Skip to main content

Organization of Conducting Systems in “Simple” Invertebrates: Porifera, Cnidaria and Ctenophora

  • Chapter

Abstract

The following review summarizes recent discoveries in three groups of multicellular animals in which the phrase “central nervous system” does not fit the usual conception of a centralized ganglion, or group of ganglia, located in the anterior portion of a bilaterally symmetrical animal. The radial symmetry of cnidarians and ctenophores presents unique problems for the acquisition and integration of sensory information as well as the distribution of motor output. Here we provide insights into how behavior is controlled in the “most primitive” of radially symmetrical animals, cnidarians and ctenophores. In addition, recent advances in the neurobiology of the Porifera are reviewed. This review is not presented as an encyclopedic account of all past work on these groups, but rather as a sampling of past and current studies that best illustrate general properties of these groups and highlight the most recent developments and directions of ongoing research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzelius BA (1961) The fine structure of the cilia from ctenophore swimming-plates. J Biophys Biochem Cytol 9: 383–394.

    PubMed  CAS  Google Scholar 

  • Anctil M (1987) Neural control mechanisms in bioluminescence. (This volume).

    Google Scholar 

  • Anderson PAV (1976) An electrophysiologicasl study of mechanisms controlling polyp retraction in colonies of the scleractinian coral Goniopora lobata. J Exp Biol 65: 381–393.

    PubMed  CAS  Google Scholar 

  • Anderson PAV (1979) Ionic basis of action potentials and bursting activity in hydromedusan jellyfish Polyorchis penicillatus. J Exp Biol 78: 299–302.

    CAS  Google Scholar 

  • Anderson PAV (1980) Epithelial conduction: its properties and functions. Prog Neurobiol 15: 161–203.

    PubMed  CAS  Google Scholar 

  • Anderson PAV (1984) The electrophysiology of single smooth muscle cells isolated from the ctenophore Mnemiopsis. J Comp Physiol B 154: 257–268.

    Google Scholar 

  • Anderson PAV (1985) Physiology of a bidirectional, excitatory, chemical synapse. J Neurophysiol 53: 821–835.

    PubMed  CAS  Google Scholar 

  • Anderson PAV, Case JF (1975) Electrical activity associated with luminescence and other colonial behaviour in the pennatulid Renilla kollikeri. Biol Bull Mar Biol Lab, Woods Hole 149: 80–95.

    Google Scholar 

  • Anderson PAV, Mackie GO (1977) Electrically coupled, photosensitive neurons control swimming in a jellyfish. Science 197: 186–188.

    PubMed  CAS  Google Scholar 

  • Anderson PAV, McKay MC (1985) Evidence for a proton-activated chloride current in coelenterate neurons. Biol Bull 169: 652–660.

    Google Scholar 

  • Anderson PAV, Schwab WE (1981) The organization and structure of nerve and muscle in the jellyfish Cyanea capillata (Coelenterata: Scyphozoa). J Morphol 170: 383–399.

    Google Scholar 

  • Anderson PAV, Schwab WE (1982) Recent advances and model systems in coelenterate neurobiology. Prog Neurobiol 19: 213–236.

    PubMed  CAS  Google Scholar 

  • Anderson PAV, Schwab WE (1983) Action potential in neurons of motor nerve net of Cyanea (Coelenterata). J Neurophysiol 50: 671–683.

    PubMed  CAS  Google Scholar 

  • Arkett SA, Spencer AN (1986a) Neuronal mechanisms of a hydromedusan shadow reflex I. Identified reflex components and sequence of events. J Comp Physiol 159: 201–213.

    Google Scholar 

  • Arkett SA, Spencer AN (1986b) Neuronal mechanisms of hydromedusan shadow reflex II. Graded response of relfex components, possible mechanisms of photic integration, and function significance. J Comp Physiol 159: 215–225.

    Google Scholar 

  • Barnes RD (1985) Current perspectives on the origins and relationships of lower invertebrates. In: Conway S, Morris SC, George JD, Gibson R, Piatt HM (eds) The origins and relationships of lower invertebrates. The Systematics Association Special Volume 28. Clarendon Press, Oxford, pp 360–367.

    Google Scholar 

  • Bergquist PR (1985) Poriferan relationships. In: Conway S, Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. The Systematics Association Special Volume 28. Clarendon Press, Oxford, pp 14–27.

    Google Scholar 

  • Berking S (1986) Is homarine a morphagen in the marine hydroid Hydractinia?. Wilhelm Roux’s Arch Dev Biol 195: 33–38.

    CAS  Google Scholar 

  • Bidder GP (1923) The relationship of the form of a sponge to its currents. Q J Microsc Sci 67: 293–323.

    Google Scholar 

  • Brien P (1973) Les demosponges: morphologie et reproduction. In: Grasse PP (ed) Traité de zoologie: Anatomie, systématique, biologie. Vol. 3. Masson, Paris, pp 133–461.

    Google Scholar 

  • Bullock TH (1943) Neuromuscular facilitation in scyphomedusae. J Cell Comp Physiol. 22: 251–272.

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Vol. I. W.H. Freeman, San Francisco and London.

    Google Scholar 

  • Burnett AL (1961) The growth process in Hydra. J Exp Zool 146: 21–84.

    Google Scholar 

  • Burnett AL, Diehl NA (1964) The nervous system of Hydra. I. Types, distribution and origin of nerve elements. J Exp Zool 157: 217–226.

    PubMed  CAS  Google Scholar 

  • Chain BM, Bone Q, Anderson PAV (1981) Electrophysiology of a myoid epithelium in Chelophyes (Coelenterata: Siphonophora). J Comp Physiol 143: 329–338.

    Google Scholar 

  • Chapman DM (1974) Cnidarian histology. In: Muscatine L, Lenhoff HM (eds) Coelenterate Biology. Reviews and perspectives. Academic Press, New York, pp 1–92.

    Google Scholar 

  • Cottrell GA, Davies NW (1987) Multiple receptor sites for a molluscan peptide (FMRFamide) and related peptides of Helix. J Physiol (in press).

    Google Scholar 

  • David CN (1973) A quantitative method for maceration of Hydra tissue. Wilhelm Roux’s Arch Entwicklungsmech Org 171: 259–268.

    Google Scholar 

  • Davis LE, Burnett AL, Haynes JF (1968) Histological and ultrastructural study of the muscular and nervous system in Hydra. II. Nervous system. J Exp Zool 167: 295–332.

    PubMed  CAS  Google Scholar 

  • Dickinson P (1978) Conduction systems controlling expansion-contraction behavior in the sea pen Ptilosarcus gurneyi. Mar Behav Physiol 5: 163–183.

    Google Scholar 

  • Dunne JF, Javois LC, Huang LW, Bode HR (1985) A subset of cells in the nerve-net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development. Dev Biol 109: 41–53.

    PubMed  CAS  Google Scholar 

  • Eimer T (1878) Die Medusen: Physiologisch und Morphologisch auf ihr Nervensystem. Tubingen.

    Google Scholar 

  • Epp L, Tardent P (1978) The distribution of nerve cells in Hydra attenuata Pall. Wilhelm Roux’s Arch Dev Biol 185: 185–193.

    Google Scholar 

  • Franc J-M (1978) Organization and function of ctenophore colloblasts: an ultrastrunctural study. Biol Bull Mar Biol Lab, Woods Hole 155: 527–541.

    Google Scholar 

  • Grimmelikhuijzen CJP (1983a) Coexistence of neuropeptides in Hydra. Neurosci 9: 837–845.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP (1983b) FMRFamide immunoreactivity is generally occurring in the nervous system of coelenterates. Histochem 78: 361–381.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP (1985) Antisera to the sequence Arg-Phe-amide visualiza neuronal centralization in hydroid polyps. Cell Tissue Res 241: 171–182.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Spencer AN (1984) FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus. J Comp Neurol 230: 361–371.

    PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Sundler F, Rehfeld JF (1980) Gastrin/CCK-like immunoreactivity in the nervous system of coelenterates. Histochem 69: 61–68.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Balfe A, Emson PC, Powell D, Sundler F (1981a) Substance P-like immunoreactivity in the nervous system of Hydra. Histochem 71: 325–333.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Carraway RE, Rokaeus A, Sundler F (1981b) Neurotensin-like immunoreactivity in the nervous system of Hydra. Histochem 72: 199–209.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Dockray GJ, Yanaihara N (1981c) Bombesin-like immunoreactivity in the nervous system of Hydra. Histochem 73: 171–180.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Dierickx K, Boer GJ (1982a) Oxytocin/vasopressin- like immunoreactivity is present in the nervous system of Hydra. Neurosci 7: 3191–3199.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Dockray GJ, Schot LPC (1982b) FMRFamide-like immunoreactivity in the nervous system of Hydra. Histochem 73: 499–508.

    CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Spencer AN, Carre D (1986) Organization of the nervous system of physonectid siphonophores. Cell Tissue Res 246: 463–479.

    Google Scholar 

  • Grimmelikhuijzen CJP, Graff D, Spencer AN (1987) Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates. In: Thorndyke MC, Goldsworthy G (eds) Invertebrate peptides and amines. Cambridge University Press.

    Google Scholar 

  • Hadzi J (1963) The evolution of the Metazoa. Pergamon Press, London.

    Google Scholar 

  • Haeckel E (1874) Die Gastraea-Theorie, die phylogenetische Klassification des Thierreichs und die Homolgie der kemiblatter. Jena Z Naturw 8: 1–55.

    Google Scholar 

  • Hagiwara S, Yoshida S, Yoshida M (1981) Transient and delayed potassium currents in the egg cell membrane of the coelenterate Renilla köllikeri. J Physiol 318: 123–141.

    PubMed  CAS  Google Scholar 

  • Heimfeld S, Bode HR (1985) Growth regulation of the interstitial cell population in Hydra. Dev Biol 297–307.

    Google Scholar 

  • Hernandez-Nicaise ML (1968) Distribution et ultrastructure des synapses symétriques dans le système nerveux des Cténaires. C Hebd Seanc Acad Sci, Paris 267: 1731–1734.

    CAS  Google Scholar 

  • Hernandez-Nicaise ML (1973a) Le système nerveux des Cténaires. I. Structure et ultrastructure des réseaux épitheliaux. Z Zellforsch Mikrosk Anat 137: 223–250.

    PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise ML (1973b) Le système nerveux des Cténaires. II. Les éléments nerveux intramésogleens chez les Beroides et les Cydippidés. Z Zellforsch Mikrosk Anat 143: 117–133.

    PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise ML (1973c) The nervous system of Ctenophora. III. Ultrastructure of synapses. J Neurocytol 2: 249–263.

    PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise ML (1974) Ultrastructural evidence for a sensory-motor neuron in ctenophora. Tissue Cell 6: 43–47.

    PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise ML, Amsellem J (1980) Ultrastructure of the giant smooth muscle fiber of the Ctenophore Beroe ovata. J Ultrastruct Res 72: 151–168.

    PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise ML, Mackie GO, Meech RW (1980) Giant smooth muscle cells of Beroe: Ultrastructure, innervation and electrical properties. J Gen Physiol 75: 79–105.

    PubMed  CAS  Google Scholar 

  • Hernandez-Nicaise ML, Bilbaut A, Malaval L, Nicaise G (1982) Isolation of functional giant smooth muscle cells from an invertebrate: structural features of relaxed and contracted fibers. Proc Natl Acad Sci USA 79: 1884–1888.

    PubMed  CAS  Google Scholar 

  • Horridge GA (1954) The nerves and muscles of medusae. I. Conduction in the nervous system of Aurelia aurita Lamarck. J Exp Biol 31: 594–600.

    Google Scholar 

  • Horridge GA (1956a) The nervous system of the ephyra larva of Aurelia aurita. Q J Microsc Sci 97: 59–74.

    Google Scholar 

  • Horridge GA (1956b) The nerves and muscles of medusae. V. Double innervation in scyphozoa. J Exp Biol 33: 366–383.

    Google Scholar 

  • Horridge GA (1957) The co-ordination of the protective retraction of coral polyps. Phil Trans R Soc 240: 495–529.

    Google Scholar 

  • Horridge GA (1959) The nerves and muscles of medusae. VI. The rhythm. J Exp Biol 36: 72–91.

    CAS  Google Scholar 

  • Horridge GA (1965a) Relations between nerves and cilia in ctenophores. Amer Zool 5: 357–375.

    CAS  Google Scholar 

  • Horridge GA (1965b) Non-motile sensory cilia and neuromuscular junctions in a ctenophore independent effector organ. Proc R Soc B162: 333–350.

    Google Scholar 

  • Horridge GA (1965c) Intracellular action potentials associated with the beating of the cilia in ctenophore comb plate cells. Nature, 205: 602.

    Google Scholar 

  • Horridge GA (1966) Pathways of co-ordination in ctenophores. In: Rees WJ (ed) The Cnidaria and their evolution, Symposium, Zoological Society of London. Vol. 16, pp 247–266.

    Google Scholar 

  • Horridge GA (1968) Interneurons. Freeman, San Francisco.

    Google Scholar 

  • Horridge GA (1974) Recent studies on the Ctenophora. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology: Reviews and new perspective. Academic Press, New York, pp 439–468.

    Google Scholar 

  • Horridge GA, Mackay B (1962) Naked axons and symmetrical synapses in coelenterates. Q J Microsc Sci. 103: 531–541.

    Google Scholar 

  • Horridge Ga, Mackay B (1964) Neurociliary synapses in Pleurobrachia (Ctenophora). Q J Microsc Sci 105: 163–174.

    Google Scholar 

  • Jackson AJ, McFarlane ID (1976) Delayed initiation of SS1 pulses in the sea anemone Calliactis parasitica: evidence for a fourth conducting system. J Exp Biol 65: 539–552.

    PubMed  CAS  Google Scholar 

  • Jagersten G (1955) On the early phylogeny of the Metazoa. The bilat- erogastreaea theory. Zool Bidr Upps 30: 321–354.

    Google Scholar 

  • Jones WC (1962) Is there a nervous system in sponges? Biol Rev 37: 1–50.

    PubMed  CAS  Google Scholar 

  • Josephson RK (1961) Repetitive potentials following brief electric stimuli in a hydroid. J Exp Biol 38: 579–593.

    Google Scholar 

  • Josephson RK (1966) Neuromuscular transmission in a sea anemone. J Exp Biol 45: 305–319.

    Google Scholar 

  • Josephson RK, Reiss RF, Worthy RM (1961) A simulation study of a diffuse conducting system based on coelenterate nerve nets. J Theor Biol 1: 460–487.

    PubMed  CAS  Google Scholar 

  • Kass-Simon G (1982) Aspects of coelenterate membrane physiology. In: Podesta RB (ed) Membrane physiology of invertebrates. Marcel Decker, NY, pp 83–120.

    Google Scholar 

  • Kerfoot PAH, Mackie GO, Meech RW, Roberts A, Singla CL (1985) Neuromuscular transmission in the jellyfish Aglantha digitale. J Exp Biol 116: 1–25.

    PubMed  CAS  Google Scholar 

  • King MG, Spencer AN (1979) Gap and septate junctions in the excitable endoderm of Polyorchis penicillatus (Hydrozoa: Anthomedusae). J Cell Sci 36: 391–400.

    PubMed  CAS  Google Scholar 

  • Kinnamon JC, Westfall J (1981) A three-dimensional serial reconstruction of neuronal distributions in the hypostome of a Hydra. J Morphol 168: 321–329.

    Google Scholar 

  • Lawn ID (1975) An electrophysiological analysis of chemoreception in the sea anemone, Tealia felina. J Exp Biol 63: 525–536.

    Google Scholar 

  • Lawn ID (1976a) The marginal sphincter of the sea anemone Calliactis parasitica. II. Properties of the inhibitory response. J Comp Physiol 105: 301–311.

    Google Scholar 

  • Lawn ID (1976b) Swimming in the sea anemone Stomphia coccinea triggered by a slow conduction system. Nature 262: 708–709.

    PubMed  CAS  Google Scholar 

  • Lawn ID (1982) Porifera. In: Shelton GAB (ed) Electrical conduction and behaviour in Simple invertebrates. Clarendon Press, Oxford, pp 49–72.

    Google Scholar 

  • Lawn ID, Mackie Go, Silver G (1981) A conduction system in a sponge. Science 211: 1169–1171.

    PubMed  CAS  Google Scholar 

  • Lentz TL (1968) Primitive nervous systems. Yale University Press, New Haven.

    Google Scholar 

  • Lerner J, Mellen SA, Waldron I, Factor RM (1971) Neural redundancy and regularity of swimming beats in scyphozoan medusae. J Exp Biol 55: 177–184.

    PubMed  CAS  Google Scholar 

  • Mackie GE (1970) Neuroid conduction and the evolution of conducting tissue. Q Rev Biol 45: 319–332.

    PubMed  CAS  Google Scholar 

  • Mackie GO (1971) Neurological complexity in medusae: A report of central nervous organization in Sarsia. Actas del il Simposio Internacional de Zoofilogenia Salamance 269–280.

    Google Scholar 

  • Mackie GO (1973) Report on giant nerve fibres in Nanomia. Pubi Seto Mar Biol Lab: 745–756.

    Google Scholar 

  • Mackie GO (1975) Neurobiology of Stomotoca. II. Pacemakers and conduction pathways. J Neurobiol 6: 357–378.

    PubMed  CAS  Google Scholar 

  • Mackie GO (1976a) Propagated spikes and secretion in a coelenterate glandular epithelium. J Gen Physiol 68: 313–325.

    PubMed  CAS  Google Scholar 

  • Mackie GO (1976b) The control of fast and slow muscle contractions in the siphonophore stem. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 647–659.

    Google Scholar 

  • Mackie GO (1978) Coordination in physonectid siphonophores. Mar Behav Physiol 5: 325–346.

    Google Scholar 

  • Mackie GO (1979) Is there a conduction system in sponges? Colloques Int Cent Natn Rech Scient 291: 145–151.

    Google Scholar 

  • Mackie GO (1980) Slow swimming and cyclical “fishing” behavior in Aglantha digitale (Hydromedusae: Trachylina). Can J Fish Aquat Sci 37: 1550–1556.

    Google Scholar 

  • Mackie GO (1984) Fast pathways and escape behavior in Cnidaria. In: Eaton RC (ed) Neural mechanisms of startle behavior. Plenum Pubi Corp, p 15–42.

    Google Scholar 

  • Mackie GO, Carré D (1983) Coordination in a diphyid siphonophore. Mar Behav Physiol 9: 139–170.

    Google Scholar 

  • Mackie GO, Meech RW (1985) Separate sodium and calcium spikes in the same axon. Nature 313: 791–793.

    PubMed  CAS  Google Scholar 

  • Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1883). Phil Trans R Soc Lond B 301: 365–400.

    Google Scholar 

  • Mackie GO, Passano LM, Pavans de Ceccatty M (1967) Physiologie du comportement de 1’Hydroméduse Sarsia tubulosa Sars. Les systèmes a conduction aneurale. C R Hebd Seans Acad Sci, Paris 264: 466–469.

    Google Scholar 

  • Mackie GO, Lawn ID, Pavans de Ceccatty M (1983) Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses in Rhabdocalyptus dawsoni (Lambe, 1973). Phil Trans R Soc Lond B 301: 401–418.

    Google Scholar 

  • Mackie GO, Anderson PAV, Singla CL (1984) Apparent absence of gap junctions in two classes of Cnidaria. Biol Bull 167: 120–123.

    Google Scholar 

  • Mackie GO, Singla CL, Stell WK (1985) Distribution of nerve elements showing FMRFamide-like immunoreactivity in hydromedusae. Acta Zool (Stockh) 66: 199–210.

    Google Scholar 

  • Marcus E (1958) On the evolution of animal phyla. Q Rev Biol 33: 24–58.

    Google Scholar 

  • Martin SM, Spencer AN (1982) Neurotransmitters in Coelenterates. Comp Biochem Physiol C 74: 1–14.

    Google Scholar 

  • McFarlane ID (1969a) Two slow conduction systems in the sea anemone Calliactis parasitica. J Exp Biol 51: 377–385.

    PubMed  CAS  Google Scholar 

  • McFarlane ID (1969b) Co-ordination of pedal-disc detachment in the sea anemone Calliactis parasitica. J Exp Biol 51: 387–396.

    Google Scholar 

  • McFarlane ID (1970) Control of preparatory feeding behaviour in the sea anemone Tealia felina. J Exp Biol 53: 211–220.

    Google Scholar 

  • McFarlane ID (1973a) Spontaneous electrical activity in the sea anemone Calliactis parasitica. J Exp Biol 58: 77–90.

    Google Scholar 

  • McFarlane ID (1973) Spontaneous contractions and nerve net activity in the sea anemone Calliactis parasitica. Mar Behav Physiol 2: 97–113.

    Google Scholar 

  • McFarlane ID (1974) Control of the pacemaker system of the nerve net in the sea anemone Calliactis parasitica. J Exp Biol 61: 129–143.

    PubMed  CAS  Google Scholar 

  • McFarlane ID (1975) Control of mouth opening and pharynx protrusion during feeding in the sea anemone Calliactis parasitica. J Exp Biol 63: 615–626.

    PubMed  CAS  Google Scholar 

  • McFarlane ID (1979) Two slow conducting systems coordinate shell-climbing behaviour in the brain coral Calliactis parasitica. J Exp Biol 64: 431–446.

    Google Scholar 

  • McFarlane ID (1978) Multiple conducting systems and the control of behaviour in the brain coral Meandrina meandrites (L.). Proc R Soc B 200: 193–216.

    Google Scholar 

  • McFarlane ID (1982) Calliactis parasitica. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 243–265.

    Google Scholar 

  • McFarlane ID (1983) Nerve net pacemakers and phases of behaviour in the sea anemone Calliactis parasitica. J Exp Biol. 104: 231–246.

    Google Scholar 

  • McFarlane ID (1984) Nerve nets and conducting systems in sea anemones: two pathways excite tentacle contractions in Calliactis parasitica. J Exp Biol 108: 137–149.

    Google Scholar 

  • MaFarlane ID, Lawn ID (1972) Expansion and contraction of the oral disk in the sea anemone Tealia felina. J Exp Biol 57: 633–649.

    Google Scholar 

  • McNair GT (1923) Motor reactions of the fresh-water sponge Ephydatia fluviatilis. Biol Bull 44: 153–166.

    Google Scholar 

  • Meinhardt H, Gierer A (1974) Application of a theory of biological formation based on lateral inhibition. J Cell Sci 15: 321–346.

    PubMed  CAS  Google Scholar 

  • Mills CE, Mackie GO, Singla CL (1985) Giant nerve axons and escape swimming in Amphogona apicata with notes on other hydromedusae. Can J Zool 63: 2221–2224.

    Google Scholar 

  • Moss AG, Tamm SL (1986) Electrophysiological control of ciliary motor responses in the ctenophore Pleurobrachia. J Comp Physiol A 158: 311–330.

    PubMed  CAS  Google Scholar 

  • Ohtsu K (1983) Antagonizing effects of ultraviolet and visible light on the ERG from the ocellus of Spirocodon saltatrix. J Exp Biol 105: 417–420.

    Google Scholar 

  • Ohtsu K, Yoshida M (1973) Electrical activities of the anthomedusan Spirocodon saltatrix (Tilisius). Biol Bull 145: 532–547.

    Google Scholar 

  • Pantin CFA (1935a) The nerve-net of the Actinozoa. I. Facilitation. J Exp Biol 12: 119–138.

    Google Scholar 

  • Pantin CFA (1935b) The nerve-net of the Actinozoa. II. Plan of the nerve net. J Exp Biol 12: 139–155.

    Google Scholar 

  • Pantin CFA (1935c) The nerve-net of the Actinozoa. III. Polarity and afterdischarge. J Exp Biol 12: 156–164.

    Google Scholar 

  • Pantin CFA (1935d) The nerve-net of the Actinozoa. IV. Facilitation and the ‘staircase’. J Exp Biol 12: 389–396.

    Google Scholar 

  • Pantin CFA (1952) The elementary nervous system. Proc R Soc B 140: 147–168.

    CAS  Google Scholar 

  • Pantin CFA, Vianna Dias M (1952) Rhythm and after discharge in medusae. Anais Acad Bras Cienc 24: 351–364.

    Google Scholar 

  • Passano LM (1965) Pacemakers and activity patterns in medusae: homage to Romanes. Amer Zool 5: 465–481.

    CAS  Google Scholar 

  • Passano LM (1973) Behavioral control systems in medusae; a comparison between hydro- and scyphomedusae. Publ Seto Mar Biol Lab 20: 615–645.

    Google Scholar 

  • Passano LM (1982) Scyphozoa and cubozoa. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 149–202.

    Google Scholar 

  • Passano LM, Mackie GO, Pavans de Ceccatty M (1967) Physiologie du comportement de 1’Hydromeduse Sarsia tubulosa Sars. Les systèmes des activités spontanées. CR Hebd Seanc Acad Sci, Paris 264: 614–617.

    Google Scholar 

  • Patton ML, Passano LM (1972) Intracellular recording from the giant fiber nerve-net of a scyphozoan jellyfish. Amer Zool 12: 35.

    Google Scholar 

  • Pavans de Caccatty M (1955) Le système nerveux des Eponges. Ann Sci Nat Zool 17: 203–298.

    Google Scholar 

  • Pavans de Caccatty M (1962) Système nerveux et intégration chez les spongiaires. Ann Sci Nat Zool 4: 127–137.

    Google Scholar 

  • Pavans de Ceccatty M (1969) Les systèmes des activités motrices, spontanées et provoquées des Eponges. C R Hebd Seanc Acad Paris 269: 596–599.

    Google Scholar 

  • Pavans de Ceccatty M (1974) Coordination in sponges. The foundations of integration. Amer Zool 14: 895–903.

    Google Scholar 

  • Pavans de Ceccatty M, Coraboeuf E (1960) Les réactions motrices de l’éponge siliceuse Tethya lyncurium à quelques stimulations expérimentales. Vie et Milieu 11: 594–600.

    Google Scholar 

  • Pickens PE (1969) Rapid contractions and associated potentials in a sand-dwelling anemone. J Exp Biol 51: 513–528.

    PubMed  CAS  Google Scholar 

  • Rees WJ (1966) The evolution of the Hydrozoa. In: Rees WJ (ed) The Cnidaria and their evolution. Academic Press, pp 199–222.

    Google Scholar 

  • Reiswig HM (1971) In situ pumping activities of tropical Demospongiae. Mar Biol 9: 38–50.

    Google Scholar 

  • Reiswig HM, Mackie GO (1983) Studies on hexactinellid sponges. III. The taxonomic status of Hexactinellida within the Porifera. Phil Trans R Soc Lond B 301: 419–428.

    Google Scholar 

  • Roberts A, Mackie GO (1980) The giant axon escape system of a hydrozoan medusa, Aglantha digitale. J Exp Biol 84: 303–318.

    PubMed  CAS  Google Scholar 

  • Robson EA (1963) The nerve-net of a swimming anemone, Stomphia coccinea. Q J Micrsc Sci 104: 535–549.

    Google Scholar 

  • Robson EA (1965) Some aspects of the structure of the nervous system in the anemone Calliactis. Amer Zool 5: 403–410.

    CAS  Google Scholar 

  • Robson EA, Josephson RK (1969) Neuromuscular properties of mesenteries from the sea-anemone Metridium. J Exp Biol 50: 151–168.

    PubMed  CAS  Google Scholar 

  • Romanes GJ (1876) The Croonian Lecture. Preliminary observations on the locomotor system of medusae. Phil Trans R Soc 166: 269–313.

    Google Scholar 

  • Romanes GJ (1878) Further observations on the locomotor system of medusae. Phil Trans R Soc 167: 659–752.

    Google Scholar 

  • Ross DM (1957) Quick and slow contractions in the isolated sphincter of the sea anemone, Calliactis parasitica. J Exp Biol 34: 11–28.

    Google Scholar 

  • Ruben P, Johnson JW, Thompson S (1986) Analysis of FMRFamide effect on Aplysia bursting neurons. J Neurosci 6: 252–259.

    PubMed  CAS  Google Scholar 

  • Satterlie RA (1978) Feeding mechanisms in the ctenophore Pleurobrachia pileus. Biol Bull Mar Biol Lab, Woods Hole 155: 464.

    Google Scholar 

  • Satterlie RA (1979) Central control of swimming in the cubomedusan jellyfish Carybdea rastonii. J Comp Physiol 133: 357–367.

    Google Scholar 

  • Satterlie RA (1985) Central generation of swimming activity in the hydrozoan jellyfish Aequorea aequorea. J Neurobiol 16: 41–55.

    PubMed  CAS  Google Scholar 

  • Satterlie RA, Case JF (1978) Gap junctions suggest epithelial conduction within the comb plates of the ctenophore Pleurobrachia bechei. Cell Tissue Res 193: 87–91.

    PubMed  CAS  Google Scholar 

  • Satterlie RA, Case JF (1979) Neurobiology of the gorgonian coelenterates, Muricea californica and Lophogorqia chilensis. J Exp Biol 79: 191–204.

    Google Scholar 

  • Satterlie RA, Spencer AN, (1979) Swimming control in a cubomedusan jellyfish. Nature 281: 141–142.

    Google Scholar 

  • Satterlie RA, Spencer AN (1983) Neuronal control of locomotion in hydrozoan medusae: a comparative study. J Comp Physiol 150: 195–207.

    Google Scholar 

  • Satterlie RA, Anderson PAV, Case J (1976) Morphology and electrophysiology of the through-conducting systems in pennatulid coelenterates. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Publ Corp, New York, pp 619–627.

    Google Scholar 

  • Satterlie RA, Anderson PAV, Case JP (1980) Colonial coordination in anthozoans: Pennatulacea. Mar Behav Physiol 7: 25–46.

    Google Scholar 

  • Schaller HC (1976) Head regeneration is initiated by the release of head activator. Wilhelm Roux’s Arch Dev Biol 180: 287–295.

    Google Scholar 

  • Schaller HC, Gierer A (1973) Distribution of the head-activating substance in Hydra and its localization in membranous particles. J Embryol Exp Morphol 29: 39–52.

    PubMed  CAS  Google Scholar 

  • Schaller HC, Schmidt T, Grimmelikhuijzen CJP (1979) Separation and specificity of action of four morphogens from Hydra. Wilhelm Roux’s Dev Biol 186: 139–149.

    Google Scholar 

  • Shelton GAB (1975a) Colonial behaviour and electrical activity in the Hexacorallia. Proc R Soc B 190: 139–256.

    Google Scholar 

  • Shelton GAB (1975b) Colonial conduction systems in the Anthozoa: Octocorallia. J Exp Biol 62: 571–578.

    PubMed  CAS  Google Scholar 

  • Shelton GAB (1975c) The transmission of impulses in the ectodermal slow conduction system of the sea anemone Calliactis parasitica (Couch). J Exp Biol 62: 421–432.

    PubMed  CAS  Google Scholar 

  • Shelton GAB (1980) Lophelia pertusa (L.): electrical conduction and behaviour in a deep water coral. J Mar Biol Assn UK 60: 517–528.

    Google Scholar 

  • Shelton GAB (1982) Anthozoa. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 203–242.

    Google Scholar 

  • Shelton GAB, Holley MC (1984) The role of a ‘local electrical conduction system’ during feeding in the Devonshire cup coral Caryophyllia smithii Stokes and Broderip. Proc R Soc Lond B 220: 489–500.

    Google Scholar 

  • Shelton GAB, McFarlane IK (1976) Electrophysiology of two parallel conducting systems in the colonial Hexacorallia. Proc R Soc 193: 77–87.

    CAS  Google Scholar 

  • Sibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Biol 20: 49–74.

    PubMed  CAS  Google Scholar 

  • Singla CL (1978a) Fine structure of the neuromuscular system of Polyorchis penicillatus (Hydromedusae: Cnidaria). Cell Tissue Res 193: 163–174.

    PubMed  CAS  Google Scholar 

  • Singla CL (1978b) Locomotion and neuromuscular system of Aglantha digitale. Cell Tissue Res 188: 317–327.

    PubMed  CAS  Google Scholar 

  • Sleigh MA (1972) Features of ciliary movement of the ctenophores Beroe, Pleurobrachia and Cestus. In: Clarkand RB, Wootton RM (eds) Essays on hydrobiology. Exeter University Press, pp 119–136.

    Google Scholar 

  • Sleigh MA (1974) Metachronism of cilia of metazoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, New York, pp 287–304.

    Google Scholar 

  • Spencer AN (1971) Myoid conduction in the siphonophore Nanomia bijuga. Nature 223: 490–491.

    Google Scholar 

  • Spencer AN (1974) Non-nervous conduction in invertebrates and embryos. Amer Zool 14: 917–929.

    Google Scholar 

  • Spencer AN (1975) Behavior and electrical activity in the hydrozoan Proboscidactyla flavicirrata (Brandt). II. The medusa. Biol Bull 148: 236–250.

    Google Scholar 

  • Spencer AN (1978) Neurobiology of Polyorchis. I. Function of effector systems. J Neurobiol 9: 143–157.

    CAS  Google Scholar 

  • Spencer AN (1979) Neurobiology of Polyorchis. II. Structure of effector systems. J Neurobiol 10: 95–117.

    PubMed  CAS  Google Scholar 

  • Spencer AN (1981) The parameters and properties of a group of electrically coupled neurones in the central nervous system of a hydrozoan jellyfish. J Exp Biol 93: 33–50.

    Google Scholar 

  • Spencer AN (1982) The physiology of a coelenterate neuromuscular synapse. J Comp Physiol 148: 353–363.

    Google Scholar 

  • Spencer AN, Arkett SA (1984) Radial symmetry and the organization of central neurones in a hydrozoan jellyfish. J Exp Biol 110: 69–90.

    Google Scholar 

  • Spencer AN, Satterlie RA (1980) Electrical and dye coupling in an identified group of neurons in a coelenterate. J Neurobiol 11: 13–19.

    PubMed  CAS  Google Scholar 

  • Spencer AN, Satterlie RA (1981) The action potential and contraction in subumbrellar swimming muscle of Polyorchis penicillatus (Hydromedusae). J Comp Physiol 144: 401–407.

    Google Scholar 

  • Spencer AN, Schwab WE (1982) Hydrozoa. In: Shelton GAB (ed) Electrical Conduction and behaviour in ‘simple’ invertebrates. Claredon Press, Oxford, pp 73–148.

    Google Scholar 

  • Stein PG, Anderson PAV (1984) Maintenance of isolated smooth muscle cells of the ctenophore Mnemiopsis. J Exp Biol 110: 329–334.

    PubMed  CAS  Google Scholar 

  • Tamm SL (1973) Mechanisms of ciliary coordination in ctenophores. J Exp Biol 59: 231–245.

    Google Scholar 

  • Tamm SL (1979) Ionic and Structural basis of ciliary reversal in ctenophores. J Cell Biol 83: 174a.

    Google Scholar 

  • Tamm SL (1982) Ctenophora. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invernebrates. Clarendon Press, Oxford pp 266–358.

    Google Scholar 

  • Tamm SL, Tamm S (1981) Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J Cell Biol 89: 495–509.

    PubMed  CAS  Google Scholar 

  • Tardent P, Weber C (1976) Aqualitative and quantitative inventory of nervous cells in Hydraattenuata Pall. In: Mackie GO (ed) Coelenterate ecology andbehavior. Plenum Press, New York, pp 501–512.

    Google Scholar 

  • Weber C (1982) Electrical activities of a type of electroretinogram recorded from the ocellus of a jellyfish, Polyorchis penicillatus (Hydromedusae). J Exp Zool 223: 231–243.

    PubMed  CAS  Google Scholar 

  • Weber C, Singla CL, Kerfoot PAH (1982) Microanatomy of the subumbrellar motor innervation in Aglantha digitale (Hydromedusae: Trachylina). Cell Tissue Res 223: 305–312.

    PubMed  CAS  Google Scholar 

  • Westfall JA (1987) Ultrastructure of invertebrate synapses. (This volume).

    Google Scholar 

  • Wintermann G (1951) Entwicklungsphysiologische Intersuchungen an Susswasserschwammen. Zool Jahrb Abt Anat Ont Tiere 71: 427–486.

    Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cell differentiation. J Theor Biol 25: 1–47.

    PubMed  CAS  Google Scholar 

  • Wolpert L, Hombruch A, Clarke MRB (1974) Positional information and positional signalling in Hydra. Amer Zool 14: 647–663.

    Google Scholar 

  • Yu SM, Westfall JM, Dunne JF (1985) Light and electron microscopic localization of a monoclonal antibody in neuron in situ in the head region of Hydra. J Morphol 184: 183–193.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Satterlie, R.A., Spencer, A.N. (1987). Organization of Conducting Systems in “Simple” Invertebrates: Porifera, Cnidaria and Ctenophora. In: Ali, M.A. (eds) Nervous Systems in Invertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1955-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1955-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9084-1

  • Online ISBN: 978-1-4613-1955-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics