Skip to main content

Robot Vision by Encoded Light Beams

  • Chapter
Three-Dimensional Machine Vision

Abstract

A robot eye is more than a camera and less than a complete vision understanding system. It is a device which can scan or sense objects in the three-dimensional environment and extract useful numerical information about those objects. The information obtained by the robot eye should be of a form that can be interrogated by a vision understanding system. This article describes the development of a dependable, robust, and versatile robot eye which can rapidly mensurate a surface in three dimensions. Using an active/passive camera pair, surface mensuration is achieved with fast electro-optic implementation of well-known stereophotogrammetric principles. We discuss the calibration of the robot eye and the application of the robot eye to exploring and mensurating 3-D objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, J. K., Davis, L. S., Martin, W. N., and Roach, J. W. Survey: Representation methods for three-dimensional objects. In L. N. Kanal and A. Rosenfeld (editor), Progress in Pattern Recognition, pages 377–391. North-Holland Pub., Amsterdam, 1981.

    Google Scholar 

  2. Agin, G. J. and Binford, T. O. Computer description of curved objects. In Proceedings of the Third International Joint Conference on Artificial Intelligence, pages 629–640. August, 1973. Also appeared in IEEE Transactions on Computers, 1976, Vol. C-25, pages 439–449.

    Google Scholar 

  3. Altschuler, M. D., Altschuler, B. R., and Taboada, J. Laser electro-optic system for rapid three-dimensional topographic mapping of surfaces. Optical Engineering 20: 953–961, 1981.

    Google Scholar 

  4. Altschuler, M. D., Posdamer, J. L., Frieder, G., Altschuler, B. R., and Taboada, J. The numerical stereo camera. In B. R. Altschuler (editor), 3-D Machine Perception, pages 15–24. SPIE, 1981.

    Google Scholar 

  5. Altschuler, M. D., Posdamer, J. L., Frieder, G., Manthey, M. J., Altschuler, B. R., and Taboada, J. A medium-range vision aid for the blind. In Proc. of the Int. Conf. on Cybernetics and Society, IEEE, pages 1000–1002. 1980.

    Google Scholar 

  6. Artzy, E., Frieder, G., and Herman, G. T. The theory, design, implementation, and evaluation of a three-dimensional surface detection algorithm. Computer Graphics and Image Processing 15: 1–24, 1981.

    Article  Google Scholar 

  7. Ballard, D. H. and Brown, C. M. Computer Vision. Prentice-Hall, NJ, 1982.

    Google Scholar 

  8. Bleha, W. P., Lipton, L. T., Wiener-Avnear, E., Grinberg, J., Reif, P. G., Casasent, D., Brown, H. B., and Markevitch, B. V. Application of the liquid crystal light valve to real-time optical data processing. Optical Engineering 17: 371–384, 1978.

    Google Scholar 

  9. Cornelius, J. Gheluwe, B. V., Nyssen, M., and DenBerghe, F. V. A photographic method for the 3-D reconstruction of the human thorax. In Applications of Human Bio stereometries, pages 294–300. SPIE, 1978.

    Google Scholar 

  10. Cutchen, J. T., Harris, Jr., J. O., and Laguna, G. R. PLZT electro-optic shutters: Applications. Applied Optics 14: 1866–1873, 1975.

    Article  Google Scholar 

  11. Dijak, J. T. Precise three-dimensional calibration of numerical stereo camera systems for fixed and rotatable scenes. Technical Report AFWAL-TR-84-1105, Air Force Wright Aeronautical Labs. (AAAT-3), September, 1984.

    Google Scholar 

  12. Dijak, J. T. System software for the numerical stereo camera. Technical Report AFWAL-TR-85-1078, Air Force Wright Aeronautical Labs. (AAAT-3), 1985.

    Google Scholar 

  13. Dodd, G. G. and Rossol, L. (eds.). Computer Vision and Sensor-Based Robots. Plenum Press, New York, 1979.

    Google Scholar 

  14. Duda, R. O. and Hart, P. E. Pattern Classification and Scene Analysis. Wiley, New York, 1973.

    MATH  Google Scholar 

  15. Forsythe, G. E., Malcolm, M., and Moler, G. B. Computer Methods for Mathematical Computations. Prentice-Hall, 1977.

    MATH  Google Scholar 

  16. Gennery, D. B. A stereo vision system for an autonomous vehicle. In 5th Int. Joint Conf. on AI, pages 576–582. 1977.

    Google Scholar 

  17. Helmering, R. J. A general sequential algorithm for photogrammetric on-line processing. Photogrammetric Engineering and Remote Sensing 43: 469–474, 1977.

    Google Scholar 

  18. Horn, B.K.P. Obtaining shape from shading information. In P.H. Winston (editor), The Psychology of Computer Vision, pages 115 – 156. Mc Graw-Hill, New York, 1975.

    Google Scholar 

  19. Hugg, J.E. A portable dual camera system for biostereometrics. In Biostereometrics ’74, pages 120 – 127. American Society of Photogrammetry, Falls Church, VA, 1974.

    Google Scholar 

  20. Kanade, T. and Asada, H. Noncontact visual three-dimensional ranging devices. In B. R. Altschuler (editor), 3-D Machine Perception, pages 48 – 53. SPIE, 1981.

    Google Scholar 

  21. Karara, H. M., Carbonnell, M., Faig, W., Ghosh, S. K., Herron, R. E., Kratky, V., Mikhail, E. M., Moffitt, F. H., Takasaki, H., Veress, S. A. Non-topographie photogrammetry. Manual of Photogrammetry. Amer. Soc. of Photogrammetry, Falls Church, VA, 1980, pages 785 – 882.

    Google Scholar 

  22. Land, C. E. Optical information storage and spatial light modulation in PLZT ceramics. Optical Engineering 17: 317 – 326, 1978.

    Google Scholar 

  23. LaPrade, G. L., Briggs, S. J., Farrel, R. J., Leonardo, E. S. Stereoscopy. Manual of Photogrammetry. Amer. Soc. of Photogrammetry, Falls Church, VA, 1980, pages 519 - 544.

    Google Scholar 

  24. Lewis, R. A. and Johnston, A. R. A scanning laser rangefinder for a robotic vehicle. Proc. 5th Int. Joint Conf. AI: 762 – 768, 1977.

    Google Scholar 

  25. Light, D. L., Brown, D., Colvocoresses, A. P., Doyle, F. J., Davies, M., Ellasal, A., Junkins, J. L., Manent, J. R., McKenney, A., Undrejka, R., and Wood, G. Satellite photogrammetry. Manual of Photogrammetry. Amer. Soc. of Photogrammetry, Falls Church, VA, 1980, pages 883 - 977.

    Google Scholar 

  26. Mero, L. and Vamos, T. Medium level vision. Progress in Pattern Recognition. North-Holland Publ., Amsterdam, 1981, pages 93 – 122.

    Google Scholar 

  27. Montgomery, W. D. Sampling in imaging systems. Journal of the Optical Society 65: 700 – 706, 1975.

    Article  Google Scholar 

  28. Nevatia, R. Machine Perception. Prentice-Hall, NJ, 1982.

    Google Scholar 

  29. O’Rourke, J. Polyhedra of minimal area as 3-D object models. Proc. Int. Joint Conf. on AI: 664 – 666, 1981.

    Google Scholar 

  30. Oliver, D. S. Real-time spatial modulators for optical/digital processing systems. Optical Engineering 17: 288 – 294, 1978.

    Google Scholar 

  31. Pavlidis, T. Algorithms for Graphics and Image Processing. Computer Science Press, Rockville, MD, 1982.

    Google Scholar 

  32. Popplestone, R. J., Brown, C. M., Ambler, A. P., and Crawford, G. F. Forming models of plane-and-cylinder faceted bodies from light stripes. In Proc. 4th Int. Joint Conf. AI, pages 664–668. Sept., 1975.

    Google Scholar 

  33. Posdamer, J. L. and Altschuler, M. D. Surface measurement by space-encoded projected beam systems. Computer Graphics and Image Processing 18: 1 – 17, 1982.

    Article  Google Scholar 

  34. Rocker, F. and Kiessling, A. Methods for analyzing three dimensional scenes. Proc. 4th IJCAI:669-673, September, 1975.

    Google Scholar 

  35. Rogers, D. F. and Adams, J. A. Mathematical Elements for Computer Graphics. McGraw-Hill, 1976.

    Google Scholar 

  36. Ryan, T. W. and Hunt, B. R. Recognition of stereo-image cross-correlation errors. Progress in Pattern Recognition. North-Holland Publ., Amsterdam, 1981, pages 265 – 322.

    Google Scholar 

  37. Shapira, R. and Freeman, H. Reconstruction of curved-surface bodies from a set of imperfect projections. 5th Int. Joint Conf. on AI: 628 – 634, 1977.

    Google Scholar 

  38. Shirai, Y. and Suwa, M. Recognition of polyhedrons with a range finder. In Proceedings of the Second International Joint Conference on Artificial Intelligence, pages 80 – 87. 1971.

    Google Scholar 

  39. Shirai, Y. Three-dimensional computer vision. Computer Vision and Sensor-Based Robots. Plenum Press, NY, 1979, pages 187 – 205.

    Google Scholar 

  40. Shirai, Y. and Tsuji, S. Extraction of the line drawings of 3-dimensional objects by sequential illumination from several directions. 2nd Int. Joint Conf. on AI: 71 - 79, 1971.

    Google Scholar 

  41. Slama, C. C. (ed.). Manual of Photogrammetry 4th edition, American Soc. of Photogrammetry, 1980.

    Google Scholar 

  42. Sobel, I. On calibrating computer controlled cameras for perceiving 3-D scenes. 3rd Int. Joint Conf. on AI: 648–657, 1973.

    Google Scholar 

  43. Strand, T. C. Optical three-dimensional sensing for machine vision. Optical Engineering 24: 33–40, 1985.

    Google Scholar 

  44. Sutherland, I. E. Three-dimensional input by tablet. Proc. IEEE 62: 453–461, 1974.

    Article  Google Scholar 

  45. Tamburino, L. A. Complementary pair detection algorithm and improved noise immunity for numerical stereo camera systems. Technical Report AFWAL-TR-83-1117, Air Force Wright Aeronautical Labs., Wright-Patterson AFB (AAAT-3), August, 1983.

    Google Scholar 

  46. Tamburino, L. A. and Dijak, J. T. Error correction in the numerical stereo camera system. Technical Report AFWAL-TR-85-1077, Air Force Wright Aeronautical Labs., Wright-Patterson AFB (AAAT-3), 1985.

    Google Scholar 

  47. Thomason, M. G. and Gonzalez, R. C. Database representations in hierarchical scene analysis. Progress in Pattern Recognition. North-Holland Publ., Amsterdam, 1981, pages 57–91.

    MATH  Google Scholar 

  48. Tomita, F. and Kanade, T. A 3-D vision system: Generating and matching shape description. First Conf. on AI Applications, IEEE: 186 - 191, 1984.

    Google Scholar 

  49. Uselton, S. P. Surface reconstruction from limited information. PhD thesis, Univ. of Texas at Dallas, 1981.

    Google Scholar 

  50. Will, P. M. and Pennington, K. S. Grid coding: A preprocessing technique for robot and machine vision. 2nd Int. Joint Conf. on AI 2: 319–329, 1971.

    Google Scholar 

  51. Woodham, R. J. A cooperative algorithm for determining surface orientation from a single view. 5th Int. Joint Conf. on AI: 635–641, 1977.

    Google Scholar 

  52. Yang, H. S., Boyer, K. L., and Kak, A. C. Range data extraction and interpretation by structured light. First Conf. on AI Applications, IEEE: 199–205, 1984.

    Google Scholar 

  53. Young, J. M. and Altschuler, B. R. Topographic mapping of oral structures — problems and applications in prosthodontics. In B. R. Altschuler (editor), 3-D Machine Perception, pages 70–77. SPIE, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Kluwer Academic Publishers

About this chapter

Cite this chapter

Altschuler, M.D., Bae, K., Altschuler, B.R., Dijak, J.T., Tamburino, L.A., Woolford, B. (1987). Robot Vision by Encoded Light Beams. In: Kanade, T. (eds) Three-Dimensional Machine Vision. The Kluwer International Series in Engineering and Computer Science, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1981-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1981-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9184-8

  • Online ISBN: 978-1-4613-1981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics