Skip to main content

In Vitro Model of Neuronal Aging and Development in the Nervous System

  • Chapter
Model Systems of Development and Aging of the Nervous System

Abstract

There is ample support for the hypothesis that free radical molecules play a major role in aging (Harman, 1981; Pryor, 1984; Packer, 1984; Cutler, 1985). This is also true for the pathological changes associated with aging brain (Agranoff, 1984; Cutler, 1985) although the bulk of studies on free radical processes in the nervous system have focused on acute neural tissue injury (Demopoulos et al., 1979; Naftchi and Gennaro, 1985; Willmore et al., 1983; Chan et al., 1984; Anderson and Means, 1985; Anderson et al., 1985). Although the relative contributions of the different components of auto-oxidation events are not fully resolved at the chemical level [see Aust et al. (1985) and Halliwell and Gutteridge (1985) for two views], there is little doubt that lipid peroxidation events, irrespective of the sources of catalysis, and endogenous levels of “scavenging enzymes” are predictive of pathological consequences. Given the cellular heterogeneity and level of intercellular communication peculiar to the nervous system, there are advantages to the development and use of an in vitro system where pertinent variables can be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agranoff, B.W. (1984) Lipid peroxidation and membrane aging. Neurobiol. Aging 5:337–338.

    Article  CAS  Google Scholar 

  • Anderson, D.K., and Means, E.D. (1985) Iron-induced lipid peroxidation in spinal cord: protection with mannitol and methyl predmisolone, Free Radicals Biol. Med. 1:59–64.

    Article  CAS  Google Scholar 

  • Anderson, R.E., Maude, M.B., and Nielsen, J. C. (1985) Effect of lipid peroxidation on rhodop-sin regeneration. Curr. Eye Res. 4:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Angeletti, P.U., and Levi-Montalcini, R. (1970) Cytolytic effect of 6-hydroxydopamine on neuroblastoma cells. Cancer Res. 30:2863–2869.

    PubMed  CAS  Google Scholar 

  • Aust, S.D., Morehouse, L.A., and Thomas, C.E. (1985) Role of metals in oxygen radical reactions. J. Free Radicals Biol. Med. 1:3–25.

    Article  CAS  Google Scholar 

  • Biedler, J.L., Roffler-Tarlow, S., Schachner M., and Freedman, L.S. (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38:3751–3757.

    PubMed  CAS  Google Scholar 

  • Bradshaw, R.A., Dunbar, J.C., Isackson, P.J., Kouchalakos, R.N., and Morgan, C.J. (1985) Nerve growth factor: mechanism of action. In: Ford, R.J., and Maizel, A.L. (eds.) New York: Raven.

    Google Scholar 

  • Calissano, P., Cattaneo, A., Biocca, S., Aloe, L., Mercanti, D., and Levi-Montalcini, R. (1984) The nerve growth factor established findings and controversial aspects. Exp. Cell Res. 154:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Chan, P.H., Schmidley, J.W., Fishman, R.A., and Longar, S.M. (1984) Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34:315–320.

    PubMed  CAS  Google Scholar 

  • Cohen, G., and Heikkila, R.E. (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J. Biol. Chem. 249:2447–2452.

    PubMed  CAS  Google Scholar 

  • Cutler, R.G. (1985) Peroxide-producing potential of tissues: inverse correlation with longevity of mammalian species. Proc. Natl. Acad. Sci. USA 82:4798–4802.

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos, H.B., Flamm, E.S., Seligman, M.L., Mitamura, J. A., and Ransohoff, J. (1979) In: Popp, A.J., et al. (eds.) Neural rauma. New York: Raven, pp. 63–78.

    Google Scholar 

  • Fridovich, I. (1972) Superoxide radical and superoxide dismutase. Accounts Chem. Res. 5:321–326.

    Article  CAS  Google Scholar 

  • Haber, F., and Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by ion salts. Proc. R. Soc. Lond. [A] 147:332.

    Article  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, M.C. (1985) Oxygen radicals and the nervous system. TINS 8:22–26.

    CAS  Google Scholar 

  • Hamburger, V., and Oppenheim, R.W. (1982) Naturally occurring neuronal death in vertebrates. Neurosci. Comment. 1:39–55.

    Google Scholar 

  • Harman, D. (1981) The aging process. Proc. Natl. Acad. Sci. USA 78:7124–7128.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Heumann, R., and Schwab, M. (1985) Nerve growth factor increases choline acetyl-transferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neruoscience 14:55–68.

    Article  CAS  Google Scholar 

  • Heikkila, R., and Cohen, G. (1971) Inhibition of biogenic amine uptake by hydrogen peroxide: a mechanism for toxic effects of 6-hydroxydopamine. Science 172:1257–1258.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, I. A. (1975) The response of adrenergic neurones to axotomy and nerve growth factor. Brain Res. 94:87–97.

    Article  PubMed  CAS  Google Scholar 

  • Hulsebosch, C.E., Coggeshall, R.E., and Perez-Polo, J. R. (1984) Effects of nerve growth factor and its antibodies on sprouting of sensory axons following spinal cord hemisection. Brain Res. 232:1–10.

    Article  Google Scholar 

  • Kuramoto, T., Perez-Polo, J.R., and Haber, B. (1977) Membrane properties of a human neuroblastoma. Neurosci. Lett. 4:151–159.

    Article  PubMed  Google Scholar 

  • Kuramoto, T., Werrbach-Perez, K., Perez-Polo, J.R., and Haber, B. (1981) Membrane properties of a human neuroblastoma II. Effects of differentiation. J. Neurosci. Res. 6:441–449.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R. (1982) Developmental neurobiology and the natural history of nerve growth factor. Annu. Rev. Neurosci. 5:341–362.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R. (1983) The nerve growth factor-target cell interaction: a model system for the study of directed axonal growth and regeneration.

    Google Scholar 

  • Levi-Montalcini, R., Aloe, L., Muganini, E., Oesch, F., and Thoenen, H. (1975) Nerve growth factor induces volume increase and enhances tyrosine hydroxylase synthesis in chemically axotomized sympathetic ganglia of newborn rats. Proc. Natl. Acad. Sci. USA 72:595–599.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, C.R., Stach, R.W., and Perez-Polo, J.R. (1983) Binding constants of isolated NGF-receptors from different species. Biochem. Biophys. Res. Commun. 115:368–374.

    Article  PubMed  CAS  Google Scholar 

  • Naftchi, N.E., and Gennaro, J.F. (1985) Prevention of damage in acute spinal cord injury by peptides and pharmacologic agents. Peptides 3:235–247.

    Article  Google Scholar 

  • O’Neil, S.P. (1972) Inactivation of immobiolized catalase by hydrogen peroxide in continuous reactors. Biotechnol. Bioeng. 14:201–205.

    Article  Google Scholar 

  • Packer, L. (1984) Oxygen radicals in biological systems Methods Enzymol. 105.

    Google Scholar 

  • Perez-Polo, J.R. (1985) Neuronotrophic factors. In: Bottenstein, J.E., and Sato, G. (eds.) Cell culture in the neurosciences. New York: Plenum.

    Google Scholar 

  • Perez-Polo, J.R., and Haber, B. (1983) Neuronotorphic interactions. Clin. Neurosci. 5:37–51.

    Google Scholar 

  • Perez-Polo, J.R., Werrbach-Perez, K., and Tiffany-Castiglioni, E. (1979) A human clonal line model of differentiating neurons. Dev. Biol. 71:341–355.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Polo, J.R., Tiffany-Castinglioni, E., Ziegler, M., and Werrbach-Perez, K. (1982) Effect of neurve growth factor on catecholamine metabolism in a human neuroblastoma clone (SYSY). Dev. Neurosci. 5:418–423.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Polo, J.R., Tiffany-Castiglioni, E., and Werrbach-Perez, K. (1983) Model clonal system for study of neuronal cell injury. Birth Defects 19:201–220.

    PubMed  CAS  Google Scholar 

  • Pryor, W. A. (1984) Free radicals in biology. In: Pryor, W.A. (ed.). New York: Academic Press, 5.

    Google Scholar 

  • Recio-Pinto, E., and Ishii, D.N. (1984) Effects of insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res. 320:323–334.

    Article  Google Scholar 

  • Sachs, C., and Jonsson, G. (1973) Changes in central noradrenaline neurons after systemic 6-hydroxydopamine administration. J. Neurochem. 21:1517–1524.

    Article  PubMed  CAS  Google Scholar 

  • Saner, A., and Thoenen, H. (1970) Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol. Pharmacol. 7:147–154.

    Google Scholar 

  • Schulze, I., and Perez-Polo, J.R. (1982) Nerve growth factor and cyclic AMP: opposite effects on neuroblastoma-substrate adhesion. J. Neurosci. Res. 8:393–411.

    Article  PubMed  CAS  Google Scholar 

  • Slater, T.F. (1984) Free-radical mechanisms in tissue injury. Biochem. J. 222:1–15.

    PubMed  CAS  Google Scholar 

  • Sonnenfeld, K.H., and Ishii, D.N. (1982) Nerve growth factor effects and receptors in cultured human neuroblastoma cell lines. J. Neurosci. Res. 8:375–391.

    Article  PubMed  CAS  Google Scholar 

  • Stein, D.G., and Will, B.E. (1983) Nerve growth factor produces a temporary facilitation of recovery from entorhinal cortex lesions. Brain Res. 261:127–131.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H., and Edgar, D. (1985) Neurotrophic factors. Science 229:238–242.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H., and Tranzer, J.P. (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Arch. Pharmakol. Exp. Pathol. 261:271–288.

    CAS  Google Scholar 

  • Tiffany-Castiglioni, E., and Perez-Polo, J.R. (1979) The role of nerve growth factor in vitro in cell resistance to 6-hydroxydropamine toxicity. Exp. Cell Res. 121:179–189.

    Article  PubMed  CAS  Google Scholar 

  • Tiffany-Castiglioni, E., and Perez-Polo, J.R. (1980) Evaluation of methods for determining 6-hydroxydopamine cytotoxicity. In Vitro 16:591–599.

    Article  CAS  Google Scholar 

  • Tiffany-Castiglioni, E., and Perez-Polo, J.R. (1981) Stimulation of resistance to 6-hydroxydopamine in a human neuroblastoma cell line by nerve growth factor. Neurosci. Lett. 26: 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Tiffany-Castiglioni, E., Saneto, R.P., Proctor, P.H., and Perez-Polo, J.R. (1982) Participation of active oxygen species in 6-hydroxydopamine toxicity to a human neuroblastoma cell line. Biochem. Pharmacol. 31:181–188.

    Article  PubMed  CAS  Google Scholar 

  • Unsicker, K., Millar, T.J., Muller, T.H., and Hofmann, H.D. (1985) Embryonic rat adrenal glands in organ culture: effects of dexasmethasone, nerve growth factor and its antibodies on pheochromoblast differentiation. Cell Tissue Res. 241:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Varon, S., Manthorpe, M., and Williams, L.R. (1983/84) Neuronotrophic and neurite-promoting factors and their clinical potentials. Dev. Neurosci. 6:73–100.

    Article  Google Scholar 

  • West, G.J., Uki, J., Herschman, H.R., and Seeger, R.C. (1976) Adrenergic, cholinergic, and inactive human neuroblastoma cell lines with the action-potential Na ionophore. Cancer Res. 37:1372–1376.

    Google Scholar 

  • Willmore, L.J., Hiramatsu, M., Kochi, H., and Mori, A. (1983) Formation of superoxide radicals after FeCI3 injection into rat isocortex. Brain Res. 277:393–396.

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B.A., and Shooter, E.M. (1982) The biology and mechanism of action of nerve growth factor. Annv. Rev. Biochem 51:845–868.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Perez-Polo, R., Werrbach-Perez, K. (1987). In Vitro Model of Neuronal Aging and Development in the Nervous System. In: Vernadakis, A., Privat, A., Lauder, J.M., Timiras, P.S., Giacobini, E. (eds) Model Systems of Development and Aging of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2037-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2037-1_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9212-8

  • Online ISBN: 978-1-4613-2037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics