Basic Principles of Posttranslational Modification of Proteins and Their Analysis Using High-Resolution Two-Dimensional Polyacrylamide Gel Electrophoresis

  • Bonnie S. Dunbar


Many of the biological activities and physicochemical properties of proteins can be attributed to their posttranslational modifications, including glycosylation (the addition of sugar residues), sulfation (the addition of SO4 groups), or phosphorylation (the addition of PO4 residues). One of the most important uses of high-resolution two-dimensional polyacrylamide gel electrophoresis (PAGE) is for analysis of such modifications, which frequently cause shifts in the charge and thus the migration of proteins. It is therefore important to have a basic understanding of these modifications if the analysis methods described in this text are to be used.


Sialic Acid Protein Phosphorylation Protein Modification Wheat Germ Agglutinin Sugar Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashwell, G., and Morell, A., 1974, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. 41:99–128.PubMedGoogle Scholar
  2. Berman, P., and Lasky, L. A., 1985, Engineering glycoproteins for use as pharmaceuticals, Trends Biochem. 3(2):51–53.Google Scholar
  3. Canton, A. J., Brownlee, G. G., Yewdell, J. W., and Gerhard, W., 1982, The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype), Cell 31:417–427.CrossRefGoogle Scholar
  4. Cederberg, B. M., and Gray, G. R., 1979, N-acetyl-D-glucosamine binding lectins: A model system for the study of binding specificity, Anal. Biochem. 99(1):221–230.PubMedCrossRefGoogle Scholar
  5. Chapman, A., Li, E., and Kornfeld, S., 1979, The biosynthesis of the major lipid-linked oligosaccharide of Chinese hamster ovary cells occurs by the ordered addition of mannose residues, J. Biol. Chem. 254(20): 10243–10249.PubMedGoogle Scholar
  6. Chen, H. C., Shimohigashi, Y., Dufau, M. L., and Catt, K. J., 1982, Characterization and biological properties of chemically deglycosylated human chorionic gonadotropin, J. Biol. Chem. 257:14446–14452.PubMedGoogle Scholar
  7. Cohen, J., Fava, R. A., and Jawyer, S. T., 1982, Purification and characterization of epidermal growth factor receptor/protein kinase from normal mouse liver, Proc. Natl. Acad. Sci. USA 79:6237–6241.PubMedCrossRefGoogle Scholar
  8. Cooper, J. A., Sefton, B. M., and Hunter, T., 1983, Detection and quantification of phos- photyrosine in proteins, Methods Enzymol. 99:387–402.PubMedCrossRefGoogle Scholar
  9. Corbin, J. D., Keely, S. L., and Park, C. R., 1975, The distribution and dissociation of cyclic adenosine 3’, 5’-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues, J. Biol. Chem. 250:218–225.PubMedGoogle Scholar
  10. Cunningham, L. W., and Ford, J. D., 1968, A comparison of glycopeptides derived from soluble and insoluble collagens, J. Biol. Chem. 243:2390–2393.PubMedGoogle Scholar
  11. Day, J. F., Thorpe, S. R., and Baynes, J. W., 1979a, Non-enzymatically glycosylated albumin in vitro preparation and isolation from normal human serum, J. Biol. Chem. 254:595–597.PubMedGoogle Scholar
  12. Day, J. F., Thornburg, R. W., Thorpe, S. R., and Baynes, J. W., 1979b, Non-enzymatic glycosylation of rat albumin studies in vitro and in vivo, J. Biol. Chem. 254:9394–9400.PubMedGoogle Scholar
  13. Dedman, J. R., Brinkley, B. R., and Means, A. R., 1979, Regulation of microfilaments and microtubules by calcium and cyclic AMP, Adv. Cyclic Nucleotide Res. 11:131–174.PubMedGoogle Scholar
  14. Dolhofer, R., and Wieland, O. H., 1979, Preparation and biological properties of glycosylated insulin, FEBS Lett. 100:133–136.PubMedCrossRefGoogle Scholar
  15. Doyle, R. J., 1982, Biotechs: Lectins in Diagnostic Microbiology, pp. 1–8, E. Y. Laboratories, Inc., San Mateo, California.Google Scholar
  16. Dunbar, B. S., Liu, C., and Sammons, D. W., 1981, Identification of the three major proteins of porcine and rabbit zonae pellucidae by high-resolution two-dimensional polyacrylamide gel electrophoresis: Comparison with serum, follicular fluid, and ovarian cell proteins, Biol. Reprod. 24:1111–1124.PubMedGoogle Scholar
  17. Elder, J. H., and Alexander, S., 1982, Endo-β-N-acetylglucosaminidase F: Endoglycosidase from Flavobacterium meningosepticum that cleaves both high mannose and complex glycoproteins, Proc. Natl. Acad. Sci. USA 79:4540–4544.PubMedCrossRefGoogle Scholar
  18. Fluckiger, R., and Gallop, P. M., 1984, Measurement of non-enzymatic protein glycosylation, Methods Enzymol. 106:77–87.PubMedCrossRefGoogle Scholar
  19. Fluckiger, R., and Winterhalter, K. H., 1978, Biochemical and Clinical Aspects of Hemoglobin Abnormalities, pp. 205–214, Academic Press, New York.Google Scholar
  20. Greengard, P., 1979, Cyclic nucleotides, phosphorylated proteins, and the nervous system, Fed. Proc. 38:2208–2217.PubMedGoogle Scholar
  21. Hanover, J. A., Lennarz, W. J., and Young, J. D., 1980, Synthesis of N- and O-linked glycopeptides in oviduct membrane preparations, J. Biol. Chem. 255:6713–6716.PubMedGoogle Scholar
  22. Huang, C., Mayer, H. E., Jr., and Montgomery, R., 1970, Microheterogeneity and pauci- dispersity of glycoproteins. Part 1. The carbohydrate of chicken ovalbumin, Carbohydr. Res. 13:127–137.CrossRefGoogle Scholar
  23. Hughes, R. C., 1983, Glycoproteins, Chapman and Hall, London.Google Scholar
  24. Irimura, T., Kawaguchi, T., Terao, T., and Osawa, T., 1975, Carbohydrate binding specificities of so called galactose-specific phytohemagglutinins, Carbohydr. Res. 39:317–325.PubMedCrossRefGoogle Scholar
  25. Jahnsen, T., Lohmann, S. M., Walter, U., Hedin, L., and Richards, J. S., 1985, Purification and characterization of hormone-regulated isoforms of the regulatory subunit of Type II cAMP-dependent protein kinase from rat ovaries, J. Biol. Chem. 260(29): 15980–15987.PubMedGoogle Scholar
  26. Kobata, A., 1979, Use of endo- and exo-glycosidases for structural studies of glycoconju- gates, Anal. Biochem. 100:1–14.PubMedCrossRefGoogle Scholar
  27. Kornfeld, R., Keller, J., Baenziger, J., and Kornfeld, S., 1971, The structure of the gly- copeptide of human gamma G myeloma, J. Biol. Chem. 246:3259–3268.PubMedGoogle Scholar
  28. Kornfeld, S., Li, E., and Tabas, I., 1978, The synthesis of complex-type oligosaccharides, J. Biol. Chem. 253(1):7771–7778.PubMedGoogle Scholar
  29. Kornfeld, K., Reitman, M. L., and Kornfeld, R., 1982, The carbohydrate-binding specificity of pea and lentil lectins: Fucose is an important determinant, Biol. Chem. 256:6633–6640.Google Scholar
  30. Krebs, E. G., and Beavo, J. A., 1979, Phosphorylation-dephosphorylation of enzymes, Annu. Rev. Biochem. 48:923–959.PubMedCrossRefGoogle Scholar
  31. Longmore, G. D., and Schacter, H., 1982, Product identification and substrate-specificity studies on the GDP-L,-fucose:2-acetamido-2-deoxy-β-D-glucoside (FUC→ASN-Linked GlcNAc)-6-α-fucosyltransferase in a Golgi-rich fraction from porcine liver, Carbohydr. Res. 100:365–392.PubMedCrossRefGoogle Scholar
  32. Manning, D. R., DiSalvo, J., and Stull, J. T., 1980, Protein phosphorylation: Quantitative analysis in vivo and in intact cell systems, Mol. Cell Endocrinol. 19:1–19.PubMedCrossRefGoogle Scholar
  33. Means, A. R., Dedman, J. R., Tash, J. S., Tindall, D. J., VanSickle, M., and Welsh, M. J., 1980, Regulation of the testis sertoli cell by follicle stimulation hormone, Annu. Rev. Physiol. 42:59–70.PubMedCrossRefGoogle Scholar
  34. Midoux, P., Grivet, J. P., and Monsigny, M., 1980, Lectin-sugar interactions: The binding of 1-O-methyl-di-N-trifluoroacetyl-beta-chitobioside to wheat germ agglutinin, FEBS Lett. 120(1):29–32.PubMedCrossRefGoogle Scholar
  35. Monsigny, M., Roche, A. C., Sene, C., Maget-Dana, R., and Delmotte, F., 1980, Sugar-lectin interactions: How does wheat germ agglutinin bind sialoglycoconjugates?, Eur. J. Biochem. 104(1): 147–153.PubMedCrossRefGoogle Scholar
  36. Montreuil, J., 1980, Primary structure of glycoprotein glycans. Basis for the molecular biology of glycoproteins, Adv. Carbohydr. Chem. Biochem. 37:157–223.PubMedCrossRefGoogle Scholar
  37. Narasimhan, S., Harpas, N., Longmore, G., Carver, J. P., Grey, A. A., and Schacter, H., 1980, Control of glycoprotein synthesis. The purification by preparative high voltage paper electrophoresis in borate of glycopeptides containing high mannose and complex oligosaccharide chains linked to asparagine, J. Biol. Chem. 255:4876–4884.PubMedGoogle Scholar
  38. Nicholson, G. L., and Irimura, T., 1984, Estimating glycoprotein carbohydrate chain structures by lectin reactivities in polyacrylamide gels, Biol. Cell 51(2): 157–164.Google Scholar
  39. Ochoa, S., and deHaro, C., 1979, Regulation of protein synthesis in eukaryotes, Annu. Rev. Biochem. 48:549–580.PubMedCrossRefGoogle Scholar
  40. Ogata, S., and Lloyd, K. O., 1982, Mild alkaline borohydride treatment of glycoproteins- A method for liberating both N- and O-linked carbohydrate chains, Anal. Biochem. 119(2):351–359.PubMedCrossRefGoogle Scholar
  41. Ogata, S., Muramatsuj, T., and Kobata, A., 1975, Fractionation of glycoproteins by affinity column chromatography on concanavalin A-Sepharose, J. Biochem. 78:678–696.Google Scholar
  42. Older, K., Pratt, R. M., and Yamada, K. M., 1978, Role of carbohydrates in protein secretion and turnover: effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts, Cell 13:461–473.CrossRefGoogle Scholar
  43. Parodi, A. J., and Leloir, L. F., 1979, The role of lipid intermediates in the glycosylation of proteins in the eukaryotic cell, Biochim. Biophys. Acta 559(1): 1–37.PubMedGoogle Scholar
  44. Pazur, J. H., and Aroneon, N. N., 1972, Glycoenzymes: Enzymes of glycoprotein structure, Adv. Carbohydr. Chem. Biochem. 27:301–341.CrossRefGoogle Scholar
  45. Plummer, J. H., Jr., Elder, J. H., Alexander, S., Phelan, A. W., and Tarentino, A. L., 1984, Demonstration of peptide: N-glycosidase F activity in Endo-B-N-acetylglucos- aminidase F preparations, J. Biol. Chem. 259:10700–10704.PubMedGoogle Scholar
  46. Rees, D. A., 1977, Polysaccharide Shapes, Chapman and Hall, London.Google Scholar
  47. Reynolds, J. A., and Tanford, C., 1970, Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes, Proc. Natl. Acad. Sci. USA 66:1002–1007.PubMedCrossRefGoogle Scholar
  48. Richards, J. S., and Rolfes, A., 1980, Hormonal regulation of cyclic AMP binding to specific receptor proteins in rat ovarian follicles. J. Biol. Chem. 255:5481–5489.PubMedGoogle Scholar
  49. Richards, J. S., Seghal, N., and Tash, J. S., 1983, Changes in content and cAMP dependent phosphorylation of specific proteins in granulosa cells of preantral and preovulatory ovarian follicles and corpora lutea, J. Biol. Chem. 258:5227–5232.PubMedGoogle Scholar
  50. Richards, J. S., Haddox, M., Tash, J. S., Walter, U., and Lohman, S., 1984, Adenosine 3′, 5′-monophosphate-dependent protein kinase and granulosa cell responsiveness to gonadotropins, Endocrinology 114(6):2190–2198.PubMedCrossRefGoogle Scholar
  51. Rothman, J. E., 1985, The compartmental organization of the Golgi apparatus, Sci. Am. 253(3):74–89.PubMedCrossRefGoogle Scholar
  52. Sairam, M. R., and Fleshner, P., 1981, Inhibition of hormone-induced cyclic AMP production and steroidogenesis in interstitial cells by deglycosylated lutropin, Mol. Cell Endocrinol. 22:41–54.PubMedCrossRefGoogle Scholar
  53. Sairam, M. R., and Schiller, P. W., 1979, Receptor binding, biological, and immunological properties of chemically deglycosylated pituitary lutropin, Arch. Biochem. Biophys. 197:294–301.PubMedCrossRefGoogle Scholar
  54. Schwarz, R. T., Rohrschneider, J. M., and Schmidt, M. F. G., 1976, Suppression of glycoprotein formation of Semliki Forest, influenza, and avian sarcoma virus by tunica- mycin, J. Virol. 19:782–791.PubMedGoogle Scholar
  55. Segrest, J. P., Jackson, R. L., Andrews, E. P., and Marchesi, V. T., 1971, Human erythrocyte membrane glycoprotein: A reevaluation of the molecular weight as determined by SDS-polyacrylamide gel electrophoresis, Biochem. Biophys. Res. Commun. 44:390–395.PubMedCrossRefGoogle Scholar
  56. Schacter, H., and Roden, L., 1973, The biosynthesis of animal glycoproteins, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. 3 (W. H. Fishman, ed.), pp. 1–149, Academic Press, New York.Google Scholar
  57. Sharon, N., and Lis, H., 1972, Lectins: Cell-agglutinating and sugar-specific proteins, Science 177:949–959.PubMedCrossRefGoogle Scholar
  58. Sharon, N., 1975, Complex Carbohydrates: Their Chemistry, Biosynthesis and Functions, Addison-Wesley, Reading, Massachusetts.Google Scholar
  59. Skehel, J. J., Stevens, D. J., Daniels, R. S., Douglas, A. R., Knossow, M., Wilson, I. A., and Wiley, D. C., 1984, A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody, Proc. Natl. Acad. Sci. USA 81:1779–1783.PubMedCrossRefGoogle Scholar
  60. Skinner, S. M., and Dunbar, B. S., 1986, Immunological Approaches to Contraception and Promotion of Fertility (G. P. Talwar, ed.), Plenum Press, New York.Google Scholar
  61. Skinner, S. M., Mills, T., Kirchick, H. J., and Dunbar, B. S., 1984, Immunization with zona pellucida proteins results in abnormal ovarian follicular differentiation and inhibition of gonadotropin-induced steroid secretion, Endocrinology 115(6):2418–2432.PubMedCrossRefGoogle Scholar
  62. Spiro, R. G., 1960, Studies on fetuin, a glycoprotein of fetal serum. I. Isolation, chemical composition, and physicochemical properties, J. Biol. Chem. 235:2860–2869.PubMedGoogle Scholar
  63. Spiro, R. G., 1970, Glycoproteins, Annu. Rev. Biochem. 39:599–638.PubMedCrossRefGoogle Scholar
  64. Spiro, R. G., 1973, Glycoproteins, in: Advances in Protein Chemistry (C. B. Anfinsen, J. T. Edsall, and F. M. Richards, eds.), pp. 350–467, Academic Press, New York.Google Scholar
  65. Spiro, R. G., 1976, Isolation of fetuin, in: Methods in Carbohydrate Chemistry, Vol. VII (R. L. Whistler and J. N. BeMiller, eds.), pp. 163–167, Academic Press, New York.Google Scholar
  66. Spiro, R. G., 1976, Isolation of glycopeptides from glycoproteins by proteolytic digestion, in: Methods in Carbohydrate Chemistry, Vol. VII (R. L. Whistler and J. N. BeMiller, eds.), pp. 185–190, Academic Press, New York.Google Scholar
  67. Staneloni, R. J., and Leloir, L. F., 1979, The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins, Trends Biochem. 4:65–67.CrossRefGoogle Scholar
  68. Stevens, V. J., Rouzer, C. A., Monnier, V. M., and Cerami, A., 1978, Diabetic cataract formation: Potential role of glycosylation of lens crystallins (non-enzymatic glycosy- lation/sulfhydryl oxidation), Proc. Natl. Acad. Sci. USA 75:2918–2922.PubMedCrossRefGoogle Scholar
  69. Stull, J. T., 1980, Phosphorylation of contractile proteins in relation to muscle function, Adv. Cyclic Nucleotide Res. 13:39–93.PubMedGoogle Scholar
  70. Tash, J. S., Guerriero, V., and Means, A. R., 1985, cAMP and calcium-dependent protein kinases and phosphoprotein identification, in: Laboratory Methods Manual for Hor-mone Action and Molecular Endocrinology, 9th ed. (W. T. Schrader and B. W. O’Malley, eds.), pp. 10.1–10.50, Houston Biological Association, Houston, Texas.Google Scholar
  71. Traugh, J. A., and Traut, R. R., 1974, Characterization of protein kinases from rabbit reticulocytes, J. Biol. Chem. 249:1207–1212.PubMedGoogle Scholar
  72. Trueb, B., Holenstein, C. G., Fisher, R. W., and Winterhalter, K. H., 1980, Non-enzymatic glycosylation of proteins, J. Biol. Chem. 255(14):6717–6720.PubMedGoogle Scholar
  73. Ueda, R., Ogata, S., Morrissey, D. M., Finstad, C. L., Szkudlarek, J., Whitmore, W. F., Oettgen, H. F., Lloyd, K. O., and Old, L. J., 1981, Cell surface antigens of human renal cancer defined by mouse monoclonal antibodies: Identification of tissue-specific kidney glycoproteins, Proc. Natl. Acad. Sci. USA 78:5122–5126.PubMedCrossRefGoogle Scholar
  74. Ushiro, H., and Cohen, S., 1980, Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes, J. Biol. Chem. 255:8363–8365.PubMedGoogle Scholar
  75. Walsh, D. A., Perkins, J. P., and Krebs, E. G., 1968, An adenosine 3’, 3’-monophosphate- dependent protein kinase from rabbit skeletal muscle, J. Biol. Chem. 243:3763.PubMedGoogle Scholar
  76. Waechter, C. J., and Lennarz, W. J., 1976, The role of polyprenol-linked sugars in glycoprotein synthesis, Annu. Rev. Biochem. 45:95–112.PubMedCrossRefGoogle Scholar
  77. Wang, J. Y., and Baltimore, D., 1983, Characterization of the Abedsen murine leukemia virus encoded tyrosine-specific protein kinase, Methods Enzymol. 99:373–378.PubMedCrossRefGoogle Scholar
  78. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406–4412.PubMedGoogle Scholar
  79. Winterhalter, K. H., 1981, Determination of glycosylated hemoglobins, Methods Enzymol. 76:732–739.PubMedCrossRefGoogle Scholar
  80. Witte, O. N., Dasgupta, A., and Baltimore, D., 1980, Abelson murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine, Nature (Lond.) 283:826–831.CrossRefGoogle Scholar
  81. Yamamoto, K., Tsuji, T., Matsumdo, I., and Osawa, T., 1981, Structural requirements for the binding of oligosaccharides and glycopeptides in immobilized wheat germ agglutinin, Biochemistry 20:5894–5899.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Bonnie S. Dunbar
    • 1
  1. 1.Baylor College of MedicineHoustonUSA

Personalised recommendations