Skip to main content

Principles of Water and Nonelectrolyte Transport across Membranes

  • Chapter

Abstract

Classical deductions concerning the manner in which water and nonelectrolytes traverse biological membranes have their origin in the observations of Overton(1) and Collander and Bärlund.(2) Overton formulated the generalization that the rate of penetration of nonelectrolytes into plant cells was proportional to their oil-water partition coefficient. Collander and Barlund confirmed these observations but noted that, in certain instances, the cellular permeability of solutes was related primarily to molecular size rather than lipid solubility. These two dissimilar phenomena led to the hypothesis that natural membranes were mosaic structures containing lipids and pores, or molecular sieves. The degree to which molecular size, rather than lipid solubility, regulated the penetration of solutes into cells was dependent on the fractional membrane area occupied by pores and the characteristics of the individual pores.(3) Current theories concerning membrane pores depend, in the main, on this hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Overton, E. 1902. Beitrage zur allgemeinen Muskel und Nerven Physiologie. Pfluegers Arch. 92: 115–280.

    Article  Google Scholar 

  2. Collander, R., and H. Bärlund. 1933. Permeabilitätsstudienen an Chara certatophylla. II. Die Permeabilität fur Nichtelectrolyte. Acta Bot. Fenn. 11: 1–114.

    Google Scholar 

  3. Höber, R. 1945. The Physical Chemistry of Cells and Tissues. McGraw-Hill ( Blakiston ), New York. pp. 229–242.

    Google Scholar 

  4. Einstein, A. 1956. Investigations on the Theory of the Brownian Movement. Dover, New York. pp. 76–89.

    Google Scholar 

  5. Jacobs, M. H. 1932. Diffusion processes. Ergeb. Biol. 12: 1–160.

    Google Scholar 

  6. Onsager, L. 1945. Theories and problems of liquid diffusion. Ann. N.Y. Acad. Sci. 46: 241–265.

    Article  PubMed  CAS  Google Scholar 

  7. Hartley, G. S., and J. Crank. 1949. Some fundamental definitions and concepts in diffusion processes. Trans. Faraday Soc. 45:801– 818.

    Google Scholar 

  8. Spiegler, K. S. 1958. Transport processes in ionic membranes. Trans. Faraday Soc. 54: 1048–1428.

    Article  Google Scholar 

  9. Kedem, O., and A. Katchalsky. 1961. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45: 143–179.

    Article  PubMed  CAS  Google Scholar 

  10. Dainty, J., and B. Z. Ginzburg. 1963. Irreversible thermodynamics and frictional models of membrane processes, with particular reference to the cell membrane. J. Theor. Biol. 5:256– 265.

    Article  PubMed  Google Scholar 

  11. Thau, G., R. Block, and O. Kedem. 1966. Water transport in porous and nonporous membranes. Desalination 1: 129–138.

    Article  CAS  Google Scholar 

  12. Robinson, R. A., and R. H. Stokes. 1959. Electrolyte Solutions. Butterworths, London, pp. 120–131.

    Google Scholar 

  13. Longsworth, L. G. 1955. Diffusion in liquids and the Stokes- Einstein relation. In: Electrochemistry in Biology and Medicine. T. Schedlovsky, ed. Wiley, New York. pp. 225–247.

    Google Scholar 

  14. Darling, B. T., and D. M. Dennison. 1940. The water vapor molecule. Phys. Rev. 57: 128–135.

    Article  CAS  Google Scholar 

  15. Bernal, J. D., and R. H. Fowler. 1933. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1: 515–521.

    Article  CAS  Google Scholar 

  16. Pople, J. A. 1951. Molecular association in liquids. II. A theory of the structure of water. Proc. R. Soc. London Ser. A 205: 163–178.

    Article  CAS  Google Scholar 

  17. Eisenberg, D., and W. Kauzmann. 1969. The Structure and Properties of Water. Oxford University Press, London, pp. 1–35.

    Google Scholar 

  18. Campbell, E., S. Gelernter, H. Heinen, and V. R. G. Moorti. 1967. Interpretation of the energy of hydrogen bonding: Permanent multipole contribution to the energy of ice as a function of the arrangement of hydrogens. J. Chem. Phys. 46: 2690–2707.

    Article  CAS  Google Scholar 

  19. Kavanau, J. L. 1964. Water and Solute-Water Interactions. Holden-Day, San Franciso. pp. 1–20.

    Google Scholar 

  20. Shibata, S., and L. S. Bartell. 1965. Electron-diffraction study of water and heavy water. J. Chem. Phys. 42: 1147–1151.

    Article  CAS  Google Scholar 

  21. Owston, P. G. 1958. Structure of ice-I, as determined by X-ray and neutron diffraction analysis. Adv. Phys. 7: 171–188.

    CAS  Google Scholar 

  22. Bjerrum, N. 1952. Structure and properties of ice. Science 115: 385–390.

    Article  PubMed  CAS  Google Scholar 

  23. Morgan, J., and B. E. Warren. 1938. X-ray analysis of the structure of water. J. Chem. Phys. 6: 666–673.

    Article  CAS  Google Scholar 

  24. Kuhn, P. G. 1965. Tables of some physical and chemical properties of water. Symp. Soc. Exp. Biol. 19: 4–16.

    Google Scholar 

  25. Bernal, J. D. 1965. The structure of water and its biological implications. Symp. Soc. Exp. Biol. 19: 17–32.

    PubMed  CAS  Google Scholar 

  26. Frank, H. S., and M. W. Evans. 1945. Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures: Partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13: 507–532.

    Article  CAS  Google Scholar 

  27. Nemethy, G., and H. A. Scheraga. 1962. Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of liquid water. J. Chem. Phys. 36:3382– 3400.

    Google Scholar 

  28. Frank, H. S., and W. Y. Wen. 1957. III. Ion-solvent interaction. Structural aspects of ion-solvent interactions in aqueous solutions: A suggested picture of water structure. Discuss. Faraday Soc. 24: 133–140.

    Article  Google Scholar 

  29. Diamond, J. M., and E. M. Wright. 1969. Biological membranes: The physical basis of ionic and nonelectrolyte selectivity. Annu. Rev. Physiol. 31: 581–646.

    Article  PubMed  CAS  Google Scholar 

  30. Stein, W. D. 1967. The Movement of Molecules across Cell Membranes. Academic Press, New York. pp. 65–124.

    Google Scholar 

  31. Price, H. D., and T. E. Thompson. 1969. Properties of lipid bilayer membranes separating two aqueous phases: Temperature dependence of water permeability. J. Mol. Biol. 41: 453–457.

    Article  Google Scholar 

  32. de Grier, J., J. G. Mandersloot, J. V. Hupkes, R. N. McElhaney, and W. P. van Beer. 1971. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim. Biophys. Acta 233: 610–618.

    Article  Google Scholar 

  33. Cohen, B. E. 1975. The permeability of liposomes to non- electrolytes. I. Activation energies for permeation. J. Membr. Biol. 20: 205–234.

    Article  PubMed  CAS  Google Scholar 

  34. Redwood, W. R., and D. A. Haydon. 1969. Influence of temperature and membrane composition on the water permeability of lipid bilayers. J. Theor. Biol. 22: 1–8.

    Article  PubMed  CAS  Google Scholar 

  35. Graziani, Y., and A. Livne. 1972. Water permeability of lipid bilayer membranes: Sterol-lipid interaction. J. Membr. Biol. 7: 275–284.

    Article  CAS  Google Scholar 

  36. Engelman, D. M. 1970. X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawii. J. Mol. Biol. 47: 115–117.

    Article  PubMed  CAS  Google Scholar 

  37. Phillips, M. C., R. M. Williams, and D. Chapman. 1969. On the nature of hydrocarbon chain motions in lipid liquid crystals. Chem. Phys. Lipids 3: 234–244.

    Article  CAS  Google Scholar 

  38. Hubbell, W. L., and H. M. McConnell. 1971. Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 93: 314–326.

    Article  PubMed  CAS  Google Scholar 

  39. Sackmann, E., and H. Trauble. 1972. Studies of the crystalline- liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators for the phase transition. J. Am. Chem. Soc. 94: 4482–4491.

    Article  PubMed  CAS  Google Scholar 

  40. Kedem, O., and A. Katchalsky. 1958. Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes. Biochim. Biophys. Acta 27: 229–246.

    Article  PubMed  CAS  Google Scholar 

  41. Dampier, W. C. 1948. A History of Science. Cambridge University Press, London, pp. 249–251.

    Google Scholar 

  42. Starling, E. H. 1896. On the absorption of fluid from the connective tissue spaces. J. Physiol. ( London ) 19: 312–326.

    CAS  Google Scholar 

  43. Meschia, G., and I. Setnikar. 1958. Experimental study of osmosis through a collodion membrane. J. Gen. Physiol. 42:429– 444.

    Article  PubMed  Google Scholar 

  44. Mauro, A. 1960. Some properties of ionic and nonionic semipermeable membranes. Circulation 21: 845–858.

    CAS  Google Scholar 

  45. Dainty, J. 1963. Water relations of plant cells. Adv. Bot. Res. 1: 279–326.

    Article  CAS  Google Scholar 

  46. Dainty, J. 1965. Osmotic flow. Symp. Soc. Exp. Biol. 19: 75–85.

    PubMed  CAS  Google Scholar 

  47. Robbins, E., and A. Mauro. 1960. Experimental study of the independence of diffusion and hydrodynamic permeability coefficients in collodion membranes. J. Gen. Physiol. 43:523– 532.

    PubMed  Google Scholar 

  48. Dick, D. A. T. 1966. Cell Water. Butterworths, London, pp. 17– 27.

    Google Scholar 

  49. Dennis, V. W., N. W. Stead, and T. E. Andreoli. 1970. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes. J. Gen. Physiol. 55: 375–400.

    Article  PubMed  CAS  Google Scholar 

  50. Hill, A. 1982. Osmosis: A bimodal theory with implications for symmetry. Proc. R. Soc. London Ser. B 215: 155–174.

    Article  CAS  Google Scholar 

  51. Staverman, A. J. 1951. The theory of measurement of osmotic pressure. Reel. Trav. Chim. Pays-Bas 70: 344–352.

    Article  CAS  Google Scholar 

  52. Andreoli, T. E., and J. A. Schäfer. 1976. Mass transport across cell membranes: The effects of antidiuretic hormone on water and solute flows in epithelia. Annu. Rev. Physiol. 39: 451–500.

    Article  Google Scholar 

  53. Koefoed-Johnsen, V., and H. H. Ussing. 1953. The contribution of diffusion and flow to the passage of D20 through living membranes: Effect of neurohypophysial hormone on isolated anuran skin. Acta Physiol. Scand. 28: 60–76.

    Article  PubMed  CAS  Google Scholar 

  54. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. 1951. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am. J. Physiol. 167: 13–46.

    PubMed  CAS  Google Scholar 

  55. Pappenheimer, J. R. 1953. Passage of molecules through capillary walls. Physiol. Rev. 33: 387–423.

    PubMed  CAS  Google Scholar 

  56. Andreoli, T. E., and S. L. Troutman. 1971. An analysis of unstirred layers in series with tight and porous lipid bilayer membranes. J. Gen. Physiol. 57: 464–478.

    Article  PubMed  CAS  Google Scholar 

  57. Lea, E. J. A. 1963. Permeation through long narrow pores. J. Theor. Biol. 5: 102–107.

    Article  PubMed  CAS  Google Scholar 

  58. Dick, D. A. T. 1966. Cell Water. Butterworths, London, pp. 102– 111.

    Google Scholar 

  59. Levitt, D. G. 1974. A new theory of transport for cell membrane pores. I. General theory and application to red cell. Biochim. Biophys. Acta 373: 115–131.

    Article  PubMed  CAS  Google Scholar 

  60. Andersen, B., and H. H. Ussing. 1957. Solvent drag on non- electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol. Scand. 39:228– 239.

    Article  PubMed  CAS  Google Scholar 

  61. Durbin, R. P., H. Frank, and A. K. Solomon. 1956. Water flow through frog gastric mucosa. J. Gen. Physiol. 39: 535–551.

    Article  PubMed  CAS  Google Scholar 

  62. Renkin, E. M. 1955. Filtration, diffusion and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38:225– 243.

    Google Scholar 

  63. Solomon, A. K. 1968. Characterization of biological membranes by equivalent pores. J. Gen. Physiol. 51: 335s–364s.

    PubMed  CAS  Google Scholar 

  64. Faxen, H. 1922. Die Bewegung einer starren Kugel längs der achse eines mit zäher Flüssigkeit gefüllten Rohres. Arch. Mat. Astron. Fys. 17: 27–43.

    Google Scholar 

  65. Ferry, J. D. 1937. Statistical evaluation of sieve constants in ultrafiltration. J. Gen. Physiol. 20: 95–104.

    Article  Google Scholar 

  66. Andreoli, T. E. 1973. On the anatomy of amphotericin B-cholesterol pores in lipid bilayer membranes. Kidney Int. 4: 337–345.

    Article  PubMed  CAS  Google Scholar 

  67. Andreoli, T. E., V. W. Dennis, and A. M. Weigl. 1969. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J. Gen. Physiol. 53: 133–156.

    Article  PubMed  CAS  Google Scholar 

  68. Andreoli, T. E., J. A. Schafer, and S. L. Troutman. 1971. Coupling of solute and solvent flows in porous lipid bilayer membranes. J. Gen. Physiol. 57: 479–493.

    Article  PubMed  CAS  Google Scholar 

  69. Holz, R., and A. Finkelstein. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56:125– 145.

    Article  CAS  Google Scholar 

  70. Solomon, A. K., and C. M. Gary-Bobo. 1972. Aqueous pores in lipid bilayers and red cell membranes. Biochim. Biophys. Acta 255: 1019–1021.

    Article  PubMed  CAS  Google Scholar 

  71. Al-Zahid, G., J. A. Schafer, S. L. Troutman, and T. E. Andreoli. 1977. Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: Evidence for parallel ADH- sensitive pathways for water and solute diffusion in luminal plasma membranes. J. Membr. Biol. 31: 103–129.

    Article  PubMed  CAS  Google Scholar 

  72. Nernst, W. 1904. Theorie der Reactionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. 47: 52–55.

    CAS  Google Scholar 

  73. Teorell, T. 1936. A method of studying conditions within diffusion layers. J. Biol. Chem. 113: 735–748.

    CAS  Google Scholar 

  74. Cass, A., and A. Finkelstein. 1967. Water permeability of thin lipid membranes. J. Gen. Physiol. 50: 1765–1784.

    Article  PubMed  CAS  Google Scholar 

  75. Ginzburg, B. Z., and A. Katchalsky. 1963. The frictional coefficient of the flows of nonelectrolytes through artificial membranes. J. Gen. Physiol. 47: 403–408.

    Article  PubMed  CAS  Google Scholar 

  76. Dainty, J., and C. R. House. 1966. Unstirred layers in frog skin. J. Physiol. (London) 182: 66–78.

    CAS  Google Scholar 

  77. Dainty, J., and C. R. House. 1966. An examination of the evidence for membrane pores in frog skin. J. Physiol. ( London ) 185: 172–184.

    CAS  Google Scholar 

  78. Diamond, J. M. 1966. A rapid method for determining voltage- concentration relations across membranes. J. Physiol. ( London ) 183: 83–100.

    CAS  Google Scholar 

  79. Hays, R. M., and N. Franki. 1970. The role of water diffusion in the action of vasopressin. J. Membr. Biol. 2: 263–276.

    Article  Google Scholar 

  80. Sallee, V. L., and J. M. Dietschy. 1973. Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols. J. Lipid Res. 14: 475–484.

    PubMed  CAS  Google Scholar 

  81. Wilson, F., and J. M. Dietschy. 1972. Characterization of bile acid absorption across the unstirred water layer and brush border of the rat jejunum. J. Clin. Invest. 51: 3015–3025.

    Article  PubMed  CAS  Google Scholar 

  82. Wright, E. M., and J. W. Prather. 1970. The permeability of the frog choroid plexus to nonelectrolytes. J. Membr. Biol. 2:127– 149.

    Article  Google Scholar 

  83. Wright, E.M., A. P. Smulders, and J. M. Tormey. 1972. The role of the lateral intercellular spaces and solute polarization effects on the passive flow of water across the rabbit gallbladder. J. Membr. Biol. 7: 198–219.

    Article  Google Scholar 

  84. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1974. Osmosis in cortical collecting tubules: A theoretical and experimental analysis of the osmotic transient phenomenon. J. Gen. Physiol. 64:201– 227.

    PubMed  CAS  Google Scholar 

  85. Hanai, T., and D. A. Haydon. 1966. The permeability of bi- molecular lipid membranes. J. Theor. Biol. 11: 370–382.

    Article  PubMed  CAS  Google Scholar 

  86. Green, K., and T. Otori. 1970. Direct measurements of membrane unstirred layers. J. Physiol. ( London ) 207: 93–102.

    CAS  Google Scholar 

  87. Colton, C. K. 1967. Artificial Kidney—Chronic Uremia Program, National Institute of Arthritis and Metabolic Disease, National Institutes of Health, Federal Clearinghouse Accession No. PB 182–281.

    Google Scholar 

  88. Farquhar, M. D., and G. E. Palade. 1963. Junctional complexes in various epithelia. J. Cell Biol. 17: 375–412.

    Article  PubMed  CAS  Google Scholar 

  89. Wright, E. M., and R. J. Pietras. 1974. Routes of nonelectrolyte permeation across epithelial membranes. J. Membr. Biol. 17:293– 312.

    PubMed  Google Scholar 

  90. Everitt, C. T., W. R. Redwood, and D. A. Haydon. 1969. Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes. J. Theor. Biol. 22: 20–32.

    Article  PubMed  CAS  Google Scholar 

  91. Schafer, J. A., and T. E. Andreoli. 1972. Cellular constraints to diffusion: The flows in isolated mammalian collecting tubules. J. Clin. Invest. 51: 1264–1278.

    Article  PubMed  CAS  Google Scholar 

  92. Hebert, S. C., and T. E. Andreoli. 1980. Interactions of temperature and ADH on transport processes in cortical collecting tubules. Am. J. Physiol. 238: F470–F480.

    PubMed  CAS  Google Scholar 

  93. Schafer, J. A., and T. E. Andreoli. 1972. The effect of antidiuretic hormone on solute flows in isolated mammalian collecting tubules. J. Clin. Invest. 51: 1279–1286.

    Article  PubMed  CAS  Google Scholar 

  94. Parisi, M., and Z. F. Piccini. 1973. The penetration of water into the epithelium of toad urinary bladder and its modification by oxytocin. J. Membr. Biol. 12: 227–246.

    Article  PubMed  CAS  Google Scholar 

  95. Levine, S. D., M. Jacoby, and A. Finkelstein. 1984. The water permeability of toad bladder. I. Permeability of barriers in series with the luminal membrane. J. Gen. Physiol, 83: 529–541.

    Article  PubMed  CAS  Google Scholar 

  96. Levine, S. D., M. Jacoby, and A. Finkelstein. 1984. The water permeability of toad bladder. II. The value of PfIPd(w) for the antidiuretic hormone-induced water-permeation pathway. J. Gen. Physiol. 83: 543–561.

    Article  PubMed  CAS  Google Scholar 

  97. Hebert, S. C., J. A. Schafer, and T. E. Andreoli. 1981. The effects of antidiuretic hormone (ADH) on solute and water transport in mammalian nephron. J. Membr. Biol. 58: 1–19.

    Article  PubMed  CAS  Google Scholar 

  98. Mackay, D., and P. Meares. 1959. The electrical conductivity and electro osmotic permeability of a cation exchange resin. Trans. Faraday Soc. 55: 1221–1229.

    Article  CAS  Google Scholar 

  99. Leaf, A., and R. M. Hays. 1962. Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J. Gen. Physiol. 45: 921–932.

    Article  PubMed  CAS  Google Scholar 

  100. Hays, R. M. 1972. The movement of water across vasopressin- sensitive epithelia. Curr. Top. Membr. Transp, Vol. 3, 339–366.

    Article  Google Scholar 

  101. Hays, R. M., and A. Leaf. 1962. Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J. Gen. Physiol. 45: 905–919.

    Article  PubMed  CAS  Google Scholar 

  102. Wang, J. H., C. V. Robinson, and I. S. Edelman. 1953. Self- diffusion and structure of liquid water, III. Measurements of the self-diffusion of liquid water with H2, H3, and O18 as tracers. J. Am. Chem. Soc. 75: 466–476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Schafer, J.A., Andreoli, T.E. (1986). Principles of Water and Nonelectrolyte Transport across Membranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics