Skip to main content

Structure, Function, and Biosynthesis of Ganglioside Antigens Associated with Human Tumors Derived From the Neuroectoderm

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 35))

Abstract

The process of human tumor proliferation and metastasis undoubtedly involves surface structures that interface with the local environment, i.e., the extracellular matrix and host tissue. Therefore, it is imperative to understand the molecular and cellular events at the tumor cell surface that are associated with proliferation and metastasis. To this end, monoclonal antibodies to a variety of human tumor-associated antigens have enabled investigators to characterize molecular differences between tumor and normal tissues and thus advanced an understanding of the functional role of these antigens. Recent technological advances have now made it possible to use monoclonal antibodies (Mabs) for the characterization of a number of complex carbohydrate antigens on tumor cell-associated glycolipids [1–7]. In this regard, a number of sialic acid-bearing glycolipids, i.e., gangliosides, were shown to contain antigenic determinants highly restricted to human melanoma [2–5], neuroblastoma [6], and colon carcinoma [7]. The use of Mabs specifically directed to gangliosides may help strengthen and extend observations that implicate these molecules as putative cellular receptors for hormones [8], toxins [9], growth factors [10], and viruses [11], as well as to gain further evidence for their possible role in cell-substratum interactions [3, 12–21]. One distinct advantage of Mabs directed to carbohydrate antigens is their potential to establish a structure/function relationship for these determinants on the tumor cell surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hakomori S: Tumor-associated carbohydrate antigens. A Rev Immunol 2:103–126, 1984.

    Article  CAS  Google Scholar 

  2. Cheresh DA, Varki AP, Varki NM, Stallcup WB, Levine J, Reisfeld RA: A monoclonal antibody recognizes an O-acylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem 259:7453–7459, 1984.

    PubMed  CAS  Google Scholar 

  3. Cheresh DA, Harper JR, Schulz G, Reisfeld RA: Localization of gangliosides GD2 and GD3 in adhesion plaques and on the surface of human melanoma cells. Proc Natl Acad Sci USA 81:5767–5771, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Pukel CS, Lloyd KO, Trabassos LR, Dippold WG, Oettgen HF, Old LJ: GD3, a prominent ganglioside antigen of human melanoma, detection and characterization by mouse monoclonal antibody. J Exp Med 155:1133–1147, 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Nudelman E, Hakomori S, Kannagi R, Levery S, Yeh M-Y, Hellstrom KE, Hellstrom I: Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2. J Biol Chem 257:12752–12756, 1982.

    PubMed  CAS  Google Scholar 

  6. Schulz G, Cheresh DA, Varki NM, Yu A, Staffileno LK, Reisfeld RA: Detection of ganglioside GD2 in tumor tissues and neuroblastoma patients. Cancer Res 44:5914–5920, 1984.

    PubMed  CAS  Google Scholar 

  7. Koprowski H, Herlyn M, Steplewski Z, Sears HF: Specific antigen in serum of patients with colon carcinoma. Science 212:53–55, 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Mullin BR, Fishman PH, Lee G, Aloj SM, Ledley FD, Winand RJ, Kohn LD, Brady RO: Thyrotropin-ganglioside interactions and their relationship to the structure and function of thyrotropin receptors. Proc Natl Acad Sci USA 73:842–846, 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Van Heyningen WE: Gangliosides as membrane receptors for tetanus toxin, cholera toxin, and serotonin. Nature 249:415–417, 1974.

    Article  Google Scholar 

  10. Bremer GE, Hakomori S, Bowen-Pope DF, Raines E, Ross R: Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 259:6818–6825, 1984.

    PubMed  CAS  Google Scholar 

  11. Suzuki Y, Matsunaga M, Matsumoto M: N-acetylneuraminyl-lactosylceramide, GM3-NeuAc. A new influenza virus receptor which mediates the adsorption-fusion process of viral infection. J Biol Chem 260:1362–1365, 1985.

    PubMed  CAS  Google Scholar 

  12. Kleinman HK, Martin GR, Fishman PH: Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc Natl Acad Sci USA 76:3367–3371, 1979.

    Article  PubMed  CAS  Google Scholar 

  13. Yamada KM, Kennedy DW, Grotendorst GR, Momoi T: Glycolipids: receptors for fibronect-in? J Cell Physiol 109:343–351, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Perkins RM, Kellie S, Patel B, Critchley DR: Gangliosides as receptors for fibronectin?

    Google Scholar 

  15. Cheresh DA: Structural and functional properties of ganglioside antigens on human tumors of neuroectodermal origin. Surv Synth Pathol Res 4:97–109, 1985.

    PubMed  CAS  Google Scholar 

  16. Cheresh DA, Pierschbacher MD, Herzig MA, Mujoo K: Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol 102:688–696, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Cheresh DA, Klier FG: Disialoganglioside GD2 distributes preferentially into substrate-associated microprocesses on human melanoma cells during their attachment to fibronectin. J Cell Biol 102:1887–1897, 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Cheresh DA: Ganglioside involvement in tumor cell-substratum interactions. In: Induction and recognition of the transformed cell, Greene MI, Hamaoka T (eds). New York: Plenum (in press).

    Google Scholar 

  19. Reisfeld RA, Cheresh DA: Human tumor antigens. In: Advances in Immunology Dixon F (ed). Academic Press (in press).

    Google Scholar 

  20. Thompson LK, Horowitz PM, Bentley KL, Thomas DD, Alderete JF, Klebe RJ: Localization of the ganglioside-binding site of fibronectin. J Biol Chem 261:5209–5214, 1986.

    PubMed  CAS  Google Scholar 

  21. Okada Y, Mugnai G, Bremer EG, Hakomori S: Glycosphingolipids in detergent-insoluble substrate attachment matrix (DISAM) prepared from substrate attachment material (SAM): Their possible role in regulating cell adhesion. Exp Cell Res 155:448–456, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Hakomori S, Kannagi K: Glycosphingolipids as tumor-associated and differentiation antigens. J Natl Cancer Inst 71:231–251, 1983.

    PubMed  CAS  Google Scholar 

  23. Feizi T: Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314:53–57, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Hakomori S, Murakami: Glycolipids of hamster fibroblasts and derived malignant transformed cell lines. Proc Natl Acad Sci USA 59:254–261, 1968.

    Article  PubMed  CAS  Google Scholar 

  25. Cheresh DA, Rosenberg J, Mujoo K, Hirschowitz L, Reisfeld RA: Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res (in press).

    Google Scholar 

  26. Rosenberg JM, Reisfeld RA, Sander DJ, Cheresh DA: A specific sialyltransferase is responsible for the synthesis of GD3, a ganglioside preferentially expressed on human metastatic melanoma cells. Proc Am Soc Biol Chem 45:1822, 1986.

    Google Scholar 

  27. Keenan TW, Moore DJ: Mammary carcinoma: enzymatic block in disialoganglioside synthesis. Science 182:935–937, 1973.

    Article  PubMed  CAS  Google Scholar 

  28. Merritt WD, Morre DJ, Keenan TW: Gangliosides of liver tumors induced by N-2-fluorenylacetamide. II. Alterations in biosynthetic enzymes. J Natl Cancer Inst 60:1329–1337, 1978.

    PubMed  CAS  Google Scholar 

  29. Spiegel S, Schlessinger J, Fishman PH: Incorporation of fluorescent gangliosides into human fibroblasts: Mobility, fate, and interaction with fibronectin. J Cell Biol 99:699–704, 1984.

    Article  PubMed  CAS  Google Scholar 

  30. Spiegel S, Yamada KM, Horn BE, Moss J, Fishman PH: Fibrillar organization of fibronectin is expressed coordinately with cell surface gangliosides in a variant murine fibroblast. J Cell Biol 102:1898–1906, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Nakakuma H, Yutaka S, Shiroki K, Nagai Y: Gene regulated expression of glycolipids: Appearance of GD3 ganglioside in rat cells on transfection with transforming gene El of human adenovirus Type 12 DNA and its transcriptional subunits. J Biochem 96:1471–1480, 1984.

    PubMed  CAS  Google Scholar 

  32. Besancon F, Ankel H: Binding of interferon to gangliosides. Nature 252:478–480, 1974.

    Article  PubMed  CAS  Google Scholar 

  33. Lui DY, David JR, Remold HG: Glycolipid affinity purification of migration inhibitory factor. Nature 296:78–80, 1982.

    Article  Google Scholar 

  34. Spiegel S, Fishman PH, Weber RJ: Direct evidence that endogenous GM1 ganglioside can mediate thymocyte proliferation. Science 230:1285–1287, 1985.

    Article  PubMed  CAS  Google Scholar 

  35. Berry-Kravis E, Dawson G: Possible role of gangliosides in regulating an adenylate cyclase-linked 5-hydroxytryptamine (5-HT) receptor. J Neurochem 45:1739–1747, 1985.

    Article  PubMed  CAS  Google Scholar 

  36. Goldenring JR, Otis LC, Yu RK, DeLorenzo RJ: Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J Neurochem 44:1229–1234, 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Markwell MAK, Svennerholm L, Paulson JC: Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci USA 78:5406–5410, 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Nagai Y, Sanai Y, Nakakuma H, Yamakawa A, Yamasaki M: Gene-controlled expression of gangliosides. INSERM 126:67–80, 1984.

    Google Scholar 

  39. Hakomori S: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann Rev Biochem 50:733–764, 1981.

    Article  PubMed  CAS  Google Scholar 

  40. Yogeeswaran G, Hakomori S: Cell-contact-dependent ganglioside changes in mouse 3T3 fibroblasts and a suppressed sialidase activity on cell contact. Biochem 14:2151–2156, 1975.

    Article  CAS  Google Scholar 

  41. Portoukalian J, Zwingelstein G, Dore JF: Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur J Biochem 94:19–23, 1979.

    Article  PubMed  CAS  Google Scholar 

  42. Cheresh DA, Honsik CJ, Staffileno LK, Jung G, Reisfeld RA: Disialoganglioside GD3 on human melanoma cells serves as a relevant target antigen for monoclonal antibody-induced cytotoxicity in vitro and immunotherapy in vivo. Proc Natl Acad Sci USA 82:5155–5159, 1985.

    Article  PubMed  CAS  Google Scholar 

  43. Houghton AN, Mintzer D, Cordon-Cardo L, Welt S, Fliegel B, Vadhan S, Carswell E, Melamed MR, Oettgen HF, Old LJ: Mouse monoclonal IgG3 antibody detecting GD3 ganglioside. A phase I trial in patients with malignant melanoma. Proc Natl Acad Sci USA 82:1242–1246, 1985.

    Article  PubMed  CAS  Google Scholar 

  44. Kannagi R, Stroup R, Cochran N A, Urdal DL, Young WW Jr, Hakomori S: Glycolipid tumor antigen in cultured murine lymphoma cells and factors affecting its expression at the cell surface. Cancer Res 43:4997–5005, 1983.

    PubMed  CAS  Google Scholar 

  45. Leij L, Poppema S, Nulend JK, Haar A, Schwander E, Ebbens F, Postmus PE, Hauwthe T: Neuroendocrine differentiation antigen on human lung carcinoma and Kulchitsky cells. Cancer Res 45:2192–2200, 1985.

    PubMed  Google Scholar 

  46. Pearse AG, Takor T: Embryology of the diffuse neuroendocrine system and its relationship to the common peptides. Fed Proc 38:2288–2294, 1979.

    PubMed  CAS  Google Scholar 

  47. Seeger RC, Siegel SE, Sidell N: Neuroblastoma: Clinical perspectives, monoclonal antibodies, and retinoic acid. Ann Intern Med 97:873–884, 1982.

    PubMed  CAS  Google Scholar 

  48. Raney RB, Lyon GM, Porter FS: Neuroblastoma simulating acute leukemia. J Pediat 89:433–435, 1976.

    Article  PubMed  Google Scholar 

  49. Reynolds PC, Smith GR, Frenkel EP: The diagnostic dilemma of the small round cell neoplasma. Cancer 48:2088–2094, 1981.

    Article  PubMed  CAS  Google Scholar 

  50. Pierschbacher MD, Ruoslahti E: Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33, 1984.

    Article  PubMed  CAS  Google Scholar 

  51. Pytela R, Pierschbacher MD, Ruoslahti E: Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40:191–198, 1985.

    Article  PubMed  CAS  Google Scholar 

  52. Hasegawa T, Hasegawa E, Chen W-T, Yamade KM: Characterization of a membrane-associated glycoprotein complex implicated in cell adhesion to fibronectin J Cell Biochem 28:307–318, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Brown PJ, Juliano RL: Selective inhibition of fibronectin-mediated cell adhesion by monoclonal antibodies to a cell-surface glycoprotein. Science 228:1448–1450, 1985.

    Article  PubMed  CAS  Google Scholar 

  54. Giancotti FG, Tarone G, Knudsen K, Damsky C, Comoglio PM: Cleavage of a 135 kd cell surface glycoprotein correlates with loss of fibroblast adhesion to fibronectin. Exp Cell Res 156:182–190, 1985.

    Article  PubMed  CAS  Google Scholar 

  55. Pytela R, Pierschbacher MD, Ruoslahti E: A 125/115-kd cell surface receptor specific for vitronectin interacts with the arginine glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci USA 82:5766–5770, 1985.

    Article  PubMed  CAS  Google Scholar 

  56. Akiyama SK, Yamada KM: The interaction of plasma fibronectin with fibroblastic cells in suspension J Biol Chem 260:4492–4500, 1985.

    PubMed  CAS  Google Scholar 

  57. Takeichi M: Functional correlation between adhesive properties and some cell surface proteins. J Cell Biol 75:464–474, 1977.

    Article  PubMed  CAS  Google Scholar 

  58. Sharom FJ, Grant CWM: A model for ganglioside behavior in cell membranes. Biochim Biophys Acta 507:280–293, 1978.

    Article  PubMed  CAS  Google Scholar 

  59. McCarthy JB, Hagen ST, Furet LT: Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J Cell Biol 102:179–188, 1986.

    Article  PubMed  CAS  Google Scholar 

  60. Perkins RM, Ji HT, Hynes RO: Cross-linking of fibronectin to proteoglycans at the cell surface. Cell 16:944–952, 1979.

    Article  Google Scholar 

  61. Woods A, Hook M, Kjellen L, Smith CG, Rees DA: Relationship of heparan sulfate proteoglycans to the cytoskeleton and extracellular matrix of cultured fibroblasts. J Cell Biol 99:1743–1753, 1984.

    Article  PubMed  CAS  Google Scholar 

  62. Cheresh DA, Reisfeld RA, Varki AP: O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science 225:844–846, 1984.

    Article  PubMed  CAS  Google Scholar 

  63. Harper JR, Bumol TF, Reisfeld RA: Characterization of monoclonal antibody 155.8 and partial characterization of its proteoglycan antigen on human melanoma cells. J Immunol 132:2096–2104, 1984.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Boston

About this chapter

Cite this chapter

Rosenberg, J.M., Cheresh, D.A. (1987). Structure, Function, and Biosynthesis of Ganglioside Antigens Associated with Human Tumors Derived From the Neuroectoderm. In: Nathanson, L. (eds) Basic and Clinical Aspects of Malignant Melanoma. Cancer Treatment and Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2043-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2043-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9215-9

  • Online ISBN: 978-1-4613-2043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics