Skip to main content

Morphology and porosity of the alimentary epithelial basal lamina

  • Chapter
Ultrastructure of the Digestive Tract

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 4))

  • 200 Accesses

Abstract

Basal laminas occupy a key position in the morphology and physiology of the animal organism. They are so located as to separate the cells of epithelium, muscle, nerve, and fat from the cellular and extracellular components of the connective tissues (1). The formed elements of the connective tissues are true residents of the interstitial space (tissue space, connective tissue space, milieu interne). They exist within it, not being separated from it by basal laminas (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Low FN, Burkel WE: A boundary membrane concept of ultrastructural morphology. Anat Rec 151: 489–490, 1965.

    Google Scholar 

  2. Low FN: A boundary membrane concept of ultrastructure applicable to the total organism. Proc Third European Regional Conference on Electron Microscopy, Prague p 115–116, 1964.

    Google Scholar 

  3. Todd RB, Bowman W: The Physiological Anatomy and Physiology of Man. London: John W. Parker, p 404, 1845.

    Google Scholar 

  4. Gersh I, Catchpole HR: The organization of ground substance and basement membrane and its significance in tissue injury, disease and growth. Am J Anat 85: 457–521, 1949.

    Article  PubMed  CAS  Google Scholar 

  5. Hotchkiss RD: A microchemical reaction resulting in the staining of polysaccharide structures in fixed tissue preparations. Arch Bioch 16: 131–141, 1948.

    CAS  Google Scholar 

  6. Low FN: Developing boundary (basement) membranes in the chick embryo. Anat Rec 159: 231–238, 1967.

    Article  PubMed  CAS  Google Scholar 

  7. Low FN: Extracellular connective tissue fibrils in the chick embryo. Anat Rec 160: 93–108, 1968.

    Article  PubMed  CAS  Google Scholar 

  8. Palay SL, Karlin LJ: An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J Biophys Biochem Cytol 5: 373–384, 1959.

    Article  PubMed  CAS  Google Scholar 

  9. Allen L, Weatherford T: Role of fenestrated basement membrane in lymphatic absorption from peritoneal cavity. Am J Physiol 197: 551–554, 1959.

    PubMed  CAS  Google Scholar 

  10. Highison GJ, Low FN: Microdissection by ultrasonication after prolonged OsO4 fixation: A technique for scanning electron microscopy. J Submicrosc Cytol 14: 161–170, 1982.

    PubMed  CAS  Google Scholar 

  11. Low FN, McClugage SG: Microdissection by ultrasonication: Scanning electron microscopy of the epithelial basal lamina of the alimentary canal in the rat. Am J Anat 169: 137–147, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. McClugage SG, Low FN: Microdissection by ultrasonication: Porosity of the intestinal epithelial basal lamina. Am J Anat 171: 207–216, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. McClugage SG, Low FN, Zimny ML: Porosity of the basement membrane overlying Peyer’s patches in rats and monkeys. Gastroenterology 91: 1128–1133, 1986.

    PubMed  CAS  Google Scholar 

  14. Cutler LS, Chaudry AP: Intercellular contacts at the epithelial-mesenchymal interface during the prenatal development of the rat submandibular gland. Dev Biol 33: 229–240, 1973.

    Article  PubMed  CAS  Google Scholar 

  15. Coughlin MD: Early development of parasympathetic nerves in mouse submandibular gland. Dev Biol 43: 123139, 1975.

    Google Scholar 

  16. Mathan M, Hermos JA, Trier JS: Structural features of the epithelial-mesenchymal interface of rat duodenal mucosa during development. J Cell Biol 52: 577–588, 1972.

    Article  PubMed  CAS  Google Scholar 

  17. Brody JS, Vasscaro CA, Gill PJ, Silbert JE: Alterations in alveolar basement membranes during postnatal lung growth. J Cell Biol 95: 394–402, 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Dearing BD, McClugage SG, Low FN: A SEM study of the epithelial basal lamina of the small intestine during fat absorption. Anat Rec 208: 43A, 1984.

    Google Scholar 

  19. Toner PG, Ferguson A: Intraepithelial cells in the human intestinal mucosa. J Ultrastruct Res 34: 329–344, 1971.

    Article  PubMed  CAS  Google Scholar 

  20. Darlington D, Rogers AW: Epithelial lymphocytes in the small intestine of the mouse. J Anat 100: 813–830, 1966.

    PubMed  CAS  Google Scholar 

  21. Fichtelius KE: The gut epithelium - a first level lymphoid organ? Exp Cell Res 49: 87–104, 1968.

    Article  PubMed  CAS  Google Scholar 

  22. Bienenstock J, Befus D, Braciale T, McDermott M, Rosenthal K, Tagliabue A: Some aspects of mucosal effector cells. In: Regulation of the Immune Response. PLO Buffalo, DMJ Buffalo (eds), Basel: Karger, p 99106, 1983.

    Google Scholar 

  23. Owen RL, Allen CL, Stevens DP: Phagocytosis of Giardia muris by macrophages in Peyer’s patch epithelium in mice. Infect Immunol 33: 591–602, 1981.

    CAS  Google Scholar 

  24. Warfel KA, Hull MT: Migration of lymphocytes through the cutaneous basal lamina in normal skin: An ultrastructural study. Anat Rec 208: 349–355, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Komuro T: Fenestrations of the basal lamina of intestinal villi of the rat. Scanning and transmission electron microscopy. Cell Tissue Res 239: 183–188, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Messier B, Leblond CP: Cell proliferation and migration as revealed by radioautography after injection of thymidine-3H into male rats and mice. Am J Anat 106: 247–285, 1960.

    Article  PubMed  CAS  Google Scholar 

  27. Bye WA, Allen CH, Trier JS: Structure, distribution and origin of M cells in Peyer’s patches in mouse ileum. Gastroenterology 86: 789–801, 1984.

    PubMed  CAS  Google Scholar 

  28. Bhalla DK, Murakami T, Owen RL: Microcirculation of intestinal lymphoid follicles in rat Peyer’s patches. Gastroenterology 81: 481–491, 1981.

    PubMed  CAS  Google Scholar 

  29. Bhalla DK, Owen RL: Migration of B and T lymphocytes to M cells in Peyer’s patch follicle epithelium: An auto-radiographic and immunocytochemical study in mice. Cell Immunol 81: 105–117, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Smith MW, Peacock MA: “M” cell distribution in follicle-associated epithelium of mouse Peyer’s patches. Am J Anat 159: 157–166, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Trier JS, Rubin CE: Electron microscopy of the small intestine: A review. Gastroenterology 49: 574–603, 1965.

    PubMed  CAS  Google Scholar 

  32. Rubin CE: Electron microscopic studies of triglyceride absorption in man. Gastroenterology 50: 65–77, 1966.

    PubMed  CAS  Google Scholar 

  33. Trier JS: Morphology of the epithelium of the small intestine. In: Handbook of Physiology, Section 6: Alimentary Canal, Vol. III, Intestinal Absorption. Baltimore: Williams & Wilkins, p 1125–1175, 1968.

    Google Scholar 

  34. Partridge BT, Simpson LO: Epithelial cell basal processes in the duodenum of NZB mice. In: Proc 9th Int Congr Electron Microsc, Toronto, Canada, p 534–535, 1978.

    Google Scholar 

  35. Simpson LO: Basement membranes and biological thixotropy: A new hypothesis. Pathology 12: 377–389, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Grenier CP, McClugage SG, Low FN: A SEM study of the fibrous microskeleton of pores within epithelial basement membranes. Anat Rec 211: 73A, 1985.

    Google Scholar 

  37. Simpson LO: Glomerular permeability: An alternative to the pore theory. Lancet 2: 251–252, 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Timpl R, Wiedemann H, Van Delden V, Furthmayr H, Kuhn K: A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem 120: 203–211, 1981.

    Article  PubMed  CAS  Google Scholar 

  39. Inoué S, Leblond CP, Laurie GW: Ultrastructure of Reichert’s membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac. J Cell Biol 97: 1524–1537, 1983.

    Article  PubMed  Google Scholar 

  40. Carlson EC, Kenney MC: An ultrastructural analysis of isolated basement membrane in the acellular renal cortex: A comparative sutdy of human and laboratory animals. J Morphol 171: 195–211, 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

McClugage, S.G., Low, F.N. (1988). Morphology and porosity of the alimentary epithelial basal lamina. In: Motta, P.M., Fujita, H., Correr, S. (eds) Ultrastructure of the Digestive Tract. Electron Microscopy in Biology and Medicine, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2071-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2071-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9229-6

  • Online ISBN: 978-1-4613-2071-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics