Skip to main content

The musculature and innervation of the alimentary canal

  • Chapter
Ultrastructure of the Digestive Tract

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 4))

Abstract

The alimentary canal is traditionally divided into two basic parts, the esophagus and the gastrointestinal tract. As is well known, both portions are composed of four concentric layers: the mucosa, lined by epithelial cells, contains a supporting layer of connective tissue, the lamina propria, and the muscularis mucosae, which is present in most but not all of the alimentary canal; the submucosa, a second layer of loose connective tissue; the tunica muscularis, which is smooth muscle throughout the digestive tube, except for the sup-perior one-third of the esophagus, which contains striated muscle; and the serosa which is the most external of the four layers. The tunica muscularis, in turn, is divided into an inner band of circular muscle and an outer band of longitudinal muscle. Thus, muscle is actually located in two areas of the canal wall, the muscularis mucosae and the tunica muscularis (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloom W, Fawcett D: A Textbook of Histology, Philadelphia: WB Saunders Company, p 598–599, 1975.

    Google Scholar 

  2. Di Fiore M: Atlas of Human Histology. Philadelphia: Lea & Febiger, p 122–152, 1977.

    Google Scholar 

  3. Gabella G: Structure of muscles and nerves in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract. LR Johnson (ed), New York: Raven Press, p 197–241, 1981.

    Google Scholar 

  4. Guyton A: Textbook of Medical Physiology, Philadelphia: WB Saunders Company, p 852–853, 1976.

    Google Scholar 

  5. Gabella G: Smooth muscle cell junctions and structural aspects of contraction. Br Med Bull 35: 213–218, 1979.

    PubMed  CAS  Google Scholar 

  6. Taxi J: Contribution à L’étude des connexions des neurones moteurs du systéme nérveux autonome. Ann Sci Nat Zool, 7: 413–674, 1965.

    Google Scholar 

  7. Gabella G: Innervation of the gastrointestinal tract. Int Rev Cytol 59: 129–193, 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto M: Electron microscopic studies on the innervation of the smooth muscle and the interstitial cell of Cajal in the small intestine of the mouse and bat. Arch Hist Jpn 40: 171–201, 1977.

    CAS  Google Scholar 

  9. Taylor A, Kreulen D, Prosser C: Electron microscopy of the connective tissue between longitudinal and circular muscle of the small intestine of cat. Am J Anat 150: 427–442, 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Goodford P: Ion movements in smooth muscle. In: Membranes and Ion Transport, E Bittar (ed), New York: John Wiley & Sons, p 33–74, 1970.

    Google Scholar 

  11. Muggli R, Baumgartner H: Patterns of membrane invaginations at the surface of smooth muscle cells of rabbit arteries. Experientia 28: 1212–1214, 1972.

    Article  PubMed  CAS  Google Scholar 

  12. Orci L, Perrelet A: Membrane-associated particles: Increase at sites of pinocytosis demonstrated by freeze-etching. Science 181: 868–869, 1973.

    Article  PubMed  CAS  Google Scholar 

  13. Prosser C, Burnstock G, Kahn J: Conduction in smooth muscle: Comparative structural properties. Am J Physiol 199: 545–552, 1960.

    PubMed  CAS  Google Scholar 

  14. Cooke P: A filamentous cytoskeleton in vertebrate smooth muscle fibers. J Cell Biol 68; 539–556, 1976.

    Article  PubMed  CAS  Google Scholar 

  15. Debbas G, Hoffman L, Landon E, Hurwitz L: Electron microscopic localization of calcium in vascular smooth muscle. Anat Rec 182: 447–472, 1975.

    Article  PubMed  CAS  Google Scholar 

  16. Heumann, H-G: The subcellular localization of calcium in vertebrate smooth muscle: Calcium-containing and calcium-accumulating structures in muscle cells of mouse intestine. Cell Tissue Res 169: 221–231, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Jonas L, Zelch U: The subcellular calcium distribution in the smooth muscle cells of the pig coronary artery. Exp Cell Res 89: 352–358, 1974.

    Article  PubMed  CAS  Google Scholar 

  18. Popescu L, Diculescu I: Calcium in smooth muscle sarcoplasmic reticulum in situ. J Cell Biol 67: 911–918, 1975.

    Article  PubMed  CAS  Google Scholar 

  19. Ashton F, Somlyo AV, Somlyo AP: The contractile apparatus of vascular smooth muscle: Intermediate high voltage stereo electron microscopy. J Mol Biol 98: 17–29, 1975.

    Article  PubMed  CAS  Google Scholar 

  20. Somlyo AV: Ultrastructure of vascular smooth muscle. In: Handbook of Physiology, Section 2, Vol II. Washington, DC: American Physiology Society, p 33–67, 1980.

    Google Scholar 

  21. Nonomura Y, Ebashi S: Calcium regulatory mechanism in vertebrate smooth muscle. Biomed Res 1: 1–14, 1980.

    CAS  Google Scholar 

  22. Small J: Studies on isolated smooth muscle cells: The contractile apparatus. J Cell Sci 24: 327–349, 1977.

    PubMed  CAS  Google Scholar 

  23. Groschel-Stewart U: Comparative studies of human smooth and striated muscle myosins. Biochim Biophys Acta 229: 322–334, 1971.

    PubMed  CAS  Google Scholar 

  24. Pollard T, Weihing R: Actin and myosin and cell movement. CRC Crit Rev Biochem 2: 1–65, 1974.

    Article  PubMed  CAS  Google Scholar 

  25. Somlyo AP, Somlyo AV: Ultrastructure of smooth muscle. In: Methods in Pharmacology. E Daniel, D Paton, (eds), New York: Plenum, p 3–43, 1975.

    Google Scholar 

  26. Rosenbluth J: Obliquely striated muscle. III. Contraction mechanism of Ascaris body muscle. J Cell Biol 34: 15–33, 1967.

    Article  PubMed  CAS  Google Scholar 

  27. Urwin P, Zampighi G: Structure of the junction between communicating cells. Nature (Lond) 283: 545–549, 1980.

    Article  Google Scholar 

  28. Peracchia C: Structural correlates of gap junction permeation. Ira Rev Cytol 66: 81–146, 1980.

    Article  CAS  Google Scholar 

  29. Agostoni E, Chinnock J, Daly M, Murray J: Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol (Lond) 135: 182–205, 1975.

    Google Scholar 

  30. Ahlman B, Lundberg J, Dahlstrom A, Larsson I, Pettersson G, Kewenter J, Nyhus L: Evidence for innervation of the small intestine from cervical sympathetic ganglia. J Surg Res 24: 142–149, 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Gabella G: Neuron size and number in the myenteric plexus of the newborn and adult rat. J Anat 109: 81–95, 1971.

    PubMed  CAS  Google Scholar 

  32. Gabella G: Structure of the Autonomic Nervous System, London: Chapman & Hall, 1976.

    Book  Google Scholar 

  33. Gerhon M, Bursztajn S: Properties of the enteric nervous system: Limitation of access of intravascular macromolecules to the myenteric plexus and muscularis externa. J Comp Neurol 180: 467–487, 1978.

    Article  Google Scholar 

  34. Geffen L, Liven B: Synaptic vesicles in sympathetic neurons. Physiol Rev 51: 98–157, 1971.

    PubMed  CAS  Google Scholar 

  35. Baumgarten H, Holstein A-F, Owman C: Auerbach’s plexus of mammals and man: Electron microscopic identification of three different types of neuronal processes in myenteric ganglia of the large intestine from rhesus monkeys, guinea pigs and man. Z Zellforsch 106: 376397, 1970.

    Article  Google Scholar 

  36. Cook R, Burnstock G: The ultrastructure of Auerbach’s plexus in the guinea pig. I. Neuronal elements. J Neurocytol 5: 171–194, 1976.

    Article  PubMed  CAS  Google Scholar 

  37. Campbell G, Gibbins I: Nonadrenergic, noncholinergic transmission in the autonomic nervous system: Purinergic nerves. In: Trends in Autonomic Pharmacology, Vol. I. S Kalsner (ed), Baltimore and Munich: Urban & Schwarzenberg, p 103–144, 1979.

    Google Scholar 

  38. Burnstock G: Cytochemical studies in the enteric nervous system. In: Cytochemical Methods in Neuroanatomy. New York: Alan R Liss, Inc p 129–149, 1982.

    Google Scholar 

  39. Burnstock G: Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev 21: 247–324, 1969.

    PubMed  CAS  Google Scholar 

  40. Burnstock G, Costa M: Inhibitory innervation of the gut. Gastroenterology 64: 141–144, 1973.

    PubMed  CAS  Google Scholar 

  41. Burnstock G: Purinergic nerves. Pharmacol Rev 24: 509–581, 1972.

    PubMed  CAS  Google Scholar 

  42. Llewellyn-Smith I, Wilson A, Furness J, Costa M, Rush R: Ultrastructural identification of nonadrenergic axons in the enteric plexuses of the guinea pig ileum. Neurosci Abstr 6: 274, 1980.

    Google Scholar 

  43. Chubb I, Hodgson A, White G: Acetylcholinesterase hydrolyzes substance-P. Neuroscience 5: 2065–2072, 1980.

    Article  PubMed  CAS  Google Scholar 

  44. Furness J, Costa M: Types of nerves in the enteric nervous system. Neuroscience 5: 1–20, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Bennett M, Burnstock G, Holman M: Transmission from intramural inhibitory nerves in the smooth muscle of the guinea pig taenia coli. J Physiol (Lond) 182: 541–558, 1966.

    PubMed  CAS  Google Scholar 

  46. Garrett J, Howard E: Neural control of the internal anal sphincter of cats after chemical sympathectomy with 6- hydroxydopamine. J Physiol (Lond) 247: 25–27P, 1975.

    Google Scholar 

  47. Gershon M, Thompson E: The maturation of neuromuscular function in a multiply innervated structure: Development of the longitudinal smooth muscle of the foetal mammalian gut and its cholinergic excitatory, adrenergic inhibitory innervation. J Physiol (Lond) 234: 257–277, 1973.

    PubMed  CAS  Google Scholar 

  48. Burnstock G, Campbell G, Satchell D, Smythe A: Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by nonadrenergic inhibitory nerves in the gut. Br J Pharmacol 40: 668–688, 1970.

    PubMed  CAS  Google Scholar 

  49. Sundler F, Hakanson R, Leander S: Peptidergic nervous systems in the gut. Clin Gastroenterol 9; 517–543, 1980.

    PubMed  CAS  Google Scholar 

  50. Franco R, Costa M, Furness J: Evidence for the release of endogenous substance-P from intestinal nerves. NaunynSchmiedeberg’s Arch Pharmacol 306: 195–201, 1979.

    Article  CAS  Google Scholar 

  51. Franco R, Costa M, Furness J: Evidence that axons containing substance-P in the guinea pig ileum are of intrinsic origin. Naunyn-Schmiedeberg’s Arch Pharmacol 307: 58–63, 1979.

    Article  Google Scholar 

  52. Katayama Y, North R, Williams J: The action of substance-P on the neurones of the myenteric plexus of he guinea pig intestine Proc R Soc B 206: 191–208, 1979.

    Article  CAS  Google Scholar 

  53. Larsson L-I: Ultrastructural localization of a new neuronal peptide (VIP). Histochemistry 5: 173–176, 1977.

    Article  Google Scholar 

  54. Costa M, Furness J, Yanaihara N, Yanaihara C, Moody T: Distribution and projections of neurons with immunoreactivity for both gastrin-releasing peptide and bombesin in the guinea pig small intestine. Cell Tissue Res 235: 285–293, 1984.

    Article  PubMed  CAS  Google Scholar 

  55. Keast J, Furness J, Costa M: Somatostatin in human enteric nerves. Cell Tissue Res 237: 299–308, 1984.

    Article  PubMed  CAS  Google Scholar 

  56. Mitchenere P, Adrian T, Kirk R, Bloom S: Effect of gut regulatory peptides on intestinal luminal fluid in the rat. Life Sci 29: 1563–1570, 1981.

    Article  PubMed  CAS  Google Scholar 

  57. Alumets J, Hakanson R, Sundler F, Chang K-J: Leuenkephalin-like material in nerves and enterochromaffin cells in the gut. Histochemistry 56: 187–196, 1978.

    Article  PubMed  CAS  Google Scholar 

  58. Larsson L-I, Rehfeld J: Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165: 201–218, 1979.

    Article  PubMed  CAS  Google Scholar 

  59. Buckley N, Burnstock G: Autoradiographic localization of muscarinic receptors in guinea pig intestine: Distribution of high and low affinity agonist binding sites. Brain Res 294: 15–22, 1984.

    Article  PubMed  CAS  Google Scholar 

  60. Gershon M, Takaki M, Tamir H, Branchek T: The enteric neural receptor for 5-hydroxytryptamine. Experientia 41: 863–868, 1985.

    Article  PubMed  CAS  Google Scholar 

  61. Amenta F: Autoradiographic localization of GABA receptor sites in peripheral tissues. In: GABAergic Mechanisms in Mammalian Periphery. N Bowery, S Erdo (eds), New York: Raven Press, p 99–115, 1986.

    Google Scholar 

  62. Fisher R, Cohen S: Disorders of the lower esophageal sphincter. Ann Rev Med 26: 373–390, 1975.

    Article  PubMed  CAS  Google Scholar 

  63. Aggestrup S, Uddman R, Sundler F, Fahrenkrug J, Hakanson R, Sorensen H, Hambraeus G: Lack of vasoactive intestinal polypeptide nerves in esophageal achalasia. Gastroenterology 84: 924–927, 1983.

    PubMed  CAS  Google Scholar 

  64. Sharli A, Meir-Ruge W: Localized and disseminated forms of neuronal intestinal dysplasia mimicking Hirschsprung’s disease. J Pediatric Surg 16: 164–169, 1983.

    Article  Google Scholar 

  65. Burnstock G, Griffith S: Neurohumoral control of the vasculature. In: Biology and Pathology of the Vessel Wall. N Woolf (ed), New York: Praeger, 1983.

    Google Scholar 

  66. Garrett J, Howard E, Nixon H: Autonomic nerves in rectum and colon in Hirschsprung’s disease: A cholinesterase and catecholamine histochemical study. Arch Dis Childh 44: 406–417, 1969.

    Article  PubMed  CAS  Google Scholar 

  67. Tsuto T, Okamura H, Fukui K, Obata H, Terubayshi H, Iwai N, Majima S, Yanaihara N, Ibata Y: An immunohistochemical investigation of vasoactive intestinal poly-peptide in the colon of patients with Hirschsprung’s disease. Neuroscience Letters 34: 57–62, 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Amenta, F., Cavallotti, C. (1988). The musculature and innervation of the alimentary canal. In: Motta, P.M., Fujita, H., Correr, S. (eds) Ultrastructure of the Digestive Tract. Electron Microscopy in Biology and Medicine, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2071-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2071-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9229-6

  • Online ISBN: 978-1-4613-2071-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics