Skip to main content

Primary Cultures of Gabaergic and Glutamatergic Neurons as Model Systems to Study Neurotransmitter Functions I. Differentiated Cells

  • Chapter

Abstract

The complexity of the central nervous system (CNS) has necessitated the development of different methodologies, e.g., microdissection, separation by gradient centrifugation, and cell culturing, to study the characteristics of individual cell types. In the present review, we discuss results obtained using one of these preparations, i.e., neurons in primary cultures. By definition such cultures are obtained directly from the living animal, often at an immature stage, and maintained in vitro for at least 24 hours (Fedoroff, 1977). One advantage of the tissue culture system is that it is possible to obtain highly enriched populations of specific cell types. Since the cells are obtained from immature brain tissue, it is, however, essential to ensure that an appropriate development has occurred during the culturing period. Such alterations during development in vitro will be discussed in chapter 3. In this chapter, we discuss characteristics of neurons that have already differentiated during a prolonged culturing period (≃ 2 weeks). The selected characteristics are related to transmitter function, i.e., release, high-affinity uptake, biosynthesis, and receptor interactions of the neurotransmitters γ-aminobutyric acid (GABA) and glutamate. For this purpose, two different culture preparations, i.e., cerebral cortical interneurons and cerebellar granule cells, have been used. From in vivo studies it is known that the cortical interneurons use GABA (Ribak, 1978) and the cerebellar granule cells glutamate (Young et al., 1974; Hudson et al., 1976; Stone, 1979) as their transmitter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschuler, R.A., Neises, G.R., Harmison, G.G., Wenthold, R.J., and Fex, J. (1981) Immunocytochemical localization of aspartate aminotransferase immunoreactivity in cochlear nucleus of the guinea pig. Proc. Natl. Acad. Sci. USA 78:6553–6557.

    Article  PubMed  CAS  Google Scholar 

  • Borg, J., Hamel, G., Spitz, B., and Mark, J. (1983) Compartmentation of glutamate and glutamine metabolism in cultured nerve cells. In: Hertz, L., Kvamme, E., Meer, E.G., and Schousboe, A. (eds.) Glutamine, glutamate and GABA in the central nervous system. New York: Alan R. Liss, pp. 317–325.

    Google Scholar 

  • Carvalho, A.P. (1982) Calcium in the nerve cell. In: Lajtha, A. (ed.) Handbook of neurochemistry, vol. 1. New York: Plenum, pp. 69–116.

    Google Scholar 

  • Currie, D.N. (1980) Identification of cell type by immunofluorescence in defined cell cultures of cerebellum. In: Giacobini, E., Vernadakis, A., and Shahar, A. (eds.) Tissue culture in neurobiology. New York: Raven, pp. 75–87.

    Google Scholar 

  • Curtis, D.R., and Johnston, G.A.R. (1974) Amino acid transmitters in the mammalian central nervous system. Ergb. Physiol. 69:97–188.

    CAS  Google Scholar 

  • De Feudis, F.V., Ossola, L., Schmitt, G., and Mandel, P. (1979) High-affinity binding of [3H]-muscimol to subcellular particles of a neuron enriched culture of embryonic rat brain. Neurosci. Lett. 14:195–199.

    Article  Google Scholar 

  • Drejer, J., and Schousboe, A. (1984) Ornithine-δ-amino-transferase exhibits different kinetic properties in astrocytes, cerebral cortex interneurons, and cerebellar granule cells in primary culture. J. Neurochem. 42:1194–1197.

    Article  Google Scholar 

  • Drejer, J., Larsson, O.M., and Schousboe, A. (1982) Characterization of l-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47:259–269.

    CAS  Google Scholar 

  • Drejer, J., Larsson, O.M., and Schousboe, A. (1983) Characterization of uptake and release processes for d-and l-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem. Res. 8:231–243.

    Article  PubMed  CAS  Google Scholar 

  • Drejer, J., Larsson, O.M., Kvamme, E., Svenneby, G., Hertz, L., and Schousboe, A. (1985a) Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellum. Neurochem. Res. 10:49–62.

    Article  PubMed  CAS  Google Scholar 

  • Drejer, J., Benveniste, H., Diemer, N.H., and Schousboe, A. (1985b) The cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro, J. Neurochem. 45:145–151.

    Article  PubMed  CAS  Google Scholar 

  • Drejer, J., Honore, T., and Schousboe, A. (1986a) Excitatory amino acid receptors on neuronal cultures: pharmacological characterization of excitatory amino acid receptors on two neuronal primary cultures. In: Roberts, P.J. (ed.) Excitatory amino acids. Oxford: Millan (in press).

    Google Scholar 

  • Drejer, J., Honore, T., Meier, E., and Schousboe, A. (1986b) Pharmacologically distinct glutamate receptors on cerebellar granule cells. Life Sci. 38:2077–2085.

    Article  PubMed  CAS  Google Scholar 

  • Farb, D.H., Berg, D.K., and Fischbach, G.D. (1979) Uptake and release of [3H] γ-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture. J. Cell Biol. 80:651–661.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff, S. (1977) Primary cultures, cell lines and cell strains: Terminology and characteristics. In: Fedoroff, S., and Hertz, L. (eds.) Cell, tissue and organ cultures in neurobiology. New York: Academic Press, pp. 265–286.

    Google Scholar 

  • Gallo, V., Ciotti, M.T., Coletti, A., Aloisi, F., and Levi, G. (1982) Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl. Acad. Sci. USA 79:7919–7923.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, K., and Bernasconi, R. (1980) Rat cortical neurons in dissociated cell culture: changes in GABA and guanyl cyclase activity during development. In: Giacobini, E., Vernadakis, A., and Shahar, A. (eds.) Tissue culture in neurobiology. New York: Raven, pp. 205–219.

    Google Scholar 

  • Hauser, K., Balcar, V.J., and Bernasconi, R. (1980) Development of GABA neurons in dissociated cell culture of rat cerebral cortex. Brain Res. Bull. [Suppl. 2] 5:37–41.

    Article  CAS  Google Scholar 

  • Hertz, L. (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13:277–323.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L., and Schousboe, A. (1980). Interactions between neurons and astrocytes in the turnover of GABA and glutamate. Brain Res. Bull. [Suppl. 2] 5:389–395.

    Article  CAS  Google Scholar 

  • Hertz, L., and Schousboe, A. (1986a) Role of astrocytes in compartmentation of amino acid and energy metabolism. In: Astrocytes. Fedoroff, S., and Vernadakis, A. (eds.) New York: Academic Press, Vol. 2: 179–208.

    Google Scholar 

  • Hertz, L., and Schousboe, A. (1986b) Metabolism of glutamate and glutamine in neurons and astrocytes in primary cultures. In: Kvamme, E. (ed.) Glutamine and glutamate in mammals. Boca Raton, FL: CRC Press (in press).

    Google Scholar 

  • Hertz, L., Yu, A., Svenneby, G., Kvamme, E., Fosmark, H., and Schousboe, A. (1980) Absence of preferential glutamine uptake into neurons: an indication of a net transfer of TCA constituents from nerve endings to astrocytes? Neurosci. Lett. 16:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L., Yu, A.C.H., Potter, R.L., Fisher, T.E., and Schousboe, A. (1983) Metabolic fluxes from glutamate and towards glutamate in neurons and astrocytes in primary cultures. In: Hertz, L., Kvamme, E., Meer, E.G., and Schousboe, A. (eds.) Glutamine, glutamate and GABA in the central nervous system. New York: Alan R. Liss, pp. 327–342.

    Google Scholar 

  • Hill, D.R., and Bowery, N.G. (1981) 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature (Lond.) 290:149–152.

    Article  CAS  Google Scholar 

  • Hudson, D.B., Valcana, T., Bean, G., and Timiras, P.A. (1976) Glutamic acid: a strong candidate as the neurotransmitter of the cerebellar granule cell. Neurochem. Res. 1:73–81.

    Article  CAS  Google Scholar 

  • Kuffler, S.V., and Edwards, C. (1958) Mechanism of γ-aminobutyric acid (GABA) action and its relation to synaptic inhibition. J. Neurophysiol. 21:589–610.

    PubMed  CAS  Google Scholar 

  • Kvamme, E., Schousboe, A., Hertz, L., Torgner, I.Aa., and Svenneby, G. (1985) Developmental change of endogenous glutamate and gamma-glutamyl transferase in cultured cerebral cortical interneurons and cerebellar granule cells and in mouse cerebral cortex and cerebellum in vivo. Neurochem. Res. 10:993–1008.

    Article  PubMed  CAS  Google Scholar 

  • Là Noue, K.F., and Schoolwerth, A.C. (1979) Metabolite transport in mitochondria. Annu. Rev. Biochem. 48:871–922.

    Article  Google Scholar 

  • Larsson, O.M., Drejer, J., Hertz, L., and Schousboe, A. (1983) Ion dependency of uptake and release of GABA and (RS)-nipecotic acid studied in cultured mouse brain cortex neurons. J. Neurosci. Res. 9:291–302.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, O.M., Drejer, J., Kvamme, E., Svenneby, G., Hertz, L., and Schousboe, A. (1985a) Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo. Int. J. Dev. Neurosci. 3:177–185.

    Article  CAS  Google Scholar 

  • Larsson, O.M., Krogsgaard-Larsen, P., and Schousboe, A. (1985b) Characterization of uptake of GABA and its analogues nipecotic acid and cis-4-OH-nipecotic acid in cultured neurons and astrocytes. Neurochem. Int. 7:853–860.

    Article  PubMed  CAS  Google Scholar 

  • Levi, G., and Ciotti, M.T. (1983) Glutamate and GABA localization and evoked release in cerebellar cells differentiating in culture. In: Hertz, L., Kvamme, E., Meer, E.G., and Schousboe, A. (eds.) Glutamine, glutamate and GABA in the central nervous system. New York: Alan R. Liss, 493–508.

    Google Scholar 

  • Levi, G., Aloisi, F., Ciotti, M.T., and Gallo, V. (1984) Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cells. Brain Res. 290:77–86.

    Article  PubMed  CAS  Google Scholar 

  • Meier, E., and Schousboe, A. (1982) Differences between GABA receptor binding to membranes from cerebellum during postnatal development and from cultured cerebellar granule cells. Dev. Neurosci. 5:546–553.

    Article  PubMed  CAS  Google Scholar 

  • Meier, E., Drejer, J., and Schousboe, A. (1984) GABA induces functionally active low-affinitive GABA receptors on cultured cerebellar granule cells. J. Neurochem. 43:1737–1744.

    Article  PubMed  CAS  Google Scholar 

  • Messer, A. (1977) The maintenance and identification of mouse cerebellar granule cells in monolayer culture. Brain Res. 130:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, W.H., Schmechel, D.E. Mugnaini, E., Tappaz, M.L., and Kopin, I.J. (1981) Immunocytochemical localization of glutamate decarboxylase in rat cerebellum with a new antiserum. Neuroscience 6:2715–2735.

    Article  PubMed  CAS  Google Scholar 

  • Patel, A.J., Hunt, A., Gordon, R.D., and Balazs, R. (1982) The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation of glutamate. Dev. Brain Res. 4:3–11.

    Article  CAS  Google Scholar 

  • Pearce, B.R., Currie, D.N., Beale, R., and Dutton, G.R. (1981) Potassium-stimulated, calcium-dependent release of [3H] GABA from neuron- and glia-enriched cultures of cells dissociated from rat cerebellum. Brain Res. 206:485–489.

    Article  PubMed  CAS  Google Scholar 

  • Ramaharobandro, N., Borg, J., Mandel, P., and Mark, J. (1982) Glutamine and glutamate transport in cultured neuronal and glial cells. Brain Res. 244:113–121.

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C.E. (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase. J. Neurocytol. 7:461–478.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, R.P. (1970) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22:389–428.

    PubMed  CAS  Google Scholar 

  • Schousboe, A. (1982) Neurotransmitter metabolism and function. In: Pfeiffer, S.E. (ed.) Neuroscience approached through cell culture, vol. 1. Boca Raton, FL: CRC Press, pp. 107–141.

    Google Scholar 

  • Schousboe, A., and Hertz, L. (1983) Regulation of glutamatergic and GABAergic neuronal activity by astroglial cells. In: Osborne, N.N. (ed.) Dale’s principle and communication between neurons. Oxford: Pergamon, pp. 113–141.

    Google Scholar 

  • Schousboe, A., Hertz, L., and Svenneby, G. (1977) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2:217–229.

    Article  CAS  Google Scholar 

  • Schousboe, A., Drejer, J., and Hertz, L. (1985) Comparison of the metabolism of glucose and glutamate in cultured cerebellar granule cells. J. Neurochem. [Suppl.] 44:S168.

    Google Scholar 

  • Schousboe, A., Drejer, J., Hansen, G.H., and Meier, E. (1986a) Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids. Dev. Neurosci. 7:252–262.

    Article  Google Scholar 

  • Schousboe, A., Drejer, J., and Hertz, L. (1986b) Uptake and release of glutamate and glutamine in neurons and astrocytes in primary cultures. In: Kvamme, E. (ed.) Glutamine and glutamate in mammals. Boca Raton, FL: CRC Press (in press).

    Google Scholar 

  • Shank, R.P., Campbell, G.L., Freyteg, S.D., and Utter, M.F. (1981) Evidence that pyruvate carboxylase is an astrocyte specific enzyme in CNS tissues. Abstr. Soc. Neurosci. 7:936.

    Google Scholar 

  • Shank, R.P., Bennet, G.S., Freyteg, S.O., Campbell, G.L., and Utter, M.F. (1985) Pyruvate carboxylase: an astrocyte-specific enzme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329:364–367.

    Article  PubMed  CAS  Google Scholar 

  • Snodgrass, S.R., White, W.F., Biales, B., and Dichter, M. (1980) Biochemical correlates of GABA function in rat cortical neurons in culture. Brain Res. 190:123–138.

    Article  PubMed  CAS  Google Scholar 

  • Staun-Olsen, P., Fahrenkrug, J., Gammeltoft, S., Ottesen, B., and Schousboe, A. (1985) Development of binding sites for vasoactive intestinal polypeptide in mouse cerebral cortex and cultured cortical neurons. Int. J. Dev. Neurosci. 3:609–616.

    Article  CAS  Google Scholar 

  • Stone, T.W. (1979) Glutamate as the neurotransmitter of cerebellar granule cells in the rat: electrophysiological evidence. Br. J. Pharmacol. 66:291–296.

    PubMed  CAS  Google Scholar 

  • Tate, S.S., and Meister, A. (1981) Gamma-glutamyl transpeptidase: catalytic, structural and functional aspects. Mol. Cell. Biochem. 39:357–368.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, W.E. (1985) Synthesis of acetylcholine and γ-aminobutyric acid by dissociated cerebral cortical cells in vitro. Brain Res. 332:79–89.

    Article  PubMed  CAS  Google Scholar 

  • Ticku, M.K., Huang, A., and Barker, J.L. (1980) Characterization of γ-aminobutyric acid receptor binding in cultured brain cells. Mol. Pharmacol. 17:285–289.

    PubMed  CAS  Google Scholar 

  • Wenthold, R.J., and Altschuler, R.A. (1983) Immunocytochemistry of aspartate aminotransferase and glutaminase. In: Hertz, L., Kvamme, E., Meer, E.G., and Schousboe, A. (eds.) Glutamine, glutamate, and GABA in the central nervous system. New York: Alan R. Liss, 33–50.

    Google Scholar 

  • Wong, D.T., and Horng, J.S. (1977) Na+-independent binding of GABA to the Triton X-100 treated synaptic membranes from cerebellum of rat brain. Life Sci. 20:445–452.

    Article  PubMed  CAS  Google Scholar 

  • Wong, P.T.-H. McGeer, E., and McGeer, P.L. (1981) A sensitive radiometric assay for ornithine aminotransferase: regional and subcellular distributions in rat brain. J. Neurochem. 36:501–505.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda, Y., Roberts, E., and Dietz, G.W., Jr. (1982) A new synaptosomal biosynthetic pathway of glutamate and GABA from ornithine and its negative feedback inhibition by GABA. J. Neurochem. 38:1686–1694.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.B., Oster-Granite, M.L., Herndon, R.M., and Snyder, S.H. (1974) Glutamic acid: selective depletion by viral induced granule cell loss in hamster cerebellum. Brain Res. 73:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A.C.H., and Hertz, L. (1982) Uptake of glutamate, GABA and glutamine into a predominantly GABAergic and a predominantly glutamatergic nerve cell population in culture. J. Neurosci. Res. 7:23–35.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A.C.H., Drejer, J., Hertz, L., and Schousboe, A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41:1484–1487.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A.C.H., Hertz, E., and Hertz, L. (1984a) Alterations in uptake and release rates for GABA, glutamate and glutamine during biochemical maturation of highly purified cultures of cerebral cortical neurons, a GABAergic preparation. J. Neurochem. 42:951–960.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A.C.H., Fisher, T.E., Hertz, E., Tildon, J.T., and Schousboe, A. (1984b) Metabolic fate of [14C]-glutamine in mouse cerebral neurons in primary cultures. J. Neurosci. Res. 11:351–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Hertz, L., Schousboe, A. (1987). Primary Cultures of Gabaergic and Glutamatergic Neurons as Model Systems to Study Neurotransmitter Functions I. Differentiated Cells. In: Vernadakis, A., Privat, A., Lauder, J.M., Timiras, P.S., Giacobini, E. (eds) Model Systems of Development and Aging of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2037-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2037-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9212-8

  • Online ISBN: 978-1-4613-2037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics