. Schultz. 1979. Sodium- coupled chloride transport by epithelial tissues. Am. J. Physiol 236: F1 – F8.PubMedGoogle Scholar
  200. 200.
    Ø, S. L. 1954. The potassium absorption by pigeon blood cells: A considerable potassium absorption by pigeon and hen blood cells is observed when a hypertonic sodium chloride solution is added. Acta Physiol Scand. 31: 221 – 229.PubMedGoogle Scholar
  201. 201.
    Schmidt, W. F., III, and T. J. McManus. 1977. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine-stimulation of sodium plus potassium cotransport. J. Gen. Physiol 70: 81 – 97.PubMedGoogle Scholar
  202. 202.
    Riddick, D. H., F. M. Kregenow, and J. Orloff. 1971. The effect of norepinephrine and dibutyryl cyclic-AMP on cation transport in duck erythrocytes. J. Gen. Physiol 51: 152 – 166.Google Scholar
  203. 203.
    Kregenow, F. M. 1973. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium: Volume regulation in isotonic media. J. Gen. Physiol 61: 509 – 527.PubMedGoogle Scholar
  204. 204.
    Schmidt, W. F., III, and T. J. McManus. 1977. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response. J. Gen. Physiol 70:99– 121.PubMedGoogle Scholar
  205. 205.
    Alper, S. L., K. G. Beam, and P. Greengard. 1980. Hormonal control of Na + -K+ co-transport in turkey erythrocytes: Multiple site phosphorylation of goblin, a high molecular weight protein of the plasma membrane. J. Biol Chem. 255: 4864 – 4871.PubMedGoogle Scholar
  206. 206.
    Alper, S. L., H. C. Palfrey, S. A. DeRiemer, and P. Greengard. 1980. Hormonal control of protein phosphorylation in turkey erythrocytes: Phosphorylation by cAMP-dependent and Ca2 + -dependent protein kinases of distinct sites in goblin, a high molecular weight protein of the plasma membrane. J. Biol. Chem. 255: 11029 – 11039.PubMedGoogle Scholar
  207. 207.
    Kregenow, F. M., D. E. Robbie, and J. Orloff. 1976. Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes. Am. J. Physiol 231: 306 – 312.PubMedGoogle Scholar
  208. 208.
    Schmidt, W. F., Ill, and T. J. McManus. 1977. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions. J. Gen. Physiol 70: 59 – 79.Google Scholar
  209. 209.
    Palfrey, H. C., P. W. Feit, and P. Greengard. 1980. cAMP- stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics. Am. J. Physiol 238: C139 – C148.PubMedGoogle Scholar
  210. 210.
    Haas, M., W. F. Schmidt, III, and T. J. McManus. 1982. Catecholamine-stimulated ion transport in duck red cells: Gradient effects in electrically neutral [Na + K + 2 CI] co-transport. J. Gen. Physiol 80: 125 – 147.Google Scholar
  211. 211.
    Kregenow, F. M., and T. Caryk. 1979. Co-transport of cations and CI during the volume regulatory responses of duck erythrocytes. Physiologist 22 (4): 73.Google Scholar
  212. 212.
    Bakker-Grunwald, T. 1981. Hormone-induced diuretic-sensitive potassium transport in turkey erythrocytes is anion dependent. Biochim. Biophys. Acta 641: 427 – 431.PubMedGoogle Scholar
  213. 213.
    Cala, P. M. 1983. Volume regulation by red blood cells: Mechanisms of ion transport. Mol Physiol 4: 33 – 52.Google Scholar
  214. 214.
    Haas, M., and T. J. McManus. 1983. Bumetanide inhibits (Na + K -I- 2 CI) co-transport at a chloride site. Am. J. Physiol 245: C235 – C240.PubMedGoogle Scholar
  215. 215.
    Haas, M., and T. J. McManus. 1982. Bumetanide inhibition of (Na + K + 2 CI) co-transport and K/Rb exchange at a chloride site in duck red cells: Modulation by external cations. Biophys. J. 37: 214a.Google Scholar
  216. 216.
    Forbush, B., III, and H. C. Palfrey. 1983. 3H-bumetanide binding to membranes isolated from dog kidney outer medulla. J. Biol Chem. 258: 11787 – 11792.PubMedGoogle Scholar
  217. 217.
    Palfrey, H. C. 1983. Na/K/Cl cotransport in avian red cells. Reversible inhibition by ATP depletion. J. Gen. Physiol 82: 10a.Google Scholar
  218. 218.
    McManus, T. J. 1982. Catecholamine-stimulated and volume- sensitive ion movements in avian red cells: Alternate modes of chloride-dependent cation transport. Jacobs-Parpart-Ponder Memorial Lecture. Red Cell Club. April 19, 1982.Google Scholar
  219. 219.
    Parker, J. C., and J. F. Hoffman. 1976. Influence of cell volume and adrenalectomy on cation flux in dog red blood cells. Biochim. Biophys. Acta 433: 404 – 408.Google Scholar
  220. 220.
    Cala, P. M. 1980. Volume regulation by Amphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion-flux pathways. J. Gen. Physiol. 76: 683 – 708.PubMedGoogle Scholar
  221. 221.
    Ellory, J. C., P. B. Dunham, P. J. Logue, and G. W. Stewart. 1982. Anion-dependent cation transport in erythrocytes. Philos. Trans. R. Soc. London Ser. B 299: 483 – 495.Google Scholar
  222. 222.
    Smalley, C. E., E. M. Tucker, P. B. Dunham, and J. C. Ellory. 1982. Interaction of L antibody with low potassium type sheep red cells: Resolution of two separate functional antibodies. J. Membr. Biol. 64: 167 – 174.PubMedGoogle Scholar
  223. 223.
    Ellory, J. C., and P. B. Dunham. 1980. Volume-dependent passive potassium transport in LK sheep red cells. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 409 – 423.Google Scholar
  224. 224.
    Bauer, J., and P. K. Lauf. 1983. Thiol-dependent passive K/Cl transport in sheep red cells. III. Differential reactivity of membrane SH groups with N-ethylmaleimide and iodoacetamide. J. Membr. Biol. 73: 257 – 261.PubMedGoogle Scholar
  225. 225.
    Lauf, P. K., and B. E. Theg. 1980. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem. Biophys. Res. Commun. 92:1422–1428.PubMedGoogle Scholar
  226. 226.
    Lauf, P. K. 1983. Thiol-dependent passive K/Cl transport in sheep red cells. II. Loss of Cl− and N-ethylmaleimide sensitivity in maturing high K+ cells. J. Membr. Biol. 73: 247 – 256.PubMedGoogle Scholar
  227. 227.
    Lauf, P. K. 1983. Thiol-dependent passive K/Cl transport in sheep red cells. I. Dependence on chloride and external K + (Rb +) ions. J. Membr. Biol. 73: 237 – 246.PubMedGoogle Scholar
  228. 228.
    Gunn, R. B., M. Dalmark, D. C. Tosteson, and J. O. Wieth. 1973. Characteristics of chloride transport in human red blood cells. J. Gen. Physiol. 61: 185 – 206.PubMedGoogle Scholar
  229. 229.
    Lauf, P. K. 1984. Thiol-dependent K/Cl transport in sheep red cells. IV. Furosemide inhibition and the role of external Rb+, Na+ and CI−. J. Membr. Biol. 77: 57 – 62.PubMedGoogle Scholar
  230. 230.
    Lauf, P. K. 1983. Thiol-dependent passive K + -CI− transport in sheep red blood cells. V. Dependence on metabolism. Am. J. Physiol. 245: C445 – C448.PubMedGoogle Scholar
  231. 231.
    Duhm, J. 1981. Lithium transport pathways in erythrocytes. In: Basic Mechanisms in the Action of Lithium. H. M. Emrich, J. B. Aldenhoff, and H. D. Lux, eds. Excerpta Medica, Amsterdam, pp. 1 – 20.Google Scholar
  232. 232.
    Lauf, P, K., R. Garay, and N. C. Adragna. 1982. N-Ethylmaleimide stimulates chloride-dependent K + but not Na + fluxes in human red cells. J. Gen. Physiol. 80: 19a.Google Scholar
  233. 233.
    Wiater, L. A., and P. B. Dunham. 1983. Passive transport of potassium and sodium in human erythrocytes: Effects of sulfhydryl binding agents and furosemide. Am. J. Physiol. 245:C348– C356.PubMedGoogle Scholar
  234. 234.
    Wiley, J. S., and R. A. Cooper. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. J. Clin. Invest. 53: 745 – 755.PubMedGoogle Scholar
  235. 235.
    Chipperfield, A. R. 1980. An effect of chloride on (Na + K) co- transport in human red blood cells. Nature (London) 286:281– 282.Google Scholar
  236. 236.
    Dunham, P. B., G. W. Stewart, and J. C. Ellory. 1980. Chloride- activated passive potassium transport in human erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 77: 1711 – 1715.PubMedGoogle Scholar
  237. 237.
    Ellory, J. C., and G. W. Stewart. 1982. The human erythrocyte Cl-dependent Na-K cotransport system as a possible model for studying the action of loop diuretics. Br. J. Pharmacol. 75:183– 188.PubMedGoogle Scholar
  238. 238.
    Garay, R., N. Adragna, M. Canessa, and D. Tosteson. 1981. Outward sodium and potassium cotransport in human red cells. J. Membr. Biol. 62: 169 – 174.PubMedGoogle Scholar
  239. 239.
    Benjamin, M. A., and P. B. Dunham. 1983. Asymmetry of Na/K cotransport in human erythrocytes. J. Gen. Physiol. 82: 27a.Google Scholar
  240. 240.
    Adragna, N., M. Canessa, I. Bize, R. Garay, and D. C. Tosteson. 1980. (Na+K) co-transport and cell volume in human red blood cells. Fed. Proc. 39: 1842.Google Scholar
  241. 241.
    Canessa, M., D. Cusi, C. Brugnara, and D. C. Tosteson. 1983. Furosemide-sensitive Na fluxes in human red cells: Equilibrium properties and net uphill extrusion. J. Gen. Physiol. 82: 28a.Google Scholar
  242. 242.
    Brugnara, C., M. Canessa, D. Cusi, and D. C. Tosteson. 1983. Furosemide-sensitive Na and K fluxes in human red cells: Uncoupled K efflux, K-K exchange and variable stoichiometry. J. Gen. Physiol. 82: 28a.Google Scholar
  243. 243.
    Hall, A. C., J. C. Ellory, and R. A. Klein. 1982. Pressure and temperature effects on human red cell cation transport. J. Membr. Biol. 68: 47 – 56.PubMedGoogle Scholar
  244. 244.
    Karlish, S. J. D., J. C. Ellory, and V. L. Lew. 1981. Evidence against Na + -pump mediation of Ca2 +-activated K + transport and diuretic-sensitive (Na + /K +)-cotransport. Biochim. Biophys. Acta 646: 353 – 355.PubMedGoogle Scholar
  245. 245.
    Logue, P., C. Anderson, C. Kanik, B. Farquharson, and P. Dunham. 1983. Passive potassium transport in LK sheep red cells: Modification by N-ethyl maleimide. J. Gen. Physiol. 81:861– 885.PubMedGoogle Scholar
  246. 246.
    Geek, P., C. Pietrzyk, B.-C. Burckhardt, B. Pfeiffer, and E. Heinz. 1980. Electrically silent cotransport of Na +, K + and Cl in Ehrlich cells. Biochim. Biophys. Acta 600: 423 – 447.Google Scholar
  247. 247.
    Bakker-Grunwald, T. 1978. Effect of anions on potassium self- exchange in ascites tumor cells. Biochim. Biophys. Acta 513:292– 295.PubMedGoogle Scholar
  248. 248.
    Aull, F. 1981. Potassium chloride cotransport in steady-state ascites tumor cells: Does bumetanide inhibit? Biochim. Biophys. Acta 643: 339 – 345.PubMedGoogle Scholar
  249. 249.
    Hoffman, E. K., C. Sjøholm, and L. O. Simonsen. 1983. Na+, CI co-transport in Ehrlich ascites tumor cells activated during volume regulation. (Regulatory volume increase). J. Membr. Biol. 76: 269 – 280.Google Scholar
  250. 250.
    Ussing, H. H. 1982. Volume regulation of frog skin epithelium. Acta Physiol. Scand. 114: 363 – 369.PubMedGoogle Scholar
  251. 251.
    Rindler, M. J., M. Taub, and M. H. Saier, Jr. 1979. Uptake of 22Na + by cultured dog kidney cells (MDCK). J. Biol. Chem. 254: 11431 – 11439.PubMedGoogle Scholar
  252. 252.
    Aiton, J. F., A. R. Chipperfield, J. F. Lamb, P. Ogden, and N. L. Simmons. 1981. Occurrence of passive furosemide-sensitive transmembrane potassium transport in cultured cells. Biochim. Biophys. Acta 646: 389 – 398.PubMedGoogle Scholar
  253. 253.
    Aiton, J. F., C. D. A. Brown, P. Ogden, and N. L. Simmons. 1982. K + transport in ‘tight’ epithelial monolayers of MDCK cells. J. Membr. Biol. 65: 99 – 109.PubMedGoogle Scholar
  254. 254.
    Rindler, M. J., J. A. McRoberts, and M. H. Saier, Jr. 1982. (Na+,K +)-cotransport in the Madin-Darby canine kidney cell line: Kinetic characterization of the interaction between Na + and K+. J. Biol. Chem. 257: 2254 – 2259.Google Scholar
  255. 255.
    McRoberts, J. A., S. Erlinger, M. J. Rindler, and M. H. Saier, Jr. 1982. Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line: Evidence for the transport of Na +, K +, and CI−. J. Biol. Chem. 257: 2260 – 2266.PubMedGoogle Scholar
  256. 256.
    Kimelberg, H. K., and R. S. Bourke. 1982. Anion transport in the nervous system. In: Handbook of Neurochemistry, Volume 1, 2nd ed. A. Lajtha, ed. Plenum Press, New York. pp. 31 – 67.Google Scholar
  257. 257.
    Gargus, J. J., and Slayman, C. W. 1980. Mechanism and role of furosemide-sensitive K + transport in L cells: A genetic approach. J. Membr. Biol. 52: 245 – 256.PubMedGoogle Scholar
  258. 258.
    O’Brien, T. G., and K. Krzeminski. 1983. Phorbol ester inhibits furosemide-sensitive potassium transport in BALB/c 3T3 pre- adipose cells. Proc. Natl. Acad. Sci. U.S.A. 80: 4334 – 4338.PubMedGoogle Scholar
  259. 259.
    Russell, J. 1983. Cation-coupled chloride influx in squid axon: Role of potassium and stoichiometry of the transport process. J. Gen. Physiol. 81: 909 – 925.PubMedGoogle Scholar
  260. 260.
    Harper, P. A., and Knauf, P. A. 1979. Comparison of chloride transport in mouse erythrocytes and Friend virus-transformed erythroleukemic cells. J. Cell. Physiol. 98: 347 – 358.PubMedGoogle Scholar
  261. 261.
    Law, F.-Y., R. Steinfeld, and P. A. Knauf. 1983. K562 cell anion exchange differs markedly from that of mature red blood cells. Am. J. Physiol. 244: C68 – C74.PubMedGoogle Scholar
  262. 262.
    Dissing, S., R. Hoffman, M. J. Murnane, and J. F. Hoffman. 1984. Chloride transport properties of human leukemic cell lines K562 and HL60. Am. J. Physiol. 247(Cell Physiol. 16): C53– C60.PubMedGoogle Scholar
  263. 263.
    Harper, P. A., and Knauf, P. A. 1979. Alterations in chloride transport during differentiation of Friend virus-transformed cells. J. Cell. Physiol. 99: 369 – 382.PubMedGoogle Scholar
  264. 264.
    Sabban, E. L., D. D. Sabatini, V. T. Marchesi, and M. Adesnik. 1980. Biosynthesis of erythrocyte membrane protein band 3 in DMSO-induced Friend erythroleukemic cells. J. Cell. Physiol. 104: 261 – 268.PubMedGoogle Scholar
  265. 265.
    Lodish, H. F., and Small, B. 1975. Membrane proteins synthesized by rabbit reticulocytes. J. Cell Biol. 65: 51 – 64.PubMedGoogle Scholar
  266. 266.
    Koch, P. A., F. H. Gardner, J. E. Gartrell, and J. R. Carter, Jr. 1975. Biogenesis of erythrocyte membrane proteins: In vitro studies with rabbit reticulocytes. Biochim. Biophys. Acta 389:177– 187.PubMedGoogle Scholar
  267. 267.
    Light, N. D., and M. J. A. Tanner. 1977. Changes in surface- membrane components during the differentiation of rabbit erythroid cells. Biochem. J. 164: 565 – 578.PubMedGoogle Scholar
  268. 268.
    Fehlmann, M., L. LaFleur, and N. Marceau. 1976. Surface membrane differentiation of hemopoietic cells as observed by radioactive labeling. J. Cell. Physiol. 90: 455 – 464.Google Scholar
  269. 269.
    Light, N. D., and M. J. A. Tanner. 1978. Erythrocyte membrane proteins: Sequential accumulation in the membrane during reticulocyte maturation. Biochim. Biophys. Acta 508: 571 – 576.PubMedGoogle Scholar
  270. 270.
    Sabban, E., V. Marchesi, M. Adesnik, and D. D. Sabatini. 1981. Erythrocyte membrane protein band 3: Its biosynthesis and incorporation into membranes. J. Cell Biol. 91: 637 – 646.PubMedGoogle Scholar
  271. 271.
    Levinson, C. 1982. Chloride transport in the Ehrlich mouse ascites tumor cell. In: Chloride Transport in Biological Membranes. J. Zadunaisky, ed. Academic Press, New York. pp. 383 – 396.Google Scholar
  272. 272.
    Hoffman, E. K. 1982. Anion exchange and anioncation co-transport systems in mammalian cells. Philos. Trans. R. Soc. London Ser. B 299: 519 – 535.Google Scholar
  273. 273.
    Levinson, C., and M. L. Villereal. 1973. Anion transport in the Ehrlich ascites tumor cell: The effect of 2,4,6-trinitrobenzene sulfonic acid. J. Cell. Physiol. 82: 435 – 444.PubMedGoogle Scholar
  274. 274.
    Levinson, C., and M. L. Villereal. 1975. The transport of sulfate ions across the membrane of the Ehrlich ascites tumor cell. J. Cell. Physiol. 85: 1 – 14.PubMedGoogle Scholar
  275. 275.
    Levinson, C., and M. L. Villereal. 1975. Interaction of the fluorescent probe, l-anilino-8-naphthalene sulfonate, with the sulfate transport system of Ehrlich ascites tumor cells. J. Cell. Physiol. 86: 143 – 154.PubMedGoogle Scholar
  276. 276.
    Levinson, C. 1975. The interaction of chloride with the sulfate transport system of Ehrlich ascites tumor cells. J. Cell. Physiol. 87: 235 – 244.PubMedGoogle Scholar
  277. 277.
    Villereal, M. L., and C. Levinson. 1977. Chloride-stimulated sulfate efflux in Ehrlich ascites tumor cells: Evidence for 1: 1 coupling. J. Cell. Physiol. 90: 553 – 564.PubMedGoogle Scholar
  278. 278.
    Villereal, M. L., and C. Levinson. 1976. Inhibition of sulfate transport in Ehrlich ascites tumor cells by 4-acetamido-4′-isothio- cyano-stilbene-2,2′-disulfonic acid (SITS). J. Cell. Physiol. 89: 303–311.PubMedGoogle Scholar
  279. 279.
    Levinson, C., R. J. Corcoran, and E. H. Edwards. 1979. Interaction of tritium-labeled H2DIDS (4,4′-diisothiocyano-l,2-di- phenylethane-2,2′-disulfonic acid) with the Ehrlich mouse ascites tumor cell. J. Membr. Biol. 45: 61 – 79.PubMedGoogle Scholar
  280. 280.
    Levinson, C. 1980. Transport of anions in Ehrlich ascites tumor cells: Effects of disulfonic acid stilbene in relation to transport mechanism. Ann. N.Y. Acad. Sci. 341: 482 – 493.PubMedGoogle Scholar
  281. 281.
    Hoffmann, E. K., L. O. Simonsen, and C. Sjøholm. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumor cells. J. Physiol. (London) 296:61– 84.Google Scholar
  282. 282.
    Heinz, E., P. Geek, and C. Pietrzyk. 1975. Driving forces of amino acid transport in animal cells. Ann. N.Y. Acad. Sci. 264: 428 – 441.PubMedGoogle Scholar
  283. 283.
    Aull, F., M. S. Nachbar, and J. D. Oppenheim. 1977. Chloride self exchange in Ehrlich ascites cells: Inhibition by furosemide and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid. Biochim. Biophys. Acta 471: 341 – 347.PubMedGoogle Scholar
  284. 284.
    Levinson, C. 1978. Chloride and sulfate transport in Ehrlich ascites tumor cells: Evidence for a common mechanism. J. Cell. Physiol. 95: 23 – 32.PubMedGoogle Scholar
  285. 285.
    Aull, F. 1979. Saturation behavior of ascites tumor cell chloride exchange in the presence of gluconate. Biochim. Biophys. Acta 554: 538 – 540.PubMedGoogle Scholar
  286. 286.
    Levinson, C., and M. L. Villereal. 1976. The transport of chloride in Ehrlich ascites tumor cells. J. Cell. Physiol. 88: 181 – 192.PubMedGoogle Scholar
  287. 287.
    Bowen, J. W., and C. Levinson. 1982. Phosphate concentration and transport in Ehrlich ascites tumor cells: Effect of sodium. J. Cell. Physiol. 110: 149 – 154.PubMedGoogle Scholar
  288. 288.
    Bowen, J. W., and C. Levinson. 1983. Evidence for monovalent phosphate transport in Ehrlich ascites tumor cells. J. Cell. Physiol. 116: 142 – 148.PubMedGoogle Scholar
  289. 289.
    Brown, K. D., and J. F. Lamb. 1975. Na-dependent phosphate transport in cultured cells. J. Physiol. (London) 251: 58P – 59 P.Google Scholar
  290. 290.
    Hamilton, R. T., and M. Nilsen-Hamilton. 1978. Transport of phosphate in membrane vesicles from mouse fibroblasts transformed by simian virus 40. J. Biol. Chem. 253: 8247 – 8256.PubMedGoogle Scholar
  291. 291.
    Lever, J. E. 1980. Phosphate ion transport in fibroblast plasma membrane vesicles. Ann. N.Y. Acad. Sci. 341: 37 – 47.PubMedGoogle Scholar
  292. 292.
    Henderson, G. B., and E. M. Zevely. 1982. Intracellular phosphate and its possible role as an exchange anion for active transport of methotrexate in LI 210 cells. Biochem. Biophys. Res. Commun. 104: 474 – 482.PubMedGoogle Scholar
  293. 293.
    Grinstein, S., C. A. Clarke, A. DuPre, and A. Rothstein. 1982. Volume-induced increase of anion permeability in human lymphocytes. J. Gen. Physiol. 80: 801 – 823.PubMedGoogle Scholar
  294. 294.
    Grinstein, S., C. A. Clarke, and A. Rothstein. 1982. Increased anion permeability during volume regulation in human lymphocytes. Philos. Trans. R. Soc. London Ser. B 229: 509 – 519.Google Scholar
  295. 295.
    Grinstein, S., A. Rothstein, B. Sarkadi, and E. W. Gelfand. 1984. Responses of lymphocytes to anisotonic media: Volume regulating behavior. Am. J. Physiol. 246: C204 – C215.PubMedGoogle Scholar
  296. 296.
    Sarkadi, B., S. Grinstein, E. Mack, and A. Rothstein. 1983. An anion conductance pathway is involved in regulatory volume decrease in human lymphocytes. Biophys. J. 41: 188a.Google Scholar
  297. 297.
    Cheung, R. K., S. Grinstein, and E. W. Gelfand. 1982. Volume regulation by human lymphocytes: Identification of differences between the two major lymphocyte subpopulations. J. Clin. Invest. 70: 632 – 638.PubMedGoogle Scholar
  298. 298.
    Grinstein, S., C. A. Clarke, A. Rothstein, and E. W. Gelfand. 1983. Volume-induced anion conductance in human B lymphocytes is cation independent. Am. J. Physiol. 245: C160 – C163.PubMedGoogle Scholar
  299. 299.
    Cheng, S., and D. Levy. 1980. Characterization of the anion transport system in hepatocyte plasma membranes. J. Biol. Chem. 255: 2637 – 2640.PubMedGoogle Scholar
  300. 300.
    Levy, D., and S. Cheng. 1980. Photoaffinity labeling of anion transport components in hepatocyte plasma membranes. Ann. N.Y. Acad. Sci. 346: 232 – 243.PubMedGoogle Scholar
  301. 301.
    Kimelberg, H. K. 1981. Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim. Biophys. Acta 646: 179–184.PubMedGoogle Scholar
  302. 302.
    Kimelberg, H. K., R. S. Bourke, P. E. Stieg, K. D. Barron, H. Hirata, E. W. Pelton, and L. R. Nelson. 1982. Swelling of astroglia after injury to the central nervous system: Mechanisms and consequences. In: Head Injury: Basic and Clinical Aspects. R. G. Grossman and P. L. Gildenberg, eds. Raven Press, New York. pp. 31 – 44.Google Scholar
  303. 303.
    Fukuda, M., Y. Eshdat, G. Tarone, and V. T. Marchesi. 1978. Isolation and characterization of peptides derived from the cytoplasmic segment of band 3, the predominant intrinsic membrane protein of the human erythrocyte. J. Biol. Chem. 253:2419– 2428.PubMedGoogle Scholar
  304. 304.
    England, B. J., R. B. Gunn, and T. L. Steck. 1980. An immunological study of band 3, the anion transport protein of the human red blood cell membrane. Biochim. Biophys. Acta 623: 171 – 182.PubMedGoogle Scholar
  305. 305.
    Edwards, P. A. W. 1980. Monoclonal antibodies that bind to the human erythrocyte-membrane glycoproteins glycophorin A and band 3. Biochem. Soc. Trans. 8: 334 – 335.PubMedGoogle Scholar
  306. 306.
    Fukuda, M., M. N. Fukuda, T. Papayannopoulou, and S. Hakomori. 1980. Membrane differentiation in human erythroid cells: Unique profiles of cell surface glycoproteins expressed in erythroblasts in vitro from three ontogenic stages. Proc. Natl. Acad. Sci. U.S.A. 77: 3474 – 3478.PubMedGoogle Scholar
  307. 307.
    Jones, G. S., N. A. Mann, J. E. Kalwas, and P. A. Knauf. 1983. Relation of low ionic strength induced K+ efflux to the anion transport system in human erythrocytes. Fed. Proc. 42: 606.Google Scholar
  308. 308.
    Miller, C. 1982. Open-state substructure of single chloride channels from Torpedo electroplax. Philos. Trans. R. Soc. London Ser. B 299: 401 – 411.Google Scholar
  309. 309.
    Knauf, P. A., and N. Mann. 1984. Location of the modifier site of the human erythrocyte anion exchange system. Biophys. J. 45: 18a.Google Scholar
  310. 310.
    Bjerrum, P. J. 1983. Identification and location of amino acid residues essential for anion transport in red cell membranes. In: Structure and Function of Membrane Proteins. E. Quagliariello and F. Palmieri, eds. Elsevier, Amsterdam, pp. 107 – 115.Google Scholar
  311. 311.
    Jennings, M. L., M. Adams-Lackey, and G. H. Denney. 1984. Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage. J. Biol. Chem. 259: 4652 – 4660.PubMedGoogle Scholar
  312. 312.
    Gardos, G. 1958. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30:653– 654. agent. Biochemistry 20: 7174 – 7182.Google Scholar
  313. 313.
    Craik, J. D., and R. A. F. Reithmeier. 1984. Inhibition of anion transport in human erythrocytes by carbodiimides. Biophys. J. 45: 199a.Google Scholar
  314. 314.
    Kohne, W., B. Deuticke, and C. W. M. Haest. 1983. Phospholipid dependence of the anion transport system of the human erythrocyte membrane: Studies on reconstituted band 3/lipid vesicles. Biochim. Biophys. Acta 730: 139 – 150.PubMedGoogle Scholar
  315. 315.
    Grunze, M., B. Forst, and B. Deuticke. 1980. Dual effect of membrane cholesterol on simple and mediated transport processes in human erythrocytes. Biochim. Biophys. Acta 600: 860 – 869.PubMedGoogle Scholar
  316. 316.
    Lauf, P. K. 1984. Immunological identity of K + /CI − cotransport in low K + sheep red cells stimulated by cell swelling on N-ethylmaleimide. Biophys. J. 45: 19a.Google Scholar
  317. 317.
    Duhm, J., and B. O. Göbel. 1984. Na + -K + transport and volume of rat erythrocytes under dietary K + deficiency. Am. J. Physiol. 246: C20 – C29.PubMedGoogle Scholar
  318. 318.
    Barzilay, M., and Z. I. Cabantchik. 1979. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Membr. Biochem. 2: 255 – 281.PubMedGoogle Scholar
  319. 319.
    Steck, T. L., and G. Dawson. 1974. Topographical distribution of complex carbohydrates in the erythrocyte membrane. J. Biol. Chem. 249: 2135 – 2142.PubMedGoogle Scholar
  320. 322.
    Schnell, K. F. 1977. Anion transport across the red blood cell membrane mediated by dielectric pores. J. Membr. Biol. 37:99– 136.PubMedGoogle Scholar
  321. 322.
    Schnell, K. F. 1977. Anion transport across the red blood cell membrane mediated by dielectric pores. J. Membr. Biol. 37:99– 136.PubMedGoogle Scholar
  322. 322.
    Falke, J. J., R. J. Pace, and S. I. Chan. 1984. Chloride binding to the anion transport binding sites of band 3: A 35C1 NMR study. J. Biol. Chem. 259: 6472 – 6480.PubMedGoogle Scholar
  323. 323.
    Falke, J. J., R. J. Pace, and S. I. Chan. 1984. Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors: A 35C1 NMR study. J. Biol. Chem. 259: 6481 – 6491.PubMedGoogle Scholar
  324. 324.
    Johnson, J. H., D. P. Dunn, and R. N. Rosenberg. 1982. Furosemide-sensitive K+ channel in glioma cells but not neuroblastoma cells in culture. Biochem. Biophys. Res. Commun. 109: 100 – 105.PubMedGoogle Scholar
  325. 325.
    Kay, M. M. B., S. R. Goodman, K. Sorenson, C. F. Whitfield, P. Wong, L. Zaki, and V. Rudloff. 1983. Senescent cell antigen is immunologically related to band 3. Proc. Natl. Acad. Sci. U.S.A. 80: 1631 – 1635.PubMedGoogle Scholar
  326. 326.
    Kay, M. M. B., C. M. Tracey, S. R. Goodman, J. C. Cone, and P. S. Bassel. 1983. Polypeptides immunologically related to band 3 are present in nucleated somatic cells. Proc. Natl. Acad. Sci. U.S.A. 80: 6882 – 6886.PubMedGoogle Scholar
  327. 327.
    Solomon, A. K., B. Chasen, J. A. Dix, M. F. Lukacovic, M. R. Toon, and A. S. Verkman. 1983. The aqueous pore in the red cell membrane: Band 3 as a channel for anions, cations, non- electrolytes and water. Ann. N.Y. Acad. Sci. 414: 97 – 134.PubMedGoogle Scholar
  328. 328.
    Hoffmann, E. K., L. O. Simonsen, and I. H. Lambert. 1984. Volume-induced increase of K+ and CI − permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J. Membr. Biol. 78: 211 – 222.PubMedGoogle Scholar
  329. 329.
    Hoffmann, E. K., I. H. Lambert, and L. O. Simonsen. 1984. Separate K + and CI − transport pathways activated by Ca2 + in Ehrlich mouse ascites tumour cells. J. Physiol. (Lond.) 357: 62 P.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Philip A. Knauf
    • 1
  1. 1.Department of Radiation Biology and BiophysicsUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations