Advertisement

Plasma Concentration of Atrial Natriuretic Factor in Congestive Heart Failure

  • K. Ogawa
  • T. Ito
  • H. Hashimoto
  • T. Satake
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 65)

Abstract

The presence of secretory granules in mammalian atria is well documented (1). Since their number decreases during high sodium intake and increases with low sodium intake and water deprivation (2), it was suggested that these atrial granules may play a role in salt and water balance. Further work has shown that the granules contain biologically active peptides referred to as atrial natriuretic factor or atrial natriuretic polypeptides which produce diuresis, natriuresis (3), vasorelaxation (4) and reduced aldosterone synthesis (5). Because of such physiological effects, markedly stimulated atrial natriuretic factor in the pathophysiology of congestive heart failure has been anticipated. Although there have been reports on raised plasma atrial natriuretic factor concentrations during paroxysmal atrial tachycardia (6,7,8) and in patients with severe congestive heart failure (9,10), the relationship between hemodynamic details and plasma concentration of atrial natriuretic factor has not been studied. In the present study, plasma atrial natriuretic factor concentrations was determined in healthy subjects and in patients with congestive heart failure and the correlations with the symptoms and the hemodynamic indices including pulmonary capillary wedge pressure, cardiac index and left ventricular ejection fraction were investigated.

Keywords

Congestive Heart Failure Cardiac Index Atrial Natriuretic Peptide Pulmonary Capillary Wedge Pressure Pulmonary Arterial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jamieson, J.D., Palade, G.E. J. Cell. Biol. 23: 151–72, 1964.CrossRefGoogle Scholar
  2. 2.
    de Bold, A.J. Proc. Soc. Exp. Biol. Med. 161; 505–11, 1979.Google Scholar
  3. 3.
    de Bold, A.J., Borenstein, H.B., Veress, A.T., Sonnenberg, H. Life. Sci. 28: 89–94, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Currie, M.G., Geller, D.M., Cole, B.R., Boylan, J.G., Yusheng, W., Holmberg, S.W., Needleman, P. Science 221: 71–3, 1983.PubMedCrossRefGoogle Scholar
  5. 5.
    Atarashi, K., Mulrow, P.J., Franco-Saenz, R., Snajdar, R., Rapp, J. Science 244: 992–994, 1984.CrossRefGoogle Scholar
  6. 6.
    Schiffrin, E.L., Gutkowska, J., Kuchel, O., Cantin, M., Genest, J. N. Engl. J. Med. 312: 1196–7, 1985.CrossRefGoogle Scholar
  7. 7.
    Yamaji, T., Ishibashi, M., Nakaoka, H., Imatake, K., Amano, M., Fujii, J. Lancet I: 1211, 1985.Google Scholar
  8. 8.
    Tikkanen, I., Metsarinne, K., Fyhrquist, F. Lancet II: 40–41, 1985.CrossRefGoogle Scholar
  9. 9.
    Tikkanen, L., Fyhrquist, F., Metsarinne, K., Leidenius, R. Lancet II: 66–69, 1985.CrossRefGoogle Scholar
  10. 10.
    Nakaoka, H., Imataka, K., Amano, M., Fujii, J., Ishibashi, M., Yamaji, T. N. Engl. J. Med. 313: 892–893, 1985.CrossRefGoogle Scholar
  11. 11.
    Ogawa, K., Shiozu, H., Mizuno, K., Ban, M., Ito, T., Satake, T. Br. Heart. J. 52: 524–529, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Miyata, A., Kangawa, K., Toshimori, T., Hatoh, T., Matsuo, H. Biochem. Biophys. Res. Commun. 129: 248–255, 1985.PubMedCrossRefGoogle Scholar
  13. 13.
    Sugawara, A., Nakao, K., Morii, N. et al. Biochem. Biophys. Res. Commun. 129: 439–446, 1985.PubMedCrossRefGoogle Scholar
  14. 14.
    Gutkowska, J., Thibault, G., Januszewicz, P., Cantin, M., Genest, J. Biochem. Biophys. Res. Commun. 122: 593–601, 1984.PubMedCrossRefGoogle Scholar
  15. 15.
    Larose, P., Meloche, S., du Souich, P., Delean, A., Ong, H. Biochem. Biophys. Res. Commun. 130: 553–558, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Dietz, Jr. Am. J. Physiol. 247: R1093–6, 1984.PubMedGoogle Scholar
  17. 17.
    Lang, R.E., Thoelken, H., Ganten, D., Luft, F.C., Ruskoaho, H., Unger, T.H. Nature 314: 264–266, 1985.PubMedCrossRefGoogle Scholar
  18. 18.
    Pettersson, A., Ricksten, S.E., Towel, A.C., Hedner, J., Hendner, T. Act. Physiol. Scand. 124: 309–311, 1985.CrossRefGoogle Scholar
  19. 19.
    Sonnenberg, H., Veress, A.T. Biochem. Biophys. Res. Commun. 124: 443–449, 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    Hamet, P., Tremblay, J., Pang, S.C., Garcia, R., Thibault, G., Gutkowska, J., Cantin, M., Genest, J. Biochem. Biophys. Res. Commun. 123: 515–27, 1984.PubMedCrossRefGoogle Scholar
  21. 21.
    Winquist, R.J., Faison, E.P., Waldman, S.A., Schwartz, K., Murad, F., Rapoport, R.M. Proc. Natl. Acad. Sci. USA 81: 7661–7664, 1984.PubMedCrossRefGoogle Scholar
  22. 22.
    Mizuno, K., Ogawa, K. J. Cardiovasc. Pharmacol. 3: 1211–1220, 1981.CrossRefGoogle Scholar
  23. 23.
    Ogawa, K., Mizuno, K. Experientia 39: 1290–1291, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Uno, T., Kanayama, H., Miyazaki, Y., Ogawa, K., Satake, T. J. Electrocardiology 19: 51–58, 1986.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1987

Authors and Affiliations

  • K. Ogawa
    • 1
  • T. Ito
    • 1
  • H. Hashimoto
    • 1
  • T. Satake
    • 1
  1. 1.Department of Internal Medicine 2Nagoya University School of MedicineNagoyaJapan

Personalised recommendations