Skip to main content

Electrophysiological and Ionic Transport Properties of Glial Cells in Culture

  • Chapter
Model Systems of Development and Aging of the Nervous System

Abstract

Over the past two decades, it has become increasingly clear that glial cells can no longer be considered as playing a passive role in the central nervous system (CNS). Numerous investigations have demonstrated that the glial cell, and particularly the astrocyte, is the unit that performs the function of removing depolarization products of neuronal firing such as CO2, H+, K+, NH3, and various neurotransmitters (for review, see Hertz, 1982; Walz and Hertz, 1983a; Hertz and Richardson, 1984). In addition, astrocytes possess an active anion transport system that is dependent in part on the glial-specific enzyme carbonic anhydrase and a bicarbonate-stimulated ATPase. It is through this action to regulate both potassium homeostasis and interstial pH in the CNS that glial cells are thought to be important determinants of brain excitability. As early as 1965, Hertz suggested that glial cells might be involved in K+ homeostasis within the CNS and, in this respect, to be involved in regulating brain function (Hertz, 1965). This chapter reviews our current knowledge concerning the glial cell role in cation, anion, and acid-base homeostasis, and the effects of drugs on these various processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R.E., Jee, W.S.S., and Woodbury, D.M. (1985) Stimulation of carbonic anhydrase in osteoclasts by parathyroid hormone. Calcif. Tissue Int. 37:646–650.

    Article  PubMed  CAS  Google Scholar 

  • Berglindh, T., Dibona, D.R., Ito, S., and Sachs, G. (1980) Probes of parietal cell function. Am. J. Physiol. 238:G165-G176.

    PubMed  CAS  Google Scholar 

  • Booher, J., and Sensenbrenner, M. (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurology 2:97–105.

    CAS  Google Scholar 

  • Bourke, R.S. (1969) Evidence for mediated transport of chloride in rat cerebral cortex in vitro. Exp. Brain Res. 8:219–231.

    PubMed  CAS  Google Scholar 

  • Bourke, R.S., and Nelson, K.M. (1972) Further studies on the K+-dependent swelling of primate cerebral cortex in vivo: the enzymatic basis of the K+-dependent transport of chloride. J. Neurochem. 19:663–685.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, C., Edwards, C., Kimelberg, H.K. (1983) Tetrodotoxin sensitive deploarizations induced by veratridine and alpha-scorpion toxin in primary astrocytes in culture. Biophys. J. 41:386a.

    Google Scholar 

  • Bowman, C.L., and Kimelberg, H.K. (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, C.L., Kimelberg, H.K., Frangakis, M.V. Berwald-Netter, Y., and Edwards, C. (1984) Astrocytes in culture have chemically acti vita ted sodium channels. J. Neurosci. 4:1527–1534.

    PubMed  CAS  Google Scholar 

  • Chow, S.Y., Yen-Chow, Y.C., and Woodbury, D.M. (1983) Effects of thyrotropin, acetazolamide, 4-acetamido-4’-isopthiocyanostilbene-2–2’disulfonic acid, perchlorate, ouabain and furosemide of pH and HC03 concentrations in cells and luminal fluid of turtle thyroid as calculated from the distribution of 14C-dimethyloxazolidine-2, 4-dione. J. Pharmcol. Exp. Ther. 225:17–23.

    CAS  Google Scholar 

  • Chow, S.Y., Yen-Chow, Y.C., Jee, W.S.S., and Woodbury, D.M. (1984) Electrophysiological properties of osteoblast-like cells from the cortical endosteal surfaces of rabbit long bones. Calcif. Tissue Int. 36:401–408.

    Article  PubMed  CAS  Google Scholar 

  • Chow, S.Y., Yen-Chow, Y.C., and Woodbury, D.M. (1985) Water and electrolyte contents, cell pH and membrane potentials of cultured turtle thyroid cells. J. Endocrinol 104:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, D., and Bignami, A. (1976) Immunogenic properties of the glial fibrillary acidic protein. Brain Res. 116:150–157.

    Article  PubMed  CAS  Google Scholar 

  • David, R.J. Wilson, W.A. Escueta, A.V. (1974) Voltage clamp analysis of pentylenetetrazol effects on Aplysia neurons. Brain Res. 67:549–554.

    Article  PubMed  CAS  Google Scholar 

  • Delaunoy, J.P., Hog, F., Devilliers, G., Bansart, M., Mandel, P., and Sensenbrenner, M. (1980) Developmental changes and localization of carbonic anhydrase in cerebral hemispheres of the rat and in rat glial cell cultures. Cell. Mol. Biol. 26:235–240.

    CAS  Google Scholar 

  • Dell’Antone, P., Colona, R., and Azzone, G.F. (1972) The membrane structure studied with cationic dyes. Eur. Acad. Sci. 24:553–565.

    Google Scholar 

  • Dichter, M.A., Herman, C.J., and Selser, M. (1972) Silent cells during interictal discharges and seizures in hippocampal penicillin foci: evidence for the role of extracellular K+ in the transition from the interictal state to seizures. Brain Res. 48:173–183.

    Article  PubMed  CAS  Google Scholar 

  • Dunham, P.B., Stewart, G.W., and Ellory, J.C. (1980) Chloride-activated passive potassium transport in human erythrocytes. Proc. Natl. Acad. Sci. USA 77:1711–1715.

    Article  PubMed  CAS  Google Scholar 

  • Futamachi, K.J., Mutani, R., and Prince, D.A. (1974) Potassium activity in rabbit cortex. Brain Res. 75:5–25.

    Article  PubMed  CAS  Google Scholar 

  • Ghandour, M.S., Langley, O.K., Vincendon, G., and Gombos, G. (1979) Double labeling immunohistochemical technique provides evidence of the specificity of glial cell markers. J. Histochem. Cytochem. 27:1634–1637.

    Article  PubMed  CAS  Google Scholar 

  • Gill, T.H., Young, O.M., and Tower, D.B. (1974) The uptake of 36 CI into astrocytes in tissue culture by a potassium-dependent, saturable process. J. Neurochem. 23:1011–1018.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U., Lux, H.D., and Gutnick, M.J. (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27:237–243.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L. (1965) Possible role of neuroglia: a potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature (Lond.) 206:1091–1094.

    Article  CAS  Google Scholar 

  • Hertz, L. (1978) An intense potassium uptake into astrocytes, its further enhancement by high concentrations of potassium, and its possible involvement in potassium homeostasis at the cellular level. Brain Res. 145:202–208.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L. (1982) Astrocytes. In: Laitha, A. (ed.) Handbook of neurochemistry vol. 1, 2nd edn. New York: Plenum, pp. 319–355

    Google Scholar 

  • Hertz, L. (1986) Potassium transport in astrocytes and neurons in primary cultures. Ann. N.Y. Acad. Sci. (in press).

    Google Scholar 

  • Hertz, L., and Chaban, G. (1982) Indications for an active role of astrocytes in potassium homeostasis at the cellular level: potassium uptake and metabolic effects of potassium. In: Pfeiffer, S.E. (ed.) Neuroscience approached through cell culture, vol. 1. Boca Raton, FI: CRC Press, pp. 157–174.

    Google Scholar 

  • Hertz, L., and Richardson, S.J. (1984) Is neuropharmacology merely the pharmacology of neurons or are astrocytes important too? Trends Pharmacol. 5:272–276.

    Article  CAS  Google Scholar 

  • Hirata, H., Slater, N.T., and Kimelberg, H.K. (1983) Adrenergic receptor-mediated depolarization of rat neocortical astrocytes in primary culture. Brain Res. 270:358–362.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, M.M., and Yaskoski, K. A. (1981) Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. J. Clin. Invest. 67:1208–1214.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann, H., and Schachner, M. (1985) Pharmacological properties of 7-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J. Neurosci. 5:3295–3301.

    PubMed  CAS  Google Scholar 

  • Kettenmann, H., Sonnhof, U., and Schachner, M. (1983) Exclusive potassium dependence of the membrane potential in cultured mouse oligodendrocytes. J. Neurochem. 3:500–505.

    CAS  Google Scholar 

  • Kimelberg, H.K. (1981) Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim. Biophy. Acta 646:179–184.

    Article  CAS  Google Scholar 

  • Kimelberg, H.K. (1983) Primary astrocyte cultures: a key to astrocyte function. Cell. Mo. Neurobiol. 3:1–16.

    Article  CAS  Google Scholar 

  • Kimelberg, H.K., and Bourke, R.S. (1982) Anion transport in the nervous system. In: Lajtha, A. (ed.) Handbook of neurochemisty, 2nd edn. New York: Plenum, pp. 31–67.

    Google Scholar 

  • Kimelberg, H.K., Narumi, S., and Bourke, R.S. (1978) Enzymatic and morphological properties of primary rat brain astrocyte cultures and enzyme development in vivo. Brain Res. 143–55:77.

    Google Scholar 

  • Kimelberg, H.K., Biddlecome, S., and Bourke, R.S. (1979a) SITS-inhibitable Cl~ transport and Na+-dependent H+ production in primary astroglial cultures. Brain Res. 173:111–124.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H.K., and Bourke, R.S. (1984) Mechanisms of astrocytic swelling. In: Bes, A., Braquet, P., Paoletti, R., and Siesjo, B.K. (eds.) Cerebral ischemia. Amsterdam: Elsevier, pp. 131–146.

    Google Scholar 

  • Kimelberg, H.K., Bowman, C., Biddlecome, S., and Bourke, R.S. (1979b) Cation transport and membrane potential properties of primary astroglial cultures from neonatal rat brains. Brain Res. 177:533–550.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg, H.K., Steig, P.E., and Mazurkiewicz, J.E. (1982) Immunocytochemical and biochemical analysis of carbonic anhydrase in primary astrocyte cultures from rat brain. J. Neurochem. 39:734–742.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler, S.W. (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc. R. Soc. Lond. [B] 168:1–21.

    Article  CAS  Google Scholar 

  • Latzkovits, L., Rimanoczy, A., Juhasz, A., Torday, and Sensenbrenner, M. (1982) Control of cation transport in cultured glial cells by external Ca2+: a possible signal in glial-neuronal interaction. Dev. Neurosci. 5:92–100.

    Article  PubMed  CAS  Google Scholar 

  • Lim, R., Mitsunobu, K., and Li, W.K.P. (1973) Maturation-stimulating effect of brain extract and dibutyryl cyclic AMP in dissociated embryonic brain cells in culture. Exp. Cell. Res. 79:243–247.

    Article  PubMed  CAS  Google Scholar 

  • Lim, R., Turriff, D.E., and Troy, S.S. (1976) Response of glioblasts to a morphological transferring factor: cinematographic and chemical correlations. Brain Res. 113:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Lim, R., Turriff, D.E., Troy, S.S., Moore, B.W., and Eng, L.F. (1977) Glia maturation factor: effect on chemical differentiation of glioblasts in culture. Science. 195:195.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  • MacDonald, R.L., and McLean, M.J. (1986) Anticonvulsant drug mechanisms of action. In: Delgado-Escueta. A.V., Ward, A.A. Woodbury, D.M., and Porter, R.J., (eds.) Basic mechanisms of the epilepsies; molecular and cellular approaches. New York: Raven, pp. 713–736.

    Google Scholar 

  • Moonen, G., and Nelson, P.G. (1978) Some physiological properties of astrocytes in primary cultures. In: Schoffeniels, E., Franck, G., Hertz, L., and Tower, D.B. (eds.) Dynamic properties of glial cells. New York: Pegamon, pp. 389–393.

    Google Scholar 

  • Moonen, G., Franck, G., Schoffeniels, E. (1980) Glial control of neuronal excitability in mammals. I. Electrophysiological and isotopic evidence in culture. Neurochem. Int. 2:299–310.

    Article  CAS  Google Scholar 

  • Olsen, R.W. (1982) Drug interactions at the GABA receptor-ionophore complex. Annu. Rev. Pharmacol. Toxicol. 22:245–277.

    Article  PubMed  CAS  Google Scholar 

  • Orkand, R.K. (1977) Glial cells. In: Brockart, J.M., Mountcastle, V.B., Kandel, E.R., and Geiger, S.R. (eds.) Handbook of phsiology, vol., sec. 1. The nervous system: cellular biology of neurons. Bethesda, MD: American Physiological Society, pp. 855–875.

    Google Scholar 

  • Orkand, R.K., Nicholls, J.G., and Kuffler, S.W. (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29:788–806.

    PubMed  CAS  Google Scholar 

  • Pettman, B., Labourdette, G., Devilliers, G., and Sensenbrenner, M. (1981) Effects of brain extracts from chick embryo on the development of astroblasts in culture. Dev. Neurosci. 4:37–45.

    Article  Google Scholar 

  • Prince, D.A., Pedley, T.A., and Ransom, B.R. (1978) Fluctuations in ion concentrations during excitiation and seizures. In: Schoffeniels, E., Franck, G., and Hertz, L. (eds.) Dynamic properties of glial cells. Oxford: Pergamon, pp. 281–303.

    Google Scholar 

  • Rutecki, P. A., Lebeda, F.J., and Johnston, D. (1985) Epileptiform activity induced by changes in extracellular potassium in hippocampus. J. Neurobiol. 54:1363–1374.

    CAS  Google Scholar 

  • Scholified, C.N. (1982) Antagonism of 7-aminobutyric acid and muscimol by picrotoxin, bicuculline, strychnine, bemegride, leptazol, d-tubocurarine and theophylline in the isolated olfactory cortex. Arch. Pharm. (Weinheim) 318:274–280.

    Google Scholar 

  • Sensenbrenner, M. (1977) Dissociated brain cells in primary culture. In: Federoff, S., and Hertz, L. (eds.) Cell, tissue and organ cultures in neurobiology. New York: Academic Press, pp. 191–213.

    Google Scholar 

  • Sensenbrenner, M., Devilliers, G., Bock, E., and Porte, A. (1980a) Biochemical and ultra-structural studies of cultured rat astroglial cells: effect of brain extract and dibutyryl cyclic AMP on glial fibrillary acidic protein and glial filaments. Differentiation 17:51–61.

    Article  PubMed  CAS  Google Scholar 

  • Sensenbrenner, M., Labourdette, G., Delaunoy, J.P., Pettman, B., Devilliers, G., Moonen, G., and Bock, E. (1980b) Morphological and biochemical differentiation of glial cells in primary culture. In: Giacobini, E., Vernadakis, A., and Shahar, A. (eds.) Tissue culture in neurobiology. New York: Raven, pp. 385–395.

    Google Scholar 

  • Somjen, G.G. (1979) Extracellular potassium ion in the mammalian central nervous system. Annu. Rev. Physiol. 41:159–177.

    Article  PubMed  CAS  Google Scholar 

  • Somjen, G.G., Rosentahal, M., Cordingley, G., Lamanna, J., and Lothman, E. (1976) Potassium, neuroglia and oxidative metabolism in central gray matter. Fed. Proc. 35:1266–1271.

    PubMed  CAS  Google Scholar 

  • Viskocil, F., Kriz, and N., Bures, J. (1972) Potassium selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depression in rats. Brain Res. 39:255–259.

    Google Scholar 

  • Walz, W., and Hertz, L. (1982) Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J. Neurochem. 39:70–77.

    Article  PubMed  CAS  Google Scholar 

  • Walz, W., and Hertz, L. (1983a) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog Neurobiol. 20:133–183.

    Article  PubMed  CAS  Google Scholar 

  • Walz, W., and Hertz, L. (1983b) Intracellular ion changes of astrocytes in response to extracellular potassium. J. Neurosci. Res. 10:411–423.

    Article  PubMed  CAS  Google Scholar 

  • Walz, W., and Hertz, L. (1983c) Comparison between fluxes of potassium and of chloride in astrocytes in primary cultures. Brain Res. 277:321–328.

    Article  PubMed  CAS  Google Scholar 

  • Walz, W., and Hertz, L. (1984a) Intense furosemide-sensitive potassium accumulation into astrocytes in the presence of pathologically high extracellular potassium levels. J. Cereb. Blood Flow Metab. 4:301–304

    Article  PubMed  CAS  Google Scholar 

  • Walz, W., and Hertz, L. (1984b) Sodium transport in astrocytes. J. Neurosci. Res. 11:231–239.

    Article  PubMed  CAS  Google Scholar 

  • Walz, W., Wuttke, W., and Hertz, L. (1984) Astrocytes in primary cultures: membrane potential characteristics reveal exclusive potassium conductance and potassium accumulator properties. Brain Res. 292:367–374.

    Article  PubMed  CAS  Google Scholar 

  • White, H.S., Yen-Chow, Y.C., Chow, S.Y., Kemp, J. W., and Woodbury, D.M. (1985) Effects of phenytoin on primary glial cell cultures. Epilepsia 26:58–68.

    Article  PubMed  CAS  Google Scholar 

  • White, H.S., Honda, T., Chow, S.Y., and Woodbury, D.M. (1986) Distribution and regulation of hydrogen ion in astrocytes. In: Fedoroff, S., and Vernadakis, A. (eds.) Astrocytes, vol. 2. Orlando, FL: Academic Press, pp. 239–250.

    Google Scholar 

  • Wilson, P.H., and Wachtel, H. (1974) Negative resistance characteristic essential for the maintenance of slow oscillations in bursting neurons. Science 186:932–934.

    Article  PubMed  CAS  Google Scholar 

  • Wolpaw, E.W., and Martin, D.L. (1984) Cl-transport in a glioma cell line: evidence for two transport mechanisms. Brain Res. 297:317–327.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, D.M. (1972) Applications to drug evaluations. In: Purpura, D.P. Penry, J.K., Tower, D.B., Woodbury, D.M., and Walters, R.D., (eds.) Experimental models of epilepsy: a manual for the laboratory worker. New York: Raven, pp. 557–601.

    Google Scholar 

  • Woodbury, D.M. (1974) Antiepileptic drugs: pharmacology and mechanisms of action. In: Harris, P., and Mawdsley, C. (eds.) Epilepsy: proceedings of the Hans Berger centenary symposium. Edinburgh: Churchill Livingstone, pp. 78–95.

    Google Scholar 

  • Woodbury, D.M. (1982) Phenytoin: mechanisms of action. In: Woodbury, D.M., Penry, J.K., and Pippenger, C.E. (eds.) Antiepileptic drugs, 2nd edn:269–281.

    Google Scholar 

  • Woodbury, D.M., Kemp, J.W., and Chow, S.Y. (1983) Mechanism of action of antiepileptic drugs. In: Ward, A.A., Jr., Penry, J.K., Purpura, D.P. (eds.) Epilepsy, vol. 61. [Association for Research in Nervous and Mental Disease (ARNMD), research publications], pp. 179–223.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

White, H.S., Woodbury, D.M. (1987). Electrophysiological and Ionic Transport Properties of Glial Cells in Culture. In: Vernadakis, A., Privat, A., Lauder, J.M., Timiras, P.S., Giacobini, E. (eds) Model Systems of Development and Aging of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2037-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2037-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9212-8

  • Online ISBN: 978-1-4613-2037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics