Skip to main content

Metabolic Regulation in Brain Cells

  • Chapter

Abstract

Recent studies of metabolic regulation in brain have focused on the complexity and fine-tuning involved in the control of metabolic processes. Gaps in our knowledge are rapidly being filled as previously unidentified “factors” are purified and characterized, new compounds are identified, and new functions for familiar compounds are discovered. Often new information is obtained initially from tests of substances that support survival and growth of neural tissue in vitro, and the mechanisms involved are not fully investigated until much later. Such studies also have revealed the importance of cell-cell interactions (Mandel et al., 1977; Seeds and Hawkins, 1985), and several workers have identified specific metabolic processes involved in these exchanges (Cummins et al., 1979; Hertz, 1979; Pentreath and Kai-Kai, 1982; Sykora, 1983; Hertz and Richardson, 1984). Different factors seem to be involved in central nervous system (CNS) and peripheral nervous system (PNS) (Seifert and Muller, 1984). However, nerve growth factor (NGF), which is essential for the survival, both in vivo and in vitro, of sympathetic and sensory neurons (Levi-Montalcini and Angeletti, 1968) may also have a role in brain (Honegger and Lenoir, 1982). The proposed mechanisms of the neurotrophic action of NGF (and of some new putative growth factors) were recently reviewed by Thoenen and Edgar (1985). Kauffman and coworkers have begun to identify some of the specific metabolic alterations that accompany the growth effect of NGF on the superior cervical ganglion (Dumbrowski et al., 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akuzawa, K., and Wakabayashi, K. (1985) A serum-free culture of the neurons in the septal, preoptic, and hypothalamic region: effects of triiodothyronine and estradiol. Endocrinology (Jpn.) 32:163–173.

    CAS  Google Scholar 

  • Atterwill, C.K., Atkinson, D.J., Bermudez, I., and Balazs, R., (1985) Effect of thyroid hormone and serum on the development of Na+, K+-adenosine triphosphatase and associated ion fluxes in cultures from rat brain. Neuroscience 14:361–373.

    PubMed  CAS  Google Scholar 

  • Balazs, R., Lewis, P.D., and Patel, A.J. (1975) Effects of metabolic factors on brain development. In: Brazier, M.A.B. (ed.) Growth and development of the brain. New York: Raven, pp. 83–115.

    Google Scholar 

  • Betz, A.L., Gilboe, D.D., Yudilevich, D.L., and Drewes, L.R. (1973) Kinetics of undirectional glucose transport into the isolated dog brain. Am. J. Physiol. 225:586–592.

    PubMed  CAS  Google Scholar 

  • Bhat, N.R., Subba, Rao, G., and Pieringer, R.A. (1981) Investigations on myelination in vitro: regulation of sulfolipid synthesis by thyroid hormone in cultures of dissociated brain cells from embryonic mice. J. Biol. Chem. 256:1167–1171.

    PubMed  CAS  Google Scholar 

  • Brookes, N., and Yarowsky, P.J. (1985) Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump. J. Neurochem. 44:473–479.

    PubMed  CAS  Google Scholar 

  • Chacon, M., and Tildon, J. T. (1981) Elevated levels of triiodothyronine (T3) in victims of SIDS. J. Pediatr. 99:758–761.

    PubMed  CAS  Google Scholar 

  • Chapman, A.G., Meldrum, B.B., and Siesjo, B.K. (1977) Cerebral metabolic changes during prolonged epileptic seizures in rats. J. Neurochem. 28:1025–1035.

    PubMed  CAS  Google Scholar 

  • Clark, D.W., Boyd, F.T., Jr., Kappy, M.S., and Raizoda, M.K. (1984) Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glial cells from rat brain. J. Biol. Chem. 259:11672–11675.

    Google Scholar 

  • Cremer, J.E. (1981) Nutrients for the brain: problems in supply. Early Hum. Dev. 5:117–132.

    PubMed  CAS  Google Scholar 

  • Cummins, C.J., Glover, R.A., and Sellinger, O.Z. (1979) Neuronal cues regulate uptake in cultured astrocytes. Brain Res. 170:190–193.

    PubMed  CAS  Google Scholar 

  • Cushman, S.W., Wardzala, L.J., Simpson, I.A., Karnieli, E., Hissin, P.J., Wheeler, T.J., Hinkle, P.C., and Salans, L.B. (1984) Insulin-induced translocation of intracellular glucose transporters in the isolated rat adipose cell. Fed. Proc. 443:2251–2255.

    Google Scholar 

  • Daniel, P.M., Love, E.F., and Pratt, O.E. (1975) Insulin and the way the brain handles glucose. J. Neurochem. 25:471–476.

    PubMed  CAS  Google Scholar 

  • Daval, J.L., Louis, J.C., Gerard, M.J., and Vincendon, G. (1983) Influence of adrenocorticotropic hormone on the growth of isolated neurons in culture. Neurosci. Lett. 36:99–304.

    Google Scholar 

  • de Vellis, J., McGinnis, J.F., Breen, G.A.M., Leveille, R., Bennett, K., and McCarthy, K. (1977) Hormonal effects on differentiation in neural cultures. In: Federoff, S., and Hertz, L. (eds.) Cell, tissue and organ cultures in neurobiology. New York: Academic Press, pp. 485–511.

    Google Scholar 

  • Diamond, I., and Fishman, R.A. (1973) High affinity transport of 2-deoxyglucose in isolated synaptic nerve endings. Nature (Lond.) 242:122–123.

    CAS  Google Scholar 

  • Dierks-Ventling, C. (1971) Prenatal induction of ketone body enzymes in rat. Biol. Neonate 19:426–433.

    PubMed  CAS  Google Scholar 

  • Dierks-Ventling, C., and Cone, A.L. (1971) Acetoacetyl-coenzyme A thiolase in brain, liver, and kidney during maturation of rat. Science 172:380–383.

    PubMed  CAS  Google Scholar 

  • Draves, D.J., and Timiras, P.S. (1980) Thyroid hormone effects in neural (tumor) cell culture: differential effects on triiodothyronine nuclear receptors Na+-K+-ATPase activity and intracellular electrolyte levels. In: Ciacobini, E., Vernadakis, A., and Shahar, A. (eds.) Tissue culture in neurobiology. New York: Raven, pp. 291–301.

    Google Scholar 

  • Dumbrowski, A.M., Jerkins, A., and Kauffman, F.C. (1983) Muscarinic receptor binding and oxidative enzyme activities in the adult rat superior cervical ganglion: effects of 6-hydroxy-dopamine and nerve growth factor. J. Neurochem. 3:1963–1970.

    Google Scholar 

  • Frank, H.J., and Pardridge, W.M. (1981) A direct in vitro demonstration of insulin binding to isolated brain microvessels. Diabetes 30:557–561.

    Google Scholar 

  • Garland, P.B. (1964) Some kinetic properties of pig-heart oxoglutarate dehydrogenase that provide a basis for metabolic control of the enzyme activity and also a stoichiometric assay for coenzyme A in tissue extracts. Biochem. J. 92:10c-12c.

    PubMed  CAS  Google Scholar 

  • Gjedde, A., and Crone, C. (1975) Induction processes in blood brain transfer of ketone bodies during starvation. Am. J. Physiol. 229:1165–1169.

    PubMed  CAS  Google Scholar 

  • Haussinger, D., Gerok, W., and Sies, H. (1982) Inhibition of pyruvate dehydrogenase during the metabolism of glutamine and proline in hemoglobin-free perfused rat liver. Eur. J. Biochem. 126:69–76.

    PubMed  CAS  Google Scholar 

  • Havrankova, J., Roth, J., and Brownstein, M. (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829.

    PubMed  CAS  Google Scholar 

  • Havrankova, J., Brownstein, M., and Roth, J. (1981) Insulin and insulin receptors in rodent brain. Diabetologia 20:268–273.

    PubMed  CAS  Google Scholar 

  • Hawkins, R.A., and Biebuyck, J.F. (1979) Ketone bodies are selectively used by individual brain regions. Science 205:325–327.

    PubMed  CAS  Google Scholar 

  • Hawkins, R.A., Williamson, D.H., and Krebs, H.A. (1971) Ketone body utilization by adult and suckling rat brain in vivo. Biochem. J. 122:113–118.

    Google Scholar 

  • Hernandez, M.J., Vanmucci, R.C., Salcedo, A., and Brennan, R.W. (1980) Cerebral blood flow and metabolism during hypoglycemia in newborn dogs. J. Neurochem. 35:622–628.

    PubMed  CAS  Google Scholar 

  • Hertz, L. (1978) Energy metabolism in glial cells. In: Schoffeniels, E., Franck, G., Hertz, L., and Tower, D.B. (eds.) Dynamic properties of glial cells. New York: Pergamon, pp. 121–132.

    Google Scholar 

  • Hertz, L. (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitter. Prog. Neurobiol. 13:277–323.

    PubMed  CAS  Google Scholar 

  • Hertz, L., and Richardson, J.S. (1984) Is neuropharmacology merely the pharmacology of neurons—or are astrocytes important too? Trends Pharmacol. 5:272–276.

    CAS  Google Scholar 

  • Hertz, L., Juurlink, B.H.J., Fosmark, H., and Schousbot, A. (1982) Astrocytres in primary culture. In: Pfeiffer, S.E. (ed.) Neuroscience approached through cell culture.

    Google Scholar 

  • Hertz, M.M., Paulson, O.B., Barry, D.I., Christiansen, J.S., and Svendsen, P.A. (1981) Insulin increases glucose transfer across the blood-brain barrier in man. J. Clin. Invest. 67:597–604.

    PubMed  CAS  Google Scholar 

  • Hoeben, R.C., Koper, J.W., and Lopes-Cardozo, M. (1985) Hormonal regulation of oligodendrocyte differentiation and sulfolipid synthesis in glial cell cultures. J. Neurochem. 44:S57D.

    Google Scholar 

  • Honegger, P., and Lenoir, D. (1980) Triiodothyronine enhancement of neuronal differentiation in aggregating fetal rat brain cells in a chemically defined medium. Brain Res. 199:425–434.

    PubMed  CAS  Google Scholar 

  • Honegger, P., and Lenoir, D. (1982) Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev. Brain Res. 3:229–238.

    CAS  Google Scholar 

  • Itoh, T., and Quastel, J.H. (1970) Acetoacetate metabolism in infant and adult rat brain in vitro. Biochem. J. 116:641–655.

    CAS  Google Scholar 

  • Iverson, L.L. (1984) Amino acids and peptides: fast and slow chemical signals in the nervous system? Proc. R. Soc. Lond. [B]221:245–260.

    Google Scholar 

  • Jolles, J., Zwiers, H., Dekker, A., Wirtz, K.W.A., and Gispen, W.H. (1981) Corticotropic-(l-24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Biochem. J. 194:283–291.

    PubMed  CAS  Google Scholar 

  • Kaufman, L.M., and Barrett, J.N. (1983) Serum factor supporting long-term survival of rat central neurons in culture. Science 220:1394–1396.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H.K. (1983) Primary astrocyte cultures: a key to astrocyte function. Cell. Mol. Neurobiol. 3:1–16.

    PubMed  CAS  Google Scholar 

  • Koenig, H., Fan, C.-C., and lqbal, Z. (1984) Polyamines mediate T3 stimulation of Ca2+ influx and membrane transport. Trans. Am. Soc. Neurochem. 15:220.

    Google Scholar 

  • Kono, T. (1984) Translocation hypothesis of insulin action on glucose transport. Fed. Proc. 43:2256–2257.

    PubMed  CAS  Google Scholar 

  • Kuffler, S.W., and Nichols, J.G. (1966) The physiology of neuroglial cells. Ergebn. Physiol. Biol. Chem. Exp. Pharmakol. 57:1–90.

    CAS  Google Scholar 

  • Leonard, J.L., Kaplan, M.M., Visser, T.J., Silva, J.E., and Larsen, P.R. (1981) Cerebral cortex responds rapidly to thyroid hormones. Science 214:572–573.

    Google Scholar 

  • Levi-Montalcini, R., and Angeletti, P. (1968) Nerve growth factor. Physiol. Rev. 48:534–569.

    PubMed  CAS  Google Scholar 

  • Mandel, P., Ciesielski-Treska, J., and Stefanovic, V. (1977) Neuroblast-glioblast interactions: ecto-enzymes. In: Federoff, S., and Hertz, L. (eds.) Cell, tissue and organ cultures in neurobiology. New York: Academic Press, pp. 593–615.

    Google Scholar 

  • Manthorpe, M., Longo, F.M., and Varon, S. (1982) Comparative features of spinal neuronotrophic facrs in fluids collected in vitro and in vivo. J. Neurosci. Res. 8:241–250.

    PubMed  CAS  Google Scholar 

  • Miller, A.L., Kiney, C.A., Corddry, D.H., and Staton, D.M. (1982) Interactions between glucose and ketone body use by developing brain. Dev. Brain Res. 4:443–450.

    CAS  Google Scholar 

  • Monard, D., Solomon, F., Rentsch, M., and Gysin, R. (1973) Glial-induced morphological differentiation in neuroblastoma cells. Proc. Natl. Acad. Sci. USA 70:1894–1897.

    PubMed  CAS  Google Scholar 

  • Morrison, R.S., and de Vellis, J. (1984) Preparation of a chemically defined medium for purified astrocytes. In: Barnes, D.W., Sirbasku, D.A. and Sato, T.H. (eds.) Methods for serum-free culture of neuronal and lymphoid cells. New York: Alan R. Liss, pp. 15–22.

    Google Scholar 

  • Nelson, P.G. (1977) Neuronal cell lines. In: Federoff, S., and Hertz, L. (eds.) Cell, tissue and organ cultures in neurobiology, New York: Academic Press, pp. 347–365.

    Google Scholar 

  • Nelson, S.R., Schulz, D.W., Passonneau, J.V., and Lowry, O.H. (1968) Control of glycogen levels in brain. J. Neurochem. 15:1271–1279.

    PubMed  CAS  Google Scholar 

  • Oppenheimer, J.H. Schwartz, H.L., Surks, M.I., Koerner, D.H., and Dillman, W.H. (1976) Nuclear receptors and initiation of thyroid hormone action. Recent Prog. Horm. Res. 32:529–565.

    PubMed  CAS  Google Scholar 

  • Ozand, P.T., Stevenson, J.H., Tildon, J.T., and Cornblath, M. (1975a) Effects of hyperketonemia on glycolytic intermediates in developing rat brain. J. Neurochem. 25:61–65.

    PubMed  CAS  Google Scholar 

  • Ozand, P.T., Stevenson, J.H., Tildon, J.T., and Cornblath, M. (1975b) Effects of hyperketonemia on glutamate and glutamine metabolism in developing rat brain. J. Neurochem. 25:67–71.

    PubMed  CAS  Google Scholar 

  • Ozand, P.T., and Tildon, J.T. (1983) Alterations of catecholamine enzymes in several brain regions of victims of sudden infant death syndrome. Life Sci. 32:1765–1770.

    PubMed  CAS  Google Scholar 

  • Page, M.A., Krebs, H.A., and Williamson, D.H. (1971) Activities of enzymes of ketone body utilization in brain and other tissues of suckling rats. Biochem. J. 121:49–53.

    PubMed  CAS  Google Scholar 

  • Pardridge, W.M. (1981) Transport of protein-bound hormones into tissues in vivo. Endocr. Rev. 2:103–123.

    PubMed  CAS  Google Scholar 

  • Pardridge, W.M. (1983) Neuropeptides and the blood brain barrier. Annu. Rev. Physiol. 45:73–82.

    PubMed  CAS  Google Scholar 

  • Patel, M.S. (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J. Neurochem. 22:717–724.

    PubMed  CAS  Google Scholar 

  • Pentreath, V.W., and Kai-Kai, M.A. (1982) Significance of the potassium signal from neurones to glial cells. Nature 295:59–61.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, S.E., Betschart, B., Cook, J., Mancini, P., and Morris, R. (1977) Glial cell lines. In: Federoff, S., and Hertz, L. (eds.) Cell, tissue and organ cultures in neurobiology. New York: Academic Press, pp. 287–346.

    Google Scholar 

  • Pleasure, D., Lichtman, C., Eastman, S., Lieb, M., Abramsky, O., and Silberberg, D. (1979) Acetoacetate and D(–)-beta-hydroxybutyrate as precursors for sterol synthesis by calf oligodendrocytes in suspension culture: extramitochondrial pathway for acetoacetate metabolism. J. Neurochem. 32:1447–1450.

    PubMed  CAS  Google Scholar 

  • Reichardt, L.F., and Kelly, R.B. (1983) A molecular description of nerve terminal function. Annu. Rev. Biochem. 52:871–926.

    PubMed  CAS  Google Scholar 

  • Robinson, A.M., and Williamson, D.H. (1980) Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 60:143–189.

    PubMed  CAS  Google Scholar 

  • Roeder, L.M., Poduslo, S.E., and Tildon, J.T. (1982) Utilization of ketone bodies by established neural cell lines. J. Neurosci. Res. 8:671–682.

    PubMed  CAS  Google Scholar 

  • Roeder, L.M., Tildon, J.T., and Holman, D.C. (1984a) Competition among oxidizable substrates in brains of young and adult rats: dissociated cells. Biochem. J. 219:131–135.

    PubMed  CAS  Google Scholar 

  • Roeder, L.M., Tildon, J.T., and Stevenson, J.H., Jr (1984b) Competition among oxidizable substrates in brains of young and adult rats: whole homogenates. Biochem. J. 219:125–130.

    PubMed  CAS  Google Scholar 

  • Roeder, L.M., Tildon, J.T., and Williams, I.B. (1985a) Transport of 2-deoxyglucose by dissociated brain cells. Brain Res. 345:298–305.

    PubMed  CAS  Google Scholar 

  • Roeder, L.M., Williams, I.B., and Tildon, J.T. (1985b) Glucose transport in astrocytes: regulation by thyroid hormone, J. Neurochem. 45:1653–1657.

    PubMed  CAS  Google Scholar 

  • Roger, L.J., and Fellows, R.E. (1980) Stimulation of ornithine decarboxylase activity by insulin in developing rat brain. Endocrinology 106:619–625.

    PubMed  CAS  Google Scholar 

  • Roth, G.A., and Bornstein, M.B. (1985) Effect of insulin and insulin-related substances on myelination and remyelination of organotypic nerve tissue culture. J. Neurochem. [suppl] 44:S136C.

    Google Scholar 

  • Safaei, R., and Timiras, P.S. (1985) Thyroid hormone binding and regulation of adrenergic enzymes in two neuroblastoma cell lines. J. Neurochem. 45:1405–1410.

    PubMed  CAS  Google Scholar 

  • Samuels, H.H., and Tsai, J.S. (1973) Thyroid hormone action in cell culture: demonstration of nuclear receptors in intact cells and isolated nuclei. Proc. Natl. Acad. Sci. USA 70:3488–3492.

    PubMed  CAS  Google Scholar 

  • Seeds, N.W., and Hawkins, R.L. (1985) Extracellular proteases and their inhibitors influence neural development. J. Neurochem. 44:S37C.

    Google Scholar 

  • Seifert, W., and Muller, H.W. (1984) Neuron-glia interaction in mammalian brain: preparation and quantitative bioassay of a neurotrophic factor (NTF) from primary astrocytes. In: Barnes, D.W., Sirbasku, D.A., and Sato, G.H. (eds.) Methods for serum-free culture of neuronal and lymphoid cells. Cell culture methods for molecular and cell biology, vol. 4. New York: Alan R. Liss, pp. 66–77.

    Google Scholar 

  • Selak, I., Skaper, S.D., and Varon, S. (1985) Pyruvate participation in low molecular weight trophic activity for central nervous system neurons in glia-conditioned media. J. Neurosci. 5:23–28.

    PubMed  CAS  Google Scholar 

  • Sensenbrenner, M. (1977) Dissociated brain cells in primary cultures. In: Federoff, S., and Hertz, L. (eds.) Cell, tissue and organ cultures in neurobiology. New York: Academic Press, pp. 191–213.

    Google Scholar 

  • Shank, R.P., and Campbell, G. Le M. (1984) Glutamine, glutamate and other possible regulators of a-ketoglutarate and malate uptake by synaptic terminals. J. Neurochem. 42:1162–1169.

    PubMed  CAS  Google Scholar 

  • Shank, R.P., Bennett, G.S., Freytag, S.O., and Campbell, G. Le M. (1985) Pyruvate carboxylase: an astrocyte specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329:364–367.

    PubMed  CAS  Google Scholar 

  • Shanker, G., Amur, S.G., and Pieringer, R.A. (1985) Investigations on myelinogenesis in vitro: a study of the critical period at which thyroid hormone exerts its maximum regulatory effect on the developmental expression of two myelin associated markers in cultured brain cells from embryonic mice. Neurochem. Res. 10:617–625.

    PubMed  CAS  Google Scholar 

  • Skaper, S.D., Selak, I., Manthorpe, M., and Varon, S. (1984) Chemically defined requirements for the survival of cultured 8-day chick embryo ciliary ganglionic neurons. Brain Res. 302:281–290.

    PubMed  CAS  Google Scholar 

  • Smith, C.M., Bryla, J., and Williamson, J.R. (1974) Regulation of mitochondrial α-ketoglutarate metabolism by product inhibition at α-ketoglutarate dehydrogenase. J. Biol. Chem. 249:1497–1505.

    PubMed  CAS  Google Scholar 

  • Strang, R.H.C., and Bachelard, H.S. (1971) Effect of insulin on levels and turnover of intermediates of brain carbohydrate metabolism in vivo. J. Neurochem. 181:1799–1807.

    Google Scholar 

  • Sykes, J.E.C., and Lopes-Cardozo, M. (1985) Effects of serum on energy and lipid metabolism of oligodendrocyte-enriched glial cell cultures. J. Neurochem. 44:S47B.

    Google Scholar 

  • Synkova, E. (1983) Extracellular K+ accumulation in the central nervous system. Prog. Biophys. Mol. Biol. 42:135–189.

    Google Scholar 

  • Thoenen, H., and Edgar, D. (1985) Neurotrophic factors. Science 279:238–242.

    Google Scholar 

  • Tildon, J.T. (1983) Glutamine: a possible energy source for the brain. In: Hertz, L., Kvamme, E., Meer, E., and Schousboe, A. (eds.) Metabolic relationship between glutamine, glutamate and GABA in the CNS. New York: Alan R. Liss, pp. 415–429.

    Google Scholar 

  • Tildon, J.T., and Cornblath, M. (1972) Succinyl-C-3 ketoacid C-transferase deficiency: cause for ketoacidosis in infancy. J. Clin. Invest. 51:493–498.

    PubMed  CAS  Google Scholar 

  • Tildon, J.T., and Roeder, L.M. (1984) Glutamine oxidation of dissociated cells and homogenates of rat brain: kinetic and inhibitor studies. J. Neurochem. 42:1069–1076.

    PubMed  CAS  Google Scholar 

  • Tildon, J.T., and Roeder, L.M. (1985) Developmental patterns of glucose and 3-hydroxybutyrate transport by dissociated brain cells. J. Neurochem. 44:S131C.

    Google Scholar 

  • Tildon, J.T., Cone, A.L., and Cornblath, M. (1971) Coenzyme A transferase activity in rat brain. Biochem. Biophys. Res. Commun. 43:225–231.

    PubMed  CAS  Google Scholar 

  • Tildon, J.T., Merrill, S., and Roeder, L.M. (1983) Differential substrate oxidation by dissociated brain cells and homogenates during development. Biochem. J. 216:21–25.

    PubMed  CAS  Google Scholar 

  • Tildon, J.T., Ozand, P.T., and Cornblath, M. (1975) The effects of hyperketonemia on neonatal brain and metabolism. In: Hommes, F.A. and Van den Berg, C.J. (eds.) Normal and pathological development of energy metabolism. New York: Academic Press, pp. 143–154.

    Google Scholar 

  • Tildon, J.T., Roeder, L.M., and Stevenson, J.H., Jr. (1985a) Substrate oxidation by isolated rat brain mitochondria and synaptosomes. J. Neurosci. Res. 14:207–215.

    PubMed  CAS  Google Scholar 

  • Tildon, J.T., Stevenson, J.H., Jr., and Roeder, L.M. (1985b) Factors regulating 14CO2 production from labelled substrates by brain cells. Trans. Am. Soc. Neurochem. 16:148.

    Google Scholar 

  • Trimmer, P.A., Reier, P.J., Oh, T.H., and Eng, L.F. (1982) An ultrastructural and immunocytochemical study of astrocytic differentiation in vitro. J. Neuroimmunol. 2:235–260.

    PubMed  CAS  Google Scholar 

  • Valcana, T., and Timiras, P.S. (1978) Nuclear triiodothyronine receptors in the developing rat brain. Mol. Cell. Endocrinol. 11:31–41.

    PubMed  CAS  Google Scholar 

  • Van Calker, D., Loffler, F. and Hamprecht, B. (1983) Corticotropin peptides and melanotropins elevate the level of adenosine 3′-5′-cyclic monophosphate in cultured brain cells. J. Neurochem. 40:418–427.

    PubMed  Google Scholar 

  • Van Houten, M., and Posner, B.I. (1979) Insulin binds to brain blood vessels in vivo. Nature 282:623–625.

    PubMed  Google Scholar 

  • Van Houten, M., and Posner, B.I., (1981) Cellular basis of direct insulin action in the central nervous system. Diabetologia 20:255–267.

    PubMed  Google Scholar 

  • Van Houten, M., Khan, M.N., Khan, R.J., and Posner, B.I. (1981) Blood-borne adrenocorticotropin binds specifically to the median eminence-arcuate region of the rat hypothalamus. Endocrinology 108:2385–2387.

    PubMed  Google Scholar 

  • Van Houten, M., Posner, B.I., Kopriwa, B.M., and Brawer, J.F., (1979) Insulin-binding sites in the rat brain: in vivo localization to the circumventricular organs by quantitative radioautography. Endocrinology 105:666–673.

    PubMed  Google Scholar 

  • Varon, S., and Adler, R. (1981) Trophic and specifying factors directed to neuronal cells. Adv. Cell. Neurobiol. 2:115–163.

    CAS  Google Scholar 

  • Varon, S., and Bunge, R.P. (1978) Trophic mechanisms in the peripheral nervous system. Annu. Rev. Neurosci. 1:327–361.

    PubMed  CAS  Google Scholar 

  • Varon, S., Skaper, S.D., Barbon, G., Selak, I., and Manthorpe, M. (1984) Low molecular weight agents appear to support survival of cultured neurons from central nervous system. J. Neurosci. 4:654–658.

    PubMed  CAS  Google Scholar 

  • Walz, W., and Hertz, L. (1983) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog. Neurobiol. 20:133–183.

    PubMed  CAS  Google Scholar 

  • Wapnir, R.A., Tildon, J.T., and Cornblath, M. (1973) Metabolic differences in offspring of rats fed high-fat and control diets. Am. J. Physiol. 224:596–599.

    PubMed  CAS  Google Scholar 

  • Weber, G. (1969) Inhibition of human brain pyruvate kinase and hexokinase by phenylalanine and phenylpyruvate: possible relevance to phenylketonuric brain damage. Proc. Natl. Acad. Sci. USA 63:1365–1369.

    PubMed  CAS  Google Scholar 

  • Weber, G., Lea, M.A., and Stamm, N.B. (1968) Sequential feedback, inhibition and regulation of liver carbohydrate metabolism through control of enzyme activity. Adv. Enzyme Regul. 6:101–123.

    PubMed  CAS  Google Scholar 

  • Weber, R.J., and Edmond, J. (1977) Utilization of L(+)-3-hydroxybutyrate, D(-)-3-hydroxybutyrate, acetoacetate and glucose for respiration and lipid synthesis in the 18-day-old rat. J. Biol. Chem. 252:5222–5226.

    Google Scholar 

  • Wu, D.K., Morrison, R.S., and de Vellis, J. (1985) Modulation of beta-adrenergic response in rat astrocytes by serum and hormones. J. Cell. Physiol. 122:73–80.

    PubMed  CAS  Google Scholar 

  • Yeh, Y.Y., Streuli, V.L., and Zee, P. (1977) Ketone bodies serve as important precursors of brain lipids in the developing rat brain. Lipids 12:957–964.

    PubMed  CAS  Google Scholar 

  • Yu, A.C., and Hertz, L. (1982a) Uptake of glutamate, GAB A and glutamine into predominantly GABA-ergic and predominantly glutamatergic nerve cell populations in culture. J. Neurosci. Res. 7:23–35.

    PubMed  CAS  Google Scholar 

  • Yu, A.C., and Hertz, L. (1982b) Metabolic fate of labeled glutamate in astrocytes in primary cultures. J. Neurochem. 39:954–968.

    PubMed  CAS  Google Scholar 

  • Yu, A.C.H., and Hertz, L. (1983) Metabolic sources of energy in astrocytes. In: Hertz, L., Kvamme, E., Greer, E.G., and Schousboe, A. (eds.) Glutamine, glutamate and GABA in the central nervous system. New York: Alan R. Liss, pp. 205–217.

    Google Scholar 

  • Yu, A.C., Schousboe, A., and Hertz, L. (1982) Metabolic fate of 14C-labeled glutamate in astrocytes in primary cultures. J. Neurochem. 39:954–960.

    PubMed  CAS  Google Scholar 

  • Zwiers, H., Wiegant, V.M., Schatman, P., and Gispen, W.H. (1978) ACTH-induced inhibition of endogenous rat brain protein phosphorylation in vitro: structure activity. Neurochem. Res. 3:455–463.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Tildon, J.T., Roeder, L.M. (1987). Metabolic Regulation in Brain Cells. In: Vernadakis, A., Privat, A., Lauder, J.M., Timiras, P.S., Giacobini, E. (eds) Model Systems of Development and Aging of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2037-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2037-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9212-8

  • Online ISBN: 978-1-4613-2037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics