Skip to main content

Quinidine Reduces Outward Current in Single Canine Cardiac Purkinje Cells

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 68))

Abstract

The commonly used antiarrhythmic drug quinidine is a member of the local anesthetic class. In cardiac muscle it reduces sodium (Na) current (1), thereby slowing the action potential (AP) upstroke (2), slowing conduction velocity, and reducing excitability. Quinidine also affects AP repolarization. Typical changes are a prolongation of the AP and a negative shift in the plateau voltage (3), although other studies show either AP shortening (4) or both lengthening and shortening (5). A number of ionic currents contribute to the plateau of the AP, including the inward calcium (Ca) current, slowly inactivating (or “window”) Na current, and three potassium (K) currents: the inward rectifier current, the delayed rectifier, and the transient outward current (Ito). The complex response of the AP to quinidine suggests that it may affect more than one of these repolarizing currents. Effects of drugs on several membrane channels is not rare, but the drug interaction must be to some shared molecular components of the diverse channels. This report addresses the question of quinidine’s effect on Ito in canine cardiac Purkinje cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, K.S., Hume, J.R., Giles, W., and Brown, A.M. Nature 291: 235–327, 1981.

    Article  Google Scholar 

  2. Weidmann, S. J. Physiol. (Lond.) 129: 568–582, 1955.

    CAS  Google Scholar 

  3. Vaughn Williams, E.M. Brit. J. Pharmacol. 13: 276–278, 1958.

    CAS  Google Scholar 

  4. Carmeliet, E., and Saikawa J. Circ. Res. 50: 257–272, 1982.

    PubMed  CAS  Google Scholar 

  5. Nawrath, H.J. Pharmacol. Exp. Ther. 216: 176–182, 1981.

    CAS  Google Scholar 

  6. Roden, D.M., and Hoffman, B.F. Circ. Res. 56: 857–867, 1985.

    PubMed  CAS  Google Scholar 

  7. Wood, E.H., Heppner, R.L., and Weidmann, S. Circ. Res. 24: 409–445, 1969.

    PubMed  CAS  Google Scholar 

  8. Gibbons, W.R., and Fozzard, H.A. Circ. Res. 28: 446–460, 1971.

    PubMed  CAS  Google Scholar 

  9. Fozzard, H.A., and Hiraoka, M. J. Physiol. (Lond.) 234: 569–586, 1973.

    CAS  Google Scholar 

  10. Sheets, M.F., January, C.T., and Fozzard, H.A. Circ. Res. 53: 544–548, 1983.

    PubMed  CAS  Google Scholar 

  11. Eisenberg, B.R., and Cohen, I.S. Proc. Roy. Soc. Lond. B 217: 191–213, 1983.

    Article  CAS  Google Scholar 

  12. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. Pfluegers Arch.391 85–100, 1981.

    Article  CAS  Google Scholar 

  13. Siegelbaum, S.A., and Tsien, R.W. J. Physiol. (Lond.) 299: 485–506, 1980.

    CAS  Google Scholar 

  14. Nakayama, T., and Irisawa, H. Circ. Res. 51: 65–73, 1985.

    Google Scholar 

  15. Kenyon, J.L., and Gibbons, W.R. J. Gen. Physiol. 73: 139–157, 1979.

    Article  CAS  Google Scholar 

  16. Kenyon, J.L., and Gibbons, W.R. J. Gen. Physiol. 73: 117–138, 1979.

    Article  CAS  Google Scholar 

  17. Dudel, J., Peper, K., Rudel, R., and Trautwein, W. Pfluegers Arch. 295: 197–212, 1967.

    Article  CAS  Google Scholar 

  18. Baumgarten, C.M., and Isenberg, G. Pfluegers Arch. 368: 19–31, 1977.

    Article  CAS  Google Scholar 

  19. Levis, R.A., Mathias, R.T., and Eisenberg, R.S. Biophys. J. 44: 225–248, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Josephson, I.R., Sanchez-Chapula, J., and Brown, A.M. Circ. Res. 54: 157–162, 1984.

    PubMed  CAS  Google Scholar 

  21. Giles, W.R., and van Ginneken, A.C.G. J. Physiol. (Lond.) 368: 243–264, 1985.

    CAS  Google Scholar 

  22. Connor, J.A., and Stevens, C.F. J. Physiol. (Lond.) 213: 21–30, 1971.

    CAS  Google Scholar 

  23. Hagiwara, S. Membrane potential-dependent ion channels in cell membrane. Raven Press, New York, 1983.

    Google Scholar 

  24. Hondeghem, L.M., and Katzung, B.G. Biochim. Biophys. Acta 472: 373–398, 1977.

    PubMed  CAS  Google Scholar 

  25. Colatsky, T.J. Circ. Res. 50: 17–27, 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Nakayama, T., Fozzard, H.A. (1987). Quinidine Reduces Outward Current in Single Canine Cardiac Purkinje Cells. In: Beamish, R.E., Panagia, V., Dhalla, N.S. (eds) Pharmacological Aspects of Heart Disease. Developments in Cardiovascular Medicine, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2057-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2057-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9222-7

  • Online ISBN: 978-1-4613-2057-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics