Parasympathetic Control of the Heart: Subcellular Mechanisms

  • P. V. Sulakhe
  • J. E. Mackay
  • D. G. Rokosh
  • T. Morris
  • T. D. Phan
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 66)

Abstract

The well-established control of the heart by autonomic nerves involves the action of two neurotransmitters, acetylcholine and norepinephrine, with the specific receptors located postsynaptically in the heart. Depending on whether the region harbors pacemaker, conducting or contractile tissue, the well-known reciprocal effects on excitability, automaticity, conductivity and contractility of para-sympathetic and sympathetic nerves are expressed within the appropriate regions of the heart (1,2). How neurotransmitter action at the cell surface locale, irrespective of the heart region, influences selectively the main functions of these specialized heart regions remains an enigma. It is becoming apparent that the influence of receptor activation on coupled effector systems vicinally located within the surface membrane matrix sets in motion subcellular and metabolic processes within the cellular interior that subserve appropriate responses of the heart regions to autonomic transmitters (1–3). From the stand-point of innervation the mammalian heart (notwithstanding species specificity) shows a diffuse regional pattern for sympathetic innervation with slightly greater density in the pacemaker or nodal regions. By comparison the parasympathetic innervation shows greater specificity in that nodal regions are highly innervated and left ventricle free wall sparsely innervated (3).

Keywords

Serine Polypeptide Acetylcholine Propranolol Collagenase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watanabe, A.M. In: Cardiac Therapy (Eds. M.R. Rosen and B.F. Hoffman), Martinus Nijhoff Publishers, Boston, 1983, pp 95–144.Google Scholar
  2. 2.
    Sulakhe, P.V., Jagadeesh, G. and Braun, A.P. In: The Regulation of Heart Function (Eds. H. Rupp), George Thieme Verlag, Stuttgart, 1986, pp. 71–94.Google Scholar
  3. 3.
    Lottelholz, K. and Pappano, A.J. Pharmacol. Rev. 37:1–24, 1985.Google Scholar
  4. 4.
    Levy, M.N. The Physiologist. 26:115–118, 1983.PubMedGoogle Scholar
  5. 5.
    Levy, M.N. Circ. Res. 29:437–445, 1971.PubMedGoogle Scholar
  6. 6.
    Braun, A.P. and Sulakhe, P.V. Jn: Neuro Methods. Vol. 4 Receptor Binding (Eds. A.A. Boulton, G.B. Baker and P.O. Hrdina), Humana Press, Clifton, New Jersey, 1986, pp 139–170.CrossRefGoogle Scholar
  7. 7.
    Hammer, R. and Giachetti, A. Life Sciences 31:2991–2998, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Brown, J.H., Goldstein, D. and Brown-Masters, S. Mol. Pharmacol. 27:525–531, 1985.PubMedGoogle Scholar
  9. 9.
    Malbone, C.C., Mangano, D.J. and Watkins, D.C. Biochem. Biophys. Res. Comm. 128:809–815, 1985.CrossRefGoogle Scholar
  10. 10.
    Braun, A.P. and Sulakhe, P.V. In: G. Proteins and Signal Transduction, Cold Spring Harbour Laboratory Publications, 1986, p 26 (Abstract).Google Scholar
  11. 11.
    Gomperts, B.D. In: G. Proteins and Signal Transduction, Cold Spring Harbour Laboratory Publications, 1986, p 47 (Abstract).Google Scholar
  12. 12.
    Gilman, A.G. Cell 36:577–579, 1984.PubMedCrossRefGoogle Scholar
  13. 13.
    Cerione, R.A., Staniszewski, C, Caron, M.G., Lefkowitz, R.J., Codina, J. and Birnbaumer, L. Nature 318:293–295, 1985.PubMedCrossRefGoogle Scholar
  14. 14.
    Osterriden, W., Bruan, G., Hescheler, J., Trautwin, W., Flockerzi, V. and Hofmann, F. Nature 298:576–578, 1982.CrossRefGoogle Scholar
  15. 15.
    Reuter, H. Nature 301:569–573, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Rokosh, G., Morris, T., Phan, T.D. and Sulakhe, P.V. FEBS Letters, Submitted 1986.Google Scholar
  17. 17.
    Murad, F., Chi, Y.M., Rail, T.W. and Sutherland, E.W. J. Biol. Chem. 237:1233–1238, 1962.PubMedGoogle Scholar
  18. 18.
    La Raia, P.J. and Sommenblick, E. Circ. Res. 28:377–384, 1971.Google Scholar
  19. 19.
    Smigel, M., Katada, T., Northrup, J.K., Bokoch, G.M., Vi, M. and Gilman, A.G. Adv. Cyclic Nucleotide Res. 17:1–18, 1984.Google Scholar
  20. 20.
    England, P.J. In: The Regulation of Heart Function (Eds. H. Rupp) Georg Thieme, Verlag, Stuttgart, 1986, pp 223–233.Google Scholar
  21. 21.
    Tada, M. and Katz, A.M. Ann. Rev. Physiol. 44:401–423, 1982.CrossRefGoogle Scholar
  22. 22.
    Bkaily, G. and Sperelakis, N. Amer. J. Physiol. 266:H630–H634, 1984.Google Scholar
  23. 23.
    Curtis, B.M. and Catterall, W.A. Proc. Natl. Acad. Sci. U.S.A. 82:2528–2532, 1985.PubMedCrossRefGoogle Scholar
  24. 24.
    Pfaffinger, P.J., Martin, J.M., Hunter, D.D., Nathanson, N.M. and Hille, B. Nature 317:536–538, 1985.PubMedCrossRefGoogle Scholar
  25. 25.
    Noma, A. and Trautwein, W. Pflingers Arch. 377:193–200, 1978.CrossRefGoogle Scholar
  26. 26.
    Winegrad, S. Circ. Res. 55:565–574, 1984.PubMedGoogle Scholar
  27. 27.
    George, W.J., Willerson, R.D. and Kadowitz, P.J. J. Pharmacol. Exp. Ther. 184:228–235, 1973.PubMedGoogle Scholar
  28. 28.
    Goldberg, N.D., Haddox, M.K., Nicol, S.E., Glass, D.B., Sanford, C.H., Kucnl, F.A., Jr., and Estensen, R. Adv. Cyclic Nucleotide Res. 5:307–330, 1970.Google Scholar
  29. 29.
    Murad, F., Anrold, W.P., Mittal, C.K. and Braughler, J.M. (1979). Adv. Cyclic Nucleotide Res. 11:175–204, 1979.PubMedGoogle Scholar
  30. 30.
    Kimura, H., and Murad, F., J. Biol. Chem. 249:6910–6916, 1974.PubMedGoogle Scholar
  31. 31.
    Sulakhe, P.V., Sulakhe, S.J., Leung, N.L., St. Louis, P.J. and Hickie, R.A. Biochem. J. 157:705–712, 1976.PubMedGoogle Scholar
  32. 32.
    Beavo, J.A., Hardman, J.G. and Sutherland, E.W. J. Biol. Chem. 245:5649–5655, 1970.PubMedGoogle Scholar
  33. 33.
    St. Louis, P.J. and Sulakhe, P.V. Biochem. J. 158:535–541, 1976.PubMedGoogle Scholar
  34. 34.
    Lincoln, T.M. and Keely, S.L. Biochim. Biophys. Acta 676:230–244, 1981.PubMedGoogle Scholar
  35. 35.
    Lohmann, S.M. and Walter, U. Adv. Cyclic Nucleotide Res. 18:63–118, 1984.Google Scholar
  36. 36.
    St. Louis, P.J. and Sulakhe, P.V. Archives Biochem and Biophys. 198:227–240, 1979.CrossRefGoogle Scholar
  37. 37.
    Hokin, L.E. Annual Rev. Biochem. 54:205–235.Google Scholar
  38. 38.
    Kishimoto, A., Takai, Y., Mori, T. Kikkawa, U. and Nishizuka, Y. J. Biol. Chem. 255:2273–2276, 1980.PubMedGoogle Scholar
  39. 39.
    Kikkawa, U. Kaibuchi, K., Takai, Y and Nishizuka, Y. In: Phospholipids and Cellular Regulation (Eds. J.F. Kao) CRC Press, Bocha Raton, Florida, 1985, pp 111–126.Google Scholar
  40. 40.
    Turner, R.S. and Kuo, J.F. In: Phospholipids and Cellular Regulation (Eds. J.F. Kuo) CRC Press, Boca Raton, Florida, 1985, pp 75–110.Google Scholar
  41. 41.
    Presti, C.F., Scott, B.T. and Jones, L.R. J. Biol. Chem. 260:13879–13889, 1985.PubMedGoogle Scholar
  42. 42.
    Yuan, S. and Sen, A.K. Biochim, Biophis, Acta. 886:152–161, 1986.CrossRefGoogle Scholar
  43. 43.
    Sibley, D., Nambi, P., Peters, J.R. and Lefkowitz, R.J. Biochem. Biophy. Res. Commun. 121:973–979, 1984.CrossRefGoogle Scholar
  44. 44.
    Berridge, M.J. and Irvine, R.F. Nature 312. 315–321, 1984.PubMedCrossRefGoogle Scholar
  45. 45.
    Movsevian, M.A., Thompson, A.P. Selah, M. and Williamson, J.R. FEBS 185:328–332, 1985.CrossRefGoogle Scholar
  46. 46.
    Yuan, S., Durante, W., Sunahara, F.A. and Sen, A.K. Proc. Can. Fed. Biol. Soc. 29:101, 1986 (Abstract).Google Scholar
  47. 47.
    Brown, S.L. and Brown, J.H. Mol. Pharmacol. 24:351–356, 1983.PubMedGoogle Scholar
  48. 48.
    Kryski, A.,Jr., Kenno, K.A. and Severson, D.L. Amer. J. Physiol. 248:H203–H216, 1985.Google Scholar
  49. 49.
    Berridge, M.J., Downes, CP. and Hanley, M.R. Biochem. J. 206:587–595, 1982.PubMedGoogle Scholar
  50. 50.
    Goswami, S.K. and Gould, R.M. J. Neurochemistry 44:941–946, 1985.CrossRefGoogle Scholar
  51. 51.
    Randerath, K. Analytical Biochem. 34:188–205, 1970.CrossRefGoogle Scholar
  52. 52.
    Berridge, M.J. Dawson, CP. Heslop, J.P. and Irvine, R.F. Biochem. J. 212:473–482, 1983.PubMedGoogle Scholar
  53. 53.
    Tada, M., Kadoma, M. and Fujii, J. This volume.Google Scholar
  54. 54.
    Holroyde, M.J., Howe, E. and Soluro, R.J. Biochim. Biophys. Acta. 586:63–69, 1979.Google Scholar
  55. 55.
    Katz, A.M., Tada, M. and Kirchberger, M.A. Adv. Cyclic Nucleotide Res. 5:453–472, 1975.PubMedGoogle Scholar
  56. 56.
    Hokin, L.E. and Hokin, M.R. Can. J. Biochem. Physiol. 34:349–358, 1956.PubMedCrossRefGoogle Scholar
  57. 57.
    Brown, J.H. and Brown S.L. Journ. Biol. Chem. 259:3777–3781, 1984.Google Scholar
  58. 58.
    Iwasa, Y. and Hosey, M.M. J. Biol. Chem. 259:1834–1841, 1984.Google Scholar
  59. 59.
    Movsevian, M.A., Nighikawa, M. and Adelstein, R.S. J. Biol. Chem. 259:8029–8032, 1984.Google Scholar
  60. 60.
    LePeuch, C.J. and Demaille, J.G. In: The Regulation of Heart Function (Eds. H. Rapp) Georg Thieme Verlag, Stuttgart, 1986, pp 137–144.Google Scholar
  61. 61.
    Lindeman, J.P. J. Biol. Chem. 261:4860–4867, 1986.Google Scholar
  62. 62.
    Wise, B.C. and Kuo, J.F. Biochem. Pharmachol. 32:1259, 1983.CrossRefGoogle Scholar
  63. 63.
    Lindemann, J.P. and Watanabe, A.M. J. Biol. Chem. 260:4516–4525, 1985.PubMedGoogle Scholar
  64. 64.
    Onorato, J.J. and Rudolf, S.A. J. Biol. Chem. 256:10697–10703, 1981.PubMedGoogle Scholar
  65. 65.
    Blacksnear, P.J. Nemenoff, R.A., Bonourtre, J.V., Cheung, J.Y. and Aurach, J. Amer. J. Physiol. 246:C439–C449, 1984.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1987

Authors and Affiliations

  • P. V. Sulakhe
    • 1
  • J. E. Mackay
    • 1
  • D. G. Rokosh
    • 1
  • T. Morris
    • 1
  • T. D. Phan
    • 1
  1. 1.Department of PhysiologyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations