Skip to main content

Mechanisms of Sarcoplasmic Reticulum Functions and Consequences for Muscle Activity

  • Chapter
Heart Function and Metabolism

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 66))

Abstract

The calcium concept of excitation-contraction coupling evolved from four basic findings:

  1. 1)

    The contractile machinery of all kinds of muscles contains calcium sensitive target proteins with similar calcium affinity (1–3).

  2. 2)

    During muscle contraction, the sarcoplasmic calcium level rises transiently from 0.1 µM to 10 µM (4–6).

  3. 3)

    Active calcium pumps guarantee a low resting calcium level, and a fast removal of calcium from the contractile proteins for relaxation (7–9), and

  4. 4)

    specific calcium storing and releasing structures supply the contractile machinery with calcium (10–12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weber, A., Winicur, S., J.Biol. Chem. 236, 3198–3202, 1961.

    PubMed  CAS  Google Scholar 

  2. Ebashi, S., Nature 200, 1010, 1963.

    Article  PubMed  CAS  Google Scholar 

  3. Potter, J.D. and Gergely, J., Biochemistry 13, 2697–2703, 1974.

    Article  PubMed  CAS  Google Scholar 

  4. Portzehl, H., Caldwell, P.C. and Ruegg, J.C., Biochim. Biophys.Acta 79, 581–591, 1964.

    PubMed  CAS  Google Scholar 

  5. Blinks, J.R., Eur.J.Cardiol. 1/2, 135–142, 1973.

    Google Scholar 

  6. Melzer, W., Schneider, M.F., Simon, B.J. and Szucs, G., J.Physiol. 373, 481–511, 1986.

    PubMed  CAS  Google Scholar 

  7. Gilbert, D.L. and Fenn, W.O., J.Gen.Physiol. 40, 393–408, 1957.

    Article  PubMed  CAS  Google Scholar 

  8. Hasselbach, W. and Makinose, M., Biochem.Zeitschrift 333, 518–528, 1961.

    CAS  Google Scholar 

  9. Caroni, P. and Carafoli, E., J.Biol.Chem. 256, 3263–3270, 1981.

    PubMed  CAS  Google Scholar 

  10. Weber, A., J.Gen.Phys. 52, 760–772, 1968.

    Article  CAS  Google Scholar 

  11. Hasselbach, W., Fed.Proc. 23, 909–912, 1964.

    PubMed  CAS  Google Scholar 

  12. Somlyo, A.V., McClellan, G., Gonzales-Serratos, H. and Somlyo, A.P., J.Biol.Chem. 260, 6801–6807, 1985.

    PubMed  CAS  Google Scholar 

  13. Langer, G.A., Frank, J.S., Philipson, K.D., Pharmac.Thera. 16, 331–376, 1982.

    Article  CAS  Google Scholar 

  14. Fabiato, A., Am.Physiol. Soc. 247, C1–C14, 1983.

    Google Scholar 

  15. MacLennan, D.H. and Wong, P.T., Proc.Natl. Acad.Sci. USA 68, 1231–1235, 1971.

    Article  PubMed  CAS  Google Scholar 

  16. Meissner, G., Biochim.Biophys.Acta 389, 51–68, 1975.

    Article  PubMed  CAS  Google Scholar 

  17. Ikemoto, N., Nagy, B., Bhatnagar, G.M. and Gergely, J., J.Biol.Chem. 249, 2357–2365, 1974.

    PubMed  CAS  Google Scholar 

  18. Hasselbach, W. and König, V., Z.Naturforsch. 35c, 1012–1018, 1980.

    CAS  Google Scholar 

  19. Miyamoto, H. and Kasai, M., J.Biochem. 85, 765–773, 1979.

    PubMed  CAS  Google Scholar 

  20. MacLennan, D.H., Brandl, Ch.J., Korczak, B. and Green, N.M., Nature 316, 696–700, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Ikemoto, N., J.Biol.Chem. 251, 7275–7277, 1976.

    PubMed  CAS  Google Scholar 

  22. De Meis, L. and Inesi, G., Biochemistry 24, 922–925, 1985.

    Article  PubMed  Google Scholar 

  23. Hasselbach, W., Agostini, B., Medda, P. Migala, A. and Waas, W. in Structure and Function of Sarcoplasmic Reticulum, eds. S.Fleischer and Y.Tonomura, Acad.Press 1985, pp. 19–49.

    Google Scholar 

  24. Jencks, W.P. in: Advances in Enzymology, John Wiley & Sons, New York, Vol. 51, New York 1980, pp. 75–106.

    Google Scholar 

  25. Tanford, Ch., CRC Crit. Rev.Biochem. 17, 123–151, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Medda, P. and Hasselbach, W., Eur.J.Biochem. 137, 7–14, 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Hasselbach, W., Medda, P., Migala, A. and Agostini, B., Z.Naturforsch. 38c, 1015–1022, 1983.

    CAS  Google Scholar 

  28. Miyamoto, H., and Racker, E., FEBS Lett. 133, 235–238, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Meszáros, L. and Ikemoto, N., J.Biol. Chem. 260, 16076–16079, 1985.

    PubMed  Google Scholar 

  30. Su, J.Y. and Hasselbach, W., Pfl.Arch. 400, 14–21, 1984.

    Article  CAS  Google Scholar 

  31. Méissner, G., Darling, E. and Eveleth, J., Biochemistry 25 236–244, 1986.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Hasselbach, W. (1987). Mechanisms of Sarcoplasmic Reticulum Functions and Consequences for Muscle Activity. In: Dhalla, N.S., Pierce, G.N., Beamish, R.E. (eds) Heart Function and Metabolism. Developments in Cardiovascular Medicine, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2053-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2053-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9220-3

  • Online ISBN: 978-1-4613-2053-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics