Skip to main content

Neuronal Modulation by Number and by Volume: A Review and Critical Analysis

  • Chapter
Book cover Model Systems of Development and Aging of the Nervous System

Abstract

Developmental neurology has been a subject of interest for over a hundred years and is associated with the names of His, Kölliker, Van Geuchten, Golgi, Cajal, and many others. Much information has been gathered toward a fuller understanding of the prenatal development mechanisms that become active at an early stage to produce functionally appropriate neuronal connection patterns. Focuses of current research are morphological and functional events such as induction, proliferation, migration, cell differentiation, cell death, connectivity, and synaptogenesis. Closely related to developmental biology is the degree of plasticity and repair of the nervous system in postnatal life, especially in the adult and the aging. Neuroplasticity, namely the ability of the nervous system to adapt to physiological and other events arising when development is completed, has been one of the most important topics in current biomedical research (see reviews by Bloom, 1985; Macchi, 1985). Cajal was the first to describe a regenerative process for the cerebral axons (Cajal, 1907) and adopted the view that “nerve paths are fixed, final and immutable…nothing may be regenerated” (Cajal, 1928). More recently, Björklund and associates (Björklund and Stenevi, 1984; Björklund et al., 1985) have expressed the opposite view that the adult mammalian brain has “the capacity for sprouting, synaptogenesis and of severed connections.” The difference between these two opinions lies in the fact that Cajal could only refer to about 60 studies; today there are thousands from which to choose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, J. (1966) Autoradiographic and histological studies of postnatal neurogenesis. J. Comp. Neurol. 128:431–474.

    Google Scholar 

  • Altman, J., and Das, G.D. (1965a) Post-natal origin of microneurones in the rat brain. Nature 207:953–956.

    PubMed  CAS  Google Scholar 

  • Altman, J., and Das, G.D. (1965b) Autoradiographic and histological evidence of post-natal hippocampal neurogenesis in rats. J. Comp. Neurol., 124:319–336.

    PubMed  CAS  Google Scholar 

  • Amprino, R. (1938) Modifications de la structure des neurones sympathiques pendant l’accroissement et la sénescence: recherches sur le ganglion cervical supérieur. C.R. Assoc. Anat. 33:1–16.

    Google Scholar 

  • Amprino, R. (1955) Morphological and functional aspects of the innervation of blood vessels. Minerua Cardioangiol. Int. 2:5–19.

    Google Scholar 

  • Bairati, A. (1954) In: Cacucci-Bari (ed.) Trattato di Istologia.

    Google Scholar 

  • Bayer, S.A., and Altman, J. (1974) Hippocampal development in the rat: cytogenesis and morphogenesis examined with autoradiography and low-level x-irradiation. J. Comp. Neurol. 158:55–80.

    PubMed  CAS  Google Scholar 

  • Bayer, S.A., Yackel, J.W., and Puri, P.S. (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892.

    PubMed  CAS  Google Scholar 

  • Benninghoff, A. (1951) Vermehrung und Vergrösserung von Nervezellen bei Hypertrophie des Innervationsgebietes. Z. Naturforsch. 6:38–44.

    Google Scholar 

  • Björklund, A., and Stenevi, U. (1984) Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Annu Rev. Neurosci. 7:279–308.

    PubMed  Google Scholar 

  • Björklund, A., Gage, F.N., Dunnett, S.B., and Stenevi, U. (1985) Regenerative capacity of central neurons as revealed by intracerebral grafting experiments. In: Bignami, A., Bloom, F.E., Bolis, C.L., and Adeloye, A. (eds.) Nervous system plasticity and repair. New York: Raven, pp. 57–62.

    Google Scholar 

  • Bloom, F.E. (1985) Central nervous system plasticity: a survey of opportunities. In: Bignami, A., Bloom, F.E., Bolis, C.L., and Adeloye, A. (eds.) Central nervous system plasticity and repair. New York: Raven.

    Google Scholar 

  • Bohn, R.C., and Mitchell, R.B. (1976) Cytophotometric identification of tetraploid Purkinje cells in young and aged rats. J. Neurobiol. 7:255–258.

    PubMed  CAS  Google Scholar 

  • Breedlove, S.M., and Arnold, A.P. (1983) Hormonal control of a developing neuromuscular system. J. Neurosci. 3:424–432.

    PubMed  CAS  Google Scholar 

  • Bregnard, A., Knüsel, A., and Kuenzle, C.C. (1975) All are the neuronal neclei polyploid? Histochemistry 43:59–61.

    PubMed  CAS  Google Scholar 

  • Cajal, S.R. (1907) Note sur la dégénérescence traumatique des fibres nerveuses du cervelet et du cerveau. Trab. Lab. Invest. Biol. 5:105–115.

    Google Scholar 

  • Cajal, S.R. (1910) Algunas observaciones favorables a la hipótesis neurotropica. Trab. Lab. Invest. Biol. 8:63–134.

    Google Scholar 

  • Cajal, S.R. (1928) In: Degeneration and regeneration of the nervous system. London: Oxford University Press.

    Google Scholar 

  • Celestino da Costa, A. (1939) Paraganglions et sympathique. Ann. Endocrinol 1:449–464.

    Google Scholar 

  • Chang, F.F., and Greenough, W.T. (1982) Lateralized effects of monocular training on dendritic branching in adult split-brain rats Brain Res. 232:283–292.

    CAS  Google Scholar 

  • Cohen, J., Mares, V., and Lodin, Z. (1973) DNA content of purified preparations of mouse Purkinje neurons isolated by a velocity sedimentation technique. J. Neurochem. 20:651–657.

    PubMed  CAS  Google Scholar 

  • Corelli, D. (1958) Studio sulla rigenerazione delle cellule gangliari dell’intestino con il metodo di Cannon. Biol. Latina 11:395–405.

    CAS  Google Scholar 

  • Coujard, R. (1949) Degrès de différenciation varisbles des cellules des plexus intestinaux. C.R. Assoc. Anat. 36:151–160.

    Google Scholar 

  • Cowan, W.M., Stanfield B.B., and Amarai, D.G. (1981) Further observations on the development of the dentate gyrus. In: Cowan, W.M. (ed.) Studies in developmental neurobiology. New York: Oxford University Press, pp. 395–435.

    Google Scholar 

  • Dal Forno, and Ruà, S. (1961) Effetti plastici del rimaneggiamento del tessuto linforeticolare nell’appendice. II. Modificazioni dei plessi nervosi intramurali. Biol. Latina 14:383–416.

    Google Scholar 

  • De Castro, F. (1922) Evoluciòn de los ganglios simpàticos vertebrales y prevertebrales Connexiones y citoarquitectonia de algunos grupos de ganglios en el nino y hombre adulto. Trab. Lab. Invest. Biol. 20:113–208.

    Google Scholar 

  • Filogamo, G. (1960) Il plesso di Auerbach nella stenosi sperimentale dell’intestino studiato con il metodo di Koelle per l’AC nel coniglio. Giorn. Acc. Med. Torino 123:75–81.

    Google Scholar 

  • Filogamo, G., and Lievre, C. (1955a) Aumento di numero delle cellule nervose e moltiplicazione cellulere nei gangli del plesso di Auerbach, in condizioni di esaltata attività funzionale. Boll. Soc. Ital. Biol. Sper. 31:717–719.

    PubMed  CAS  Google Scholar 

  • Filogamo, G., and Lievre, C. (1955b) Comportamento delle cellule nervose del plesso mienterico, dell’intestino normale ed ipertrofico, nell’ansa alla Thity-Vella. Boll. Soc. Piem. Chir. 25:1–3.

    Google Scholar 

  • Filogamo, G., and Marchisio, P.C. (1971) Acetylcholine system and neural development. Neurosci. Res. 4:29–64.

    PubMed  CAS  Google Scholar 

  • Filogamo, G., and Vigliani, F. (1953) Les cellules du plexus myentérique (d’Auerbach) dans la sténose expérimentale de l’intestin. C.R. Assoc. Anat. 78:683–692.

    Google Scholar 

  • Filogamo, G., and Vigliani, F. (1954) Ricerche sperimentali sulla correlazione tra estensione del territorio di innervazione e grandezza e numero delle cellule gangliari del plesso mienterico (di Auerbach) nel cane. Riv. Patol. Nerv. Ment. 75:1–32.

    Google Scholar 

  • Fujita, S. (1974) DNA constancy in neurons of the human cerebellum and spinai cord as revealed by Feulgen cytophotometry and cytofluorometry. J. Comp. Neurol. 155:195–202.

    PubMed  CAS  Google Scholar 

  • Fukuda, M., Bòhm N., and Fujita, S. (1978) Cytophotometry and its biological application. In: Progress in histochemistry and cytochemistry, vol. II. Stuttgart: Gustav Fischer, pp. 1–119.

    Google Scholar 

  • Gabella, G. (1984) Size of neurons and glial cells in the intramural ganglia of the hypertrophic intestine of the guinea pig. J. Neurocytol. 13:73–84.

    PubMed  CAS  Google Scholar 

  • Gabella, G., and Gaia, E. (1967) La proliferazione cellulare nel plesso di Auerbach di ratto in accrescimento e in condizioni sperimentai. Boll. Soc. Ital. Biol. Sper. 43:1584–1586.

    PubMed  CAS  Google Scholar 

  • Gentilli, R. (1955) Ipertrofia e iperplasia delle cellule nervose del plesso mienterico (di Auerbach) nell’intestino ipertrofico in seguito a stenosi, nell’uomo. Boll. Soc. Piem. Chir. 25:13–25.

    Google Scholar 

  • Giacobini Robecchi, M.G., Cannas, M., and Filogamo, G. (1985) Increase in the number and volume of mysenteric neurons in the adult rat. Int. J. Dev. Neurosci. 6:673–676.

    Google Scholar 

  • Goldman, S.A., and Nottebohm, F. (1983) Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. USA 80:2390–2394.

    PubMed  CAS  Google Scholar 

  • Gorio, A., Carmignoto, G., and Ferrari, G. (1981) Axon sprouting stimulated by gangliosides: a new model for elongation and sprouting. In: Rapport, M.M., and Gorio, A. (eds.) Gangliosides in neurological and neuromuscular function, development and repair. New York: Raven, pp. 177–195.

    Google Scholar 

  • Graziadei, P.P.C., and Monti Graziadei, G.A. (1978) Continuous nerve cell renewal in the olfactory system. In: Jacobson, M. (ed.) Handbook of sensory physiology, vol. 9. New York: Springer, pp. 55–82.

    Google Scholar 

  • Graziadei, P.P.C., and Monti Graziadei, G.A. (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 8:1–18.

    PubMed  CAS  Google Scholar 

  • Greenough, W.T. (1975) Experiential modification of the developing brain. Am. Sci. 63:37–46.

    PubMed  CAS  Google Scholar 

  • Greenough, W.T., Juraska, J.M., and Volkmar, F.R. (1979) Maze training effects in dendritic branching in occipital cortex of adult rats. Behav. Neural Biol. 26:287–297.

    PubMed  CAS  Google Scholar 

  • Guth, L. (1974) Axonal regeneration and functional plasticity in the central nervous system. Exp. Neurol. 45:606–654.

    PubMed  CAS  Google Scholar 

  • Herman, C.J., and Lapham, L.W. (1969) Neuronal poliploidy and nuclear volumes in the cat central nervous system. Brain Res. 15:35–48.

    PubMed  CAS  Google Scholar 

  • Jacobson, M. (1978) Developmental neurobiology, 2nd edn. New York: Plenum.

    Google Scholar 

  • Kaplan, M.S. (1981) Neurogenesis in the 3-month-old rat visual cortex, J. Comp. Neurol. 195:323–338.

    PubMed  CAS  Google Scholar 

  • Kaplan, M.S., and Hinds, J.W. (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094.

    PubMed  CAS  Google Scholar 

  • Lapham, L.W. (1968) Tetrapolid DNA content of Purkinje neurons of human cerebellar cortex. Science 159:310–312.

    PubMed  CAS  Google Scholar 

  • Levi, G. (1946) Accrescimento e senescenza. Firenze: La Nuova Italia.

    Google Scholar 

  • Levi, G. (1954) Trattato di Istologia. Torino: Unione Tipografica Editrice.

    Google Scholar 

  • Lorenz, J. (1962) Observations comparatives sur l’innervation intramurale du cardia, du pylor et de la valvule iléo-coecale chez l’homme normal au cours de l‘äge. Z. Mikrosk. Anat. Forsch. 68:540–563.

    Google Scholar 

  • Lugaro, E. (1906) Sulla presunta rigenerazione autogena delle radici posteriori. Riv. Patol. Nerv. Ment. 11:8–19.

    Google Scholar 

  • Luria, S. (1935) La grandezza delle cellule nervose in animali ad accrescimento artificialmente arrestato. Riv. Patol. Nerv. Ment. 11:8–19.

    Google Scholar 

  • Lynch, G., and Cotman, C.W. (1975) The hippocampus as a model for studying anatomical plasticity in the adult brain. In: Issacson, R.L., and Pribram, K.H. (eds.) The hippocampus. New York: Plenum, pp. 123–154.

    Google Scholar 

  • Lynch, G., Rose, G., Gall, C., and Cotman, C.W. (1975) The response of dentate gyrus to partial deafferentation. In: Santini, M. (ed.) Golgi cenntennial symposium proceedings. New York: Raven, pp. 305–317.

    Google Scholar 

  • Macchi, G. (1985) Regeneration and plasticity in human central nervous system: anatomical clinical approaches. In: Bignami, A., Bloom, E.E., Bolis, C.L., and Adeloye A. (eds.) Central nervous system plasticity and repair. New York: Raven, pp. 107–114.

    Google Scholar 

  • Mann, D.M.A., and Yates, P.O. (1973) Poliploidy in the human nervous system. I. The DNA content of neurones and glia of the cerebellum. J. Neurol. Sci. 18:183–196.

    PubMed  CAS  Google Scholar 

  • Mares, V.L., Lodin, Z., and Sacha, J. (1973) A cytochemical and autoradiographic study of nuclear DNA in mouse Purkinje cells. Brain Res. 53:273–289.

    PubMed  CAS  Google Scholar 

  • Marinesco, N. (1907) Quelques recherches sur la transplantation des ganglions nerveux. Rev. Neurol. 6:17–36.

    Google Scholar 

  • Mcllwain, D.L., and Capps-Covey, P. (1976) The nuclear DNA content of large ventral spinal neurons. J. Neurochem. 27:109–112.

    Google Scholar 

  • Milliams, R., and Lynch, G. (1978) Terminal proliferation and synaptogenesis following partial deafferentiation: the reinnervation of the inner molecular layer of the dentate gyrus following removal of its commissural afferents. J. Comp. Neurol. 180:581–616.

    Google Scholar 

  • Milliams, R., and Lynch, G. (1979) Terminal proliferation in the partially deafferented dentate gyrus: time course for the appearance and removal of degeneration and the replacement of lost terminals. J. Comp. Neurol. 187:191–198.

    Google Scholar 

  • Messier, B., and Leblond. C.P. (1960) Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am. J. Anat. 106:247–285.

    PubMed  CAS  Google Scholar 

  • Meyer, H. (1938) Nenere Beobachtungen bei der Züchtung von Rautenhirn-Explantaten aus hünerembryonen vorgerückter Stadien. Riv. Biol. 26:1–11.

    Google Scholar 

  • Meyer, H., and Jablonsky, W. (1938) Coltivazione protratta di cellule nervose in vitro. Monit. Zool. Ital 48:70–73.

    Google Scholar 

  • Milone, S. (1923) La frequenza delle divisioni mitotiche negli elementi del midollo spinale embrionale di animali di differente mole corporea. Arch. Ital. Anat. Embriol. 20:417–432.

    Google Scholar 

  • Miura, M. (1913) Aus notizien meiner phisiologischen und patologischen forschung: XXVI. muscularis mucosae et muscularis propria gastrointestinalis. Toko: Nakodo.

    Google Scholar 

  • Morpurgo, B. and Tirelli, V. (1892) Sullo sviluppo dei gangli intervetebrali del coniglio. Ann. Fren. Sci. Affini 3:1–32.

    Google Scholar 

  • Moulton, D.G., Celebi, G., and Fink, R.P. (1970) Olfaction in mammals: proliferation of cells in the olfactory epithelium and sensitivity to odours in taste and smell in vertebrates. In: Wolstenholme, G.E.W., and Knight, J. (eds.) Ciba foundation simposium. London: Churchill.

    Google Scholar 

  • Murakami, F., Katsumaru, H., Saito, K., and Tsukahara, N. (1982) A quantitative study of synaptic reorganization in red nucleus neurons after lesion of the nucleus interpositus of the cat: an electron microscopic study involving intracellular injection of horseradish peroxidase. Brain Res. 242:41–53.

    PubMed  CAS  Google Scholar 

  • Nageotte, J. (1907) Etude sur la greffe des ganglions rachidiens. Anat. Anz. 31:225–245.

    Google Scholar 

  • Noetzel, J., and Rox, J. (1964) Autoradiographische Untersuchungen über Zellteilung und Zellentwicklung im Gemhirn der erwachsenen Maus und der erwachsenen Rhesus-affen nach Injection von radioakitivim Thymidin. Acta Neuropathol. 3:326–342.

    PubMed  CAS  Google Scholar 

  • Novàkovà, V., Sandritter, W., and Schlueter, G. (1970) DNA content of neurons in rat central nervous system. Exp. Cell Res. 60:454–456.

    PubMed  Google Scholar 

  • Olivo, O., and Gangliano, R. (1926) Modificazioni di forma e di grandezza delle cellule piramidali della circonvoluzione centrale anteriore umana durante l’accrescimento somatico. Boll. Soc. Ital. Biol. Sper. 1:111–114.

    Google Scholar 

  • Olivo, O., Porta, E., and Barberis, L. (1932) Ricerche sulla velocità di accrescimento delle cellule e degli organi. IV. Modalità di accrescimento delle cellule dei gangli spinali nel pollo durante la vita embrionale e postnatale. Arch. Ital. Anat. 30:34–71.

    Google Scholar 

  • Oppenheim, R.W. (1981) Neuronal cell death and some related regressive phenomena during neurogenesis: a selective historical review and progress report. In: Cowan, W.M. (ed.) Studies in developmental neurobiology. New York: Oxford Unviersity Press, pp. 74–133.

    Google Scholar 

  • Paton, J.A., and Nottebohm, F.N. (1984) Neurons generated in the adult brain are recruited into functional circuits. Science 225:1046–1048.

    PubMed  CAS  Google Scholar 

  • Penfield, W. (1932) Neuroglia: normal and pathological. In: Penfield, W. (ed.) Cytology and cellular pathology of the nervous system. New York: Hoeber, pp. 423–479.

    Google Scholar 

  • Perroncito, A. (1905) La rigenerazione delle fibre nervose. Boll. Soc. Med. Chir. Pavia 3:15–27.

    Google Scholar 

  • Picard, D. and Chambost, M. (1953) Les cellules de remplacement dans le système nerveux vegetatif et les Paraganglions: observations sur les formations nerveuses intrasurrénaliennes. Arch. Anat. Microsc. Morphol. Exp. 42:86–101.

    Google Scholar 

  • Pilad, L. (1938) Statistische Untersuchungen über das Wachstum der Nervenzellen der menschlichen Spinal Ganglien. Mikrosk. Anat. Forsh. 44:1–44.

    Google Scholar 

  • Purvs, D, and Hadley, R.D. (1985) Changes in the dendritic branching of adult mammalian neurons revealed by repeated imaging in situ. Nature 315:404–406.

    Google Scholar 

  • Rakic, P. (1985) Limits of neurogenesis in primates. Science 227:1054–1056.

    PubMed  CAS  Google Scholar 

  • Rio-Hortega, P. (1918) Particularidades histológicas de la fascia dentate en algunos mamiferos. Trab. Lab. Invest. Biol. 21:291–308.

    Google Scholar 

  • Samanen, D.W., and Forbes, W.B. (1984) Replication and differentiation of olfactory receptor neurons following axotomy in the adult hamster: a morphometric analysis of postnatal neurogenesis. J. Comp. Neurol. 225:201–211.

    PubMed  CAS  Google Scholar 

  • Schiessinger, A.R., Cowan, W.M., and Gottlieb, D.I. (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate girus of the rat. J. Comp. Neurol. 159:149–175.

    Google Scholar 

  • Schofield, G.C. (1962) Experimental studies on the myenteric plexus in mannals. J. Comp. Neurol. 119:159–185.

    PubMed  CAS  Google Scholar 

  • Sladek, J.R. (1983) Aging of central neuropeptide systems. Psychopharmacol. Bull. 19:317–320.

    Google Scholar 

  • Slavich, E. (1932) Confronti fra la morfologia di gangli del parasimpatico encefalico e del simpatico cervicale con speciale riguardo alla struttura del ganglio ciliare. Z. Zellforsch. 15:687–730.

    Google Scholar 

  • Smart, I. (1961) The subsependimal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection. J. Comp. Neurol. 116:325–348.

    Google Scholar 

  • Smart, I., and Leblond, C.P. (1961) Evidence for division and transformations of neuroglia cells in the mouse brain, as derived for radioautography after injection of thymidine-H3. J. Comp. Neurol. 116:349–367.

    Google Scholar 

  • Smith, D.O. (1982) Physiological and structural changes of the neuromuscular junctions during aging. In: Giacobini, E., Filogamo, G., Giacobini, G., and Vernadakis, A. (eds.) The aging brain: cellular and molecular mechanisms of aging in the central nervous system. New York: Raven, pp. 123–137.

    Google Scholar 

  • Sotelo, C., and Palay, S.L. (1971) Altered axons and axon terminals in the lateral vestibular nucleus of the rat. Lab. Invest. 25:635–671.

    Google Scholar 

  • Sthör, P. (1957) Die Innervation des Dünndorrms. In: Mikroskopische Anatomie des vegetativen Nervensystems. Berlin: Springer, p. 373.

    Google Scholar 

  • Swartz, F.J., and Bathnagar, K.P. (1981) Are CNS neurons polyploid? A critical analysis based upon cytophotometric study of the DNA content of cerebellar and olfactory neurons of the bat. Brain Res. 208:267–281.

    PubMed  CAS  Google Scholar 

  • Tello, F. (1923) Les différenciations neuronales dans l, embryon de poulet, pendant les premiers jours d’incubation. Tab. Lab. Invest. Biol. 21:1–93.

    Google Scholar 

  • Terni, T. (1919) Sulla correlazione fra ampiezza del territorio di innervazione e grandezza delle cellule gangliari. 2. Ricerche sui gangli spinali che innervano la coda rigenerata nei sauri (Gongylus ocellatus). Arch. Ital. Anat. Embriol 17:507–544.

    Google Scholar 

  • Terni, T. (1922) Ricerche istologiche sul midollo spinale dei rettili, con particolare riguardo ai componenti spinali del fascicolo longitudinale mediale. Arch. Ital. Anat. Embriol 18:183–243.

    Google Scholar 

  • Varon, S., and Manthorpe, M. (1985) In vitro models for neuroplasticity and repair. In: Bignami, A., Bloom, E.E., Bolis, C.L., and Adeloye, A. (eds.) Central nervous system plasticity and repair. New York: Raven, pp. 13–23.

    Google Scholar 

  • Weiss, P.A. (1968) Dynamics of development: experiments and inferences. New York: Academic Press.

    Google Scholar 

  • Vernadakis, A., Parker, K., Arnold, E.B., and Noremberg, M. (1982) Role of glial cells in central nervous system again. In: Giacobini, E., Filogamo, G., Giacobini, G., and Vernadakis, A. (eds.) The aging brain: cellular and molecular mechanisms of aging in the nervous system.

    Google Scholar 

  • Warwick, R., and Williams, P. (1973) Gray’s anatomy, 35th edn. Philadelphia: W.B. Saunders.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Filogamo, G. (1987). Neuronal Modulation by Number and by Volume: A Review and Critical Analysis. In: Vernadakis, A., Privat, A., Lauder, J.M., Timiras, P.S., Giacobini, E. (eds) Model Systems of Development and Aging of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2037-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2037-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9212-8

  • Online ISBN: 978-1-4613-2037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics