Advertisement

Aspects of Computational Circuit Analysis

  • W. M. CoughranJr.
  • Eric Grosse
  • Donald J. Rose
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 24)

Abstract

A hierarchical formulation of the differential-algebraic systems describing circuit behavior is presented. A number of algorithms that have proven effective are reviewed. These include multidimensional splines that preserve monotonicity, sparse direct and iterative methods for the linear equations, damped-Newton and Newton-iterative techniques for the nonlinear equations, continuation methods, and low-order time-integration formulae. Some aspects of time macromodeling are described.

Keywords

Newton Iteration Circuit Simulation Local Truncation Error Node Voltage Circuit Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. E. Bank, W. M. Coughran, Jr., W. Fichtner, E. H. Grosse, D. J. Rose, and R. K. Smith. Transient simulation of silicon devices and circuits. IEEE Trans. CAD IC Sys., CAD-4:436–451, 1985.Google Scholar
  2. [2]
    R. E. Bank and D. J. Rose. Global approximate Newton methods. Numer. Math., 37:279–295, 1981.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    R. E. Bank and D. J. Rose. Parameter selection for Newton-like methods applicable to nonlinear partial differential equations. SIAM J. Numer. Anal., 17:806–822, 1980.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. H. Bartels, J. C. Beatty, and B. A. Barsky. An introduction to the use of splines in computer graphics. Technical Report CS-83–09, Univ. Waterloo, 1985.Google Scholar
  5. [5]
    C. de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.MATHCrossRefGoogle Scholar
  6. [6]
    R. K. Brayton, F. G. Gustavson, and G. D. Hachtel. A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas. Proc. IEEE, 60:98–108, 1972.MathSciNetCrossRefGoogle Scholar
  7. [7]
    T. F. Chan. Deflation techniques and block-elimination algorithms for solving bordered singular systems. SIAM J. Sci. Stat. Comp., 5:121–134, 1984.MATHCrossRefGoogle Scholar
  8. [8]
    T. F. Chan and D. C. Resasco. Generalized Deflated Block-Elimination. Technical Report RR-337, Yale Univ. Comp. Sci. Dept., 1985.Google Scholar
  9. [9]
    W. M. Coughran, Jr., E. H. Grosse, and D. J. Rose. CAzM: a circuit analyzer with macromodeling. IEEE Trans. Elec. Dev., ED-30:1207–1213, 1983.CrossRefGoogle Scholar
  10. [10]
    W. M. Coughran, Jr., E. H. Grosse, and D. J. Rose. Variation diminishing splines in simulation. SIAM J. Sci. Stat. Comp., 7:696–705, 1986.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    J. E. Dennis, D. M. Gay, and R. E. Welsch. An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Software, 7:348–368, 1981.MATHCrossRefGoogle Scholar
  12. [12]
    S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale Sparse Matrix Package I: the symmetric codes. Int. J. Numer. Meth. Engin., 18:1145–1151, 1982.MATHCrossRefGoogle Scholar
  13. [13]
    S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale Sparse Matrix Package II: The Nonsymmetric Codes. Technical Report 114, Yale Univ. Comp. Sci. Dept., 1977.Google Scholar
  14. [14]
    S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Considerations in the design of software for sparse Gaussian elmination. In J. R. Bunch and D. J. Rose, editors, Sparse Matrix Computations, pages 263–274, Academic Press, 1976.Google Scholar
  15. [15]
    C. B. Garcia and W. I. Zangwill. Pathways to Solutions, Fixed Points, and Equilibria. Prentice-Hall, 1981.MATHGoogle Scholar
  16. [16]
    C. W. Gear. Efficient Stepsize Control for Output and Discontinuities. Technical Report UIUCDCS-R-82–1111, Univ. Ill. Comp. Sci. Dept., 1982.Google Scholar
  17. [17]
    C. W. Gear. The simultaneous numerical solution of differential-algebraic systems. IEEE Trans. Circ. Th., CT-18:89–95, 1971.CrossRefGoogle Scholar
  18. [18]
    C. W. Gear and L. R. Petzold. ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal., 21:716–728, 1984.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    A. George and J. W.-H. Liu. Computer Solutions of Large Sparse Positive Definite Systems. Prentice-Hall, 1981.Google Scholar
  20. [20]
    E. H. Grosse. Tensor spline approximation. Lin. Alg. Applies., 34:29–41, 1980.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    G. D. Hachtel, R. K. Brayton, and F. G. Gustavson. The sparse tableau approach to network analysis and design. IEEE Trans. Circ. Th., CT-18:101–113, 1971.CrossRefGoogle Scholar
  22. [22]
    C. W. Ho, A. E. Ruehli, and P. A. Brennan. The modified nodal approach to network analysis. IEEE Trans. Circ. Sys., CAS-22:504–509, 1975.Google Scholar
  23. [23]
    H. B. Keller. Numerical solution of bifurcation and nonlinear eigenvalue problems. In P. Rabinowitz, editor, Applications of Bifurcation Theory, pages 359–384, Academic Press, 1977.Google Scholar
  24. [24]
    J. Lambert. Computational Methods in Ordinary Differential Equations. Wiley, 1973.MATHGoogle Scholar
  25. [25]
    E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli. The waveform relaxation method for time domain analysis of large scale ICs. IEEE Trans. CAD IC Sys., CAD-1:131–145, 1982.Google Scholar
  26. [26]
    L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. PhD thesis, Univ. of Calif., Berkeley, 1975.Google Scholar
  27. [27]
    J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 1970.MATHGoogle Scholar
  28. [28]
    L. R. Petzold. A description of DASSL: a differential/algebraic system solver. In Scientific Computing, pages 65–68, North-Holland, 1983.Google Scholar
  29. [29]
    L. R. Petzold. Differential/algebraic equations are not ODE’s. SIAM J. Sci. Stat. Comp., 3:367–384, 1982.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    N. B. Rabbat, A. L. Sangiovanni-Vincentelli, and H. Y. Hsieh. A multilevel Newton algorithm with macromodeling and latency for the analysis of largescale nonlinear circuits in the time domain. IEEE Trans. Circ. Sys., CAS- 26:733–741, 1979.MathSciNetCrossRefGoogle Scholar
  31. [31]
    C. den Heijer and W. C. Rheinboldt. On steplength algorithms for a class of continuation methods. SIAM J. Numer. Anal, 18:925–948, 1981.MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    S. Sastry, C. Desoer, and P. Varaiya. Jump behavior of circuits and systems. In Proc. IEEE Int. Symp. Circ. Sys., pages 451–454, 1981.Google Scholar
  33. [33]
    I. J. Schoenberg. On spline functions. In O. Shisha, editor, Inequalities, pages 255–291, Academic Press, 1967.Google Scholar
  34. [34]
    G. W. Stewart. On the implicit deflation of nearly singular systems of linear equations. SIAM J. Sci. Stat. Comp., 2:136–140, 1981.MATHCrossRefGoogle Scholar
  35. [35]
    G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice- Hall, 1973.MATHGoogle Scholar
  36. [36]
    P. Subramaniam. Table models for timing simulation. In Proc. Custom IC Conf., pages 310–314, Rochester, New York, 1984.Google Scholar
  37. [37]
    W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Qassemzadeh, and T. R. Scott. Algorithms for ASTAP - a network-analysis program. IEEE Trans. Circ. Th., CT-20:628–634, 1973.Google Scholar
  38. [38]
    J. White, R. Saleh, A. L. Sangiovanni-Vincentelli, and A. R. Newton. Accelerating relaxation algorithms for circuit simulation using waveform Newton, iterative step size refinement, and parallel techniques. In Proc. IEEE Int. Conf. CAD, pages 5–7, Santa Clara, Calif., 1985.Google Scholar

Copyright information

© Kluwer Academic Publishers 1987

Authors and Affiliations

  • W. M. CoughranJr.
    • 1
  • Eric Grosse
    • 1
  • Donald J. Rose
    • 2
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations